1
|
Zheng L, Wang L, Zhang M, Tian SK. Photoinduced Nickel-Mediated Radical Coupling Reaction of Sodium Sulfinates with N-Hydroxyphthalimide Esters. J Org Chem 2025. [PMID: 40424378 DOI: 10.1021/acs.joc.5c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Aryl methyl sulfones represent a privileged structural motif in modern drug discovery due to their diverse biological activities and metabolic stability. However, conventional synthetic approaches for these valuable compounds typically necessitate harsh reaction conditions, including elevated temperatures, strong oxidants, or air-sensitive reagents, which significantly limit their applicability in pharmaceutical synthesis. Herein, we present a novel and efficient strategy for the synthesis of aryl methyl/trideuterated methyl sulfones through nickel-mediated radical coupling, which involves the synergistic combination of methyl radicals generated from N-hydroxyphthalimide (NHP) esters and sulfonyl radicals derived from sodium sulfinates. This protocol establishes a versatile platform for the efficient synthesis of diverse aromatic methyl sulfones and their trideuterated analogues under mild reaction conditions, demonstrating good functional group compatibility and a broad substrate scope.
Collapse
Affiliation(s)
- Linze Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muliang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Ogasahara R, Mae M, Itabashi Y, Ohkubo K, Matsuura K, Shimizu H, Ban K, Togami M, Udagawa T, Fujioka H, Kamiya M, Akai S, Sawama Y. Photocatalytic and Chemoselective H/D Exchange at α-Thio C(sp 3)-H Bonds. J Am Chem Soc 2025; 147:15499-15509. [PMID: 40269629 DOI: 10.1021/jacs.5c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Deuterated compounds used in drug discovery and live-cell imaging have recently gained the attention of various scientific fields. Although hydrogen-deuterium (H/D) exchange reactions are straightforward deuteration methods, achieving perfect chemoselectivity is challenging. We report the highly chemoselective deuteration of α-thio C(sp3)-H bonds using a thioxanthone or anthraquinone organic photocatalyst bearing an aromatic ketone skeleton and D2O as an inexpensive deuterium source under 390 nm irradiation. Notably, incorporation of deuterium at the α-positions of the O/N atoms, benzylic positions, and aromatic rings was not observed. The present chemoselectivity was accomplished via a single electron transfer mechanism between the photocatalyst and S-containing substrates, as proven by laser-induced time-resolved transient absorption spectroscopic measurements. Furthermore, the proposed deuteration method could be applied to various S-containing substrates, including pharmaceuticals and biologically active compounds with high regioselectivities. The available deuterated compounds as novel deuterated alkylation reagents for future drug discovery and materials for Raman imaging were also demonstrated.
Collapse
Affiliation(s)
- Riku Ogasahara
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Miyu Mae
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Itabashi
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Keisuke Matsuura
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hyoga Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuho Ban
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masaki Togami
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroyoshi Fujioka
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- The Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, The University of Osaka, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Tatoueix K, Lepron M, Barboux C, Scherrmann MC, Pieters G, Feuillastre S. Unlocking the potential of hydrogen deuterium exchange via an iterative continuous-flow deuteration process. Nat Commun 2025; 16:1314. [PMID: 39900624 PMCID: PMC11791062 DOI: 10.1038/s41467-025-56600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Labelled compounds bearing hydrogen isotopes are keystones in diverse areas constituting a multi-billion dollar global market including drugs, diagnostics, biology, toxicology and smart materials. While hydrogen deuterium exchange (HDE) methods hold promise as relevant tools for the late-stage and one-step preparation of deuterium-labelled compounds, they often fall short in achieving sufficient isotopic purity combined either with a site-selectivity or with a full deuteration process, highlighting the need for further development and optimisation. This report pinpoints an approach to unlock the potential of HDE using the concept of iterative runs in continuous-flow technology (recirculation process). This closed-loop process grants access now to deuterated compounds with high isotopic purities, labelled at a precise site or perdeuterated on demand, in a fast, productive, and environmentally friendly way.
Collapse
Affiliation(s)
- Kevin Tatoueix
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Marco Lepron
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Cédric Barboux
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | | | - Grégory Pieters
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Yang J, Li Z, Huang Z, Zhu J. Deuteration Degree Controllable Synthesis of Aryl Deuteromethyl Ethers Through Dual photoredox and Thiol Catalysis. Chemistry 2024; 30:e202402475. [PMID: 39169448 DOI: 10.1002/chem.202402475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Herein, we report a facile and efficient deuteration degree controllable method for the preparation of aryl deuteromethyl ethers through dual photoredox and thiol catalysis using phenols as the starting materials and inexpensive D2O and CDCl3 as the deuterium sources. All aryl d1, d2, and d3 deuteromethyl ethers can be precisely prepared with good to excellent yields and deuteration ratios. The reaction operates under mild conditions without the need for high temperatures or high loading of transition metal catalysts, and a wide range of functional groups are well tolerated.
Collapse
Affiliation(s)
- Junjie Yang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhongxian Li
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Zhihui Huang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| |
Collapse
|
5
|
Ye Z, Zhang Y, Guo G, Shao X, Wu JR. Silver-Catalyzed 1,2-Thiosulfonylation of Alkenes: Development of a Nucleophilic d3-Methylthiolating Reagent. J Org Chem 2024; 89:14369-14383. [PMID: 39323108 DOI: 10.1021/acs.joc.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Development of robust d3-methylthiolating reagents represents an attractive synthetic method to access deuterated molecules in the field of drug discovery. Here, we report a straightforward strategy to prepare electrophilic S-methyl-d3 arylsulfonothioates in one-step without column purification. These reagents exhibit good radical reactivity toward silver-catalyzed vicinal thiosulfonylation of alkenes or 1,6-enynes on water. As a result, simultaneous incorporation of both SCD3 and ArSO2 units into unsaturated carbon-carbon bonds with 100% atom economy has been established. Moreover, the ATRA adducts with >99% D incorporation can serve as nucleophilic d3-methylthiolating synthons via retro-Michael addition under mild basic conditions, providing a good alternative in trideuteromethylthiolating alkyl iodides to access corresponding trideuteromethyl sulfides with high efficiency.
Collapse
Affiliation(s)
- Zhiyong Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Guofang Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ji-Rong Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Liu XQ, Chen H, Fan JH, Tang KW, Zhong LJ, Liu Y. Radical Cascade Cyclization of N-( o-Cyanobiaryl)acrylamides with Sulfonium Salts via Synergetic Photoredox and Copper Catalysis. Org Lett 2024; 26:7650-7655. [PMID: 39230939 DOI: 10.1021/acs.orglett.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
As the magic methyl effect is well acknowledged in pharmaceutical molecules, the development of simple and efficient methods for the installment of methyl groups on complex molecules is highly coveted. Hence, we provide a general strategy for radical cascade cyclization of N-(o-cyanobiaryl)acrylamides by utilizing sulfonium salts as the sources of methyl radical and merging photoredox and copper catalysis. This novel protocol can access a wide variety of methylation or remote thioether-substituted benzo-fused N-heterocycle derivatives, which can be easily transformed into diverse highly valuable sulfone and sulfoximine compounds via late-stage diversification. Moreover, to further demonstrate the synthetic utility of this conversion, the methyl(phenyl)sulfide, which serves as both raw material and byproduct, can be recovered and reused in this transformation. The scale-up experiment for the one-pot two-step process directly offers the target product in good yield under the standard conditions.
Collapse
Affiliation(s)
- Xin-Qian Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
7
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Ogasahara R, Ban K, Mae M, Akai S, Sawama Y. Deuterated Alkyl Sulfonium Salt Reagents; Importance of H/D Exchange Methods in Drug Discovery. ChemMedChem 2024; 19:e202400201. [PMID: 38740557 DOI: 10.1002/cmdc.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Deuterated drugs (heavy drugs) have recently been spotlighted as a new modality for small-molecule drugs because the pharmacokinetics of pharmaceutical drugs can be enhanced by replacing C-H bonds with more stable C-D bonds at metabolic positions. Therefore, deuteration methods for drug candidates are a hot topic in medicinal chemistry. Among them, the H/D exchange reaction (direct transformation of C-H bonds to C-D bonds) is a useful and straightforward method for creating novel deuterated target molecules, and over 20 reviews on the synthetic methods related to H/D exchange reactions have been published in recent years. Although various deuterated drug candidates undergo clinical trials, approved deuterated drugs possess CD3 groups in the same molecule. However, less diversification, except for the CD3 group, is a problem for future medicinal chemistry. Recently, we developed various deuterated alkyl (dn-alkyl) sulfonium salts based on the H/D exchange reaction of the corresponding hydrogen form using D2O as an inexpensive deuterium source to introduce CD3, CH3CD2, and ArCH2CD2 groups into drug candidates. This concept summarises recent reviews related to H/D exchange reactions and novel reagents that introduce the CD3 group, and our newly developed electrophilic dn-alkyl reagents are discussed.
Collapse
Affiliation(s)
- Riku Ogasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuho Ban
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Miyu Mae
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Luo Y, He X, Jiang Y, Li J, Wu L, Cai Z, He L. Trideuteromethylthiolation through Reaction of Arynes, S-Methyl- d3 Sulfonothioate with Sulfonamides or Amides: Access to Trideuteromethylated Sulfilimines. J Org Chem 2024; 89:11766-11776. [PMID: 39096290 DOI: 10.1021/acs.joc.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
A direct and practical three-component tandem reaction of arynes, S-methyl-d3 sulfonothioate with sulfonamides or amides is developed. The reaction is highly efficient and chemoselective, which allows mild synthesis of trideuteromethylated sulfilimines with broad substrate scope and good functional group compatibility, giving the products in good to excellent yields with 92%-99% deuterium incorporation. Mechanism studies disclosed sulfenamide that generated in situ is the key intermediate for the reaction. This protocol provides potential method for introduction of -SCD3 moiety for deuteration of marked drugs and drug candidates containing sulfilimine skeleton.
Collapse
Affiliation(s)
- Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xiujuan He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yike Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jie Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
10
|
Jin XY, He YM, Hui TH, Liu L, Cheng L. Selective Methylation of Nucleosides via an In Situ Generated Methyl Oxonium. J Org Chem 2024; 89:3597-3604. [PMID: 38356389 DOI: 10.1021/acs.joc.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A very mild and efficient procedure has been developed for the preparation of N-methylated uridine, pseudouridine, guanosine and inosine derivatives. This process was compatible with free hydroxyls within the ribose and did not require precautions on the protection or deprotection of other functionalities. The key to this extremely mild methylation without protection relied on the in situ generated methyl oxonium from the Wittig reagent and methanol. A putative mechanism for the selective methylation was also proposed.
Collapse
Affiliation(s)
- Xiao-Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yin-Ming He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-He Hui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Cao JM, Liu XY, Rao W, Shen SS, Sheng D, Wang SY. Regioselective Thiol-yne Reaction of Thiol with ((Methyl-d 3)sulfonyl)ethyne: Synthesis of (2-((Methyl-d 3)sulfonyl)vinyl)sulfides. J Org Chem 2024; 89:363-372. [PMID: 38085815 DOI: 10.1021/acs.joc.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we have developed a new method for the synthesis of ((methyl-d3)sulfonyl)ethyne, which is cost-effective and environmentally friendly and can be synthesized at the gram level. As an ideal thiol-yne reagent, it can be reacted with various types of thiols to afford (Z)- and (E)-type vinyl sulfides under different conditions with high selectivity. In addition, it can complete the conformational transition from Z- to E-type products under suitable conditions, and can also carry out further derivatization smoothly. The deuterium content of all products was greater than 99%. The preliminary mechanistic studies support the visible light-mediated radical course, and herein provide a novel and efficient synthetic strategy for the direct introduction of deuterated methyl groups, enriching the methods for the construction of C-S bond-containing compounds.
Collapse
Affiliation(s)
- Ji-Min Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district,Suzhou 215009, PR China
| | - Daopeng Sheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Ban K, Imai K, Oyama S, Tokunaga J, Ikeda Y, Uchiyama H, Kadota K, Tozuka Y, Akai S, Sawama Y. Sulfonium Salt Reagents for the Introduction of Deuterated Alkyl Groups in Drug Discovery. Angew Chem Int Ed Engl 2023; 62:e202311058. [PMID: 37726202 DOI: 10.1002/anie.202311058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The pharmacokinetics of pharmaceutical drugs can be improved by replacing C-H bonds with the more stable C-D bonds at the α-position to heteroatoms, which is a typical metabolic site for cytochrome P450 enzymes. However, the application of deuterated synthons is limited. Herein, we established a novel concept for preparing deuterated reagents for the successful synthesis of complex drug skeletons with deuterium atoms at the α-position to heteroatoms. (dn -Alkyl)diphenylsulfonium salts prepared from the corresponding nondeuterated forms using inexpensive and abundant D2 O as the deuterium source with a base, were used as electrophilic alkylating reagents. Additionally, these deuterated sulfonium salts were efficiently transformed into dn -alkyl halides and a dn -alkyl azide as coupling reagents and a dn -alkyl amine as a nucleophile. Furthermore, liver microsomal metabolism studies revealed deuterium kinetic isotope effects (KIE) in 7-(d2 -ethoxy)flavone. The present concept for the synthesis of deuterated reagents and the first demonstration of a KIE in a d2 -ethoxy group will contribute to drug discovery research based on deuterium chemistry.
Collapse
Affiliation(s)
- Kazuho Ban
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Imai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shuki Oyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jin Tokunaga
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yui Ikeda
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Chen J, Liu S, Su S, Fan R, Zhang R, Meng W, Tan J. Sulfonium-based precise alkyl transposition reactions. SCIENCE ADVANCES 2023; 9:eadi1370. [PMID: 37713480 PMCID: PMC10881050 DOI: 10.1126/sciadv.adi1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
S-adenosyl-L-methionine (SAM), a sulfonium-based cofactor, plays an important role in numerous biological processes as methyl donor. Inspired by the function of sulfonium motif in this nature's synthetic toolkit, we here present an aryne-activation strategy that the sulfonium intermediates in situ generated from thioethers display unique reactivity toward alkyl group transposition. Experimental and theoretical studies indicate that the reaction occurs in an intermolecular fashion where the TfO--incorporated [K(18-crown-6)] complex acts as a key promoter for this thermodynamically favored process. Next, a series of robust, easy-to-prepare sulfonium salts are designed and developed as electrophilic alkylation reagents accordingly. Both systems feature for broad scope, excellent selectivity, and simple operation. Moreover, we highlight the synthetic value through molecular editing and late-stage modification of complex scaffolds or even active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shilu Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Shuaisong Su
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ruirui Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
14
|
Kramp H, Weck R, Sandvoss M, Sib A, Mencia G, Fazzini PF, Chaudret B, Derdau V. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox-Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas. Angew Chem Int Ed Engl 2023; 62:e202308983. [PMID: 37453077 DOI: 10.1002/anie.202308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.
Collapse
Affiliation(s)
- Henrik Kramp
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Pilathottathil F, Unnikrishnan S, Murugesan T, Kaliyamoorthy A. Direct Trideuteromethylation of Sulfenate Anions Generated In Situ from β-Sulfinyl Esters: An Access to Trideuteromethyl Sulfoxides. J Org Chem 2023. [PMID: 37285517 DOI: 10.1021/acs.joc.3c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deuterated organic molecules have immense value in the pharmaceutical industry. Here, we present a synthetic strategy for direct trideuteromethylation of sulfenate ions derived in situ from β-sulfinyl esters in the presence of a base utilizing inexpensive and abundant CD3OTs as the electrophilic trideuteromethylating agent. This protocol provides straightforward access to an array of trideuteromethyl sulfoxides in yields of 75-92% with a high degree of deuteration. The ensuing trideuteromethyl sulfoxide can be readily modified into trideuteromethyl sulfone and sulfoximine.
Collapse
Affiliation(s)
- Fathima Pilathottathil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sreelakshmi Unnikrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Tamilarasu Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
16
|
Du HZ, Fan JZ, Wang ZZ, Strotman NA, Yang H, Guan BT. Cesium Amide-Catalyzed Selective Deuteration of Benzylic C-H Bonds with D 2 and Application for Tritiation of Pharmaceuticals. Angew Chem Int Ed Engl 2023; 62:e202214461. [PMID: 36289047 DOI: 10.1002/anie.202214461] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Hydrogen isotope exchange (HIE) represents one of the most attractive labeling methods to synthesize deuterium- and tritium-labeled compounds. Catalytic HIE methods that enable site-selective C-H bond activation and exchange labeling with gaseous isotopes D2 and T2 are of vital importance, in particular for high-specific-activity tritiation of pharmaceuticals. As part of our interest in exploring s-block metals for catalytic transformations, we found CsN(SiMe3 )2 to be an efficient catalyst for selective HIE of benzylic C-H bonds with D2 gas. The reaction proceeds through a kinetic deprotonative equilibrium that establishes an exchange pathway between C-H bonds and D2 gas. By virtue of multiple C-H bonds activation and high activity (isotope enrichment up to 99 %), the simple cesium amide catalyst provided a very powerful and practically convenient labeling protocol for synthesis of highly deuterated compounds and high-specific-activity tritiation of pharmaceuticals.
Collapse
Affiliation(s)
- Hui-Zhen Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Zhen Fan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhong-Zhen Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Neil A Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
17
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhang Y, Liu W, Xu Y, Liu Y, Peng J, Wang M, Bai Y, Lu H, Shi Z, Shao X. S-(Methyl- d3) Arylsulfonothioates: A Family of Robust, Shelf-Stable, and Easily Scalable Reagents for Direct Trideuteromethylthiolation. Org Lett 2022; 24:6794-6799. [DOI: 10.1021/acs.orglett.2c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Wen Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P.R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P.R. China
| |
Collapse
|
20
|
Yang QL, Liu Y, Liang L, Li ZH, Qu GR, Guo HM. Facilitating Rh-Catalyzed C-H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. J Org Chem 2022; 87:6161-6178. [PMID: 35438486 DOI: 10.1021/acs.joc.2c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical approach to promote the ortho-C-H alkylation of (hetero)arenes via rhodium catalysis under mild conditions is described. This approach features mild conditions with high levels of regio- and monoselectivity that tolerate a variety of aromatic and heteroaromatic groups and offers a widely applicable method for late-stage diversification of complex molecular architectures including tryptophan, estrone, diazepam, nucleosides, and nucleotides. Alkyl boronic acids and esters and alkyl trifluoroborates are demonstrated as suitable coupling partners. The isolation of key rhodium intermediates and mechanistic studies provided strong support for a rhodium(III/IV or V) regime.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhi-Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Xu G, Gao P, Colacot TJ. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of C sp2–C sp3 Couplings. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guolin Xu
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Peng Gao
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Thomas J. Colacot
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| |
Collapse
|
22
|
Xiao X, Huang YQ, Tian HY, Bai J, Cheng F, Wang X, Ke ML, Chen FE. Robust, scalable construction of an electrophilic deuterated methylthiolating reagent: facile access to SCD 3-containing scaffolds. Chem Commun (Camb) 2022; 58:3015-3018. [PMID: 35147615 DOI: 10.1039/d1cc07184j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have established a practical and concise method for the straightforward access of a universal deuterated methylthiolating reagent through a one-pot gram-scale operation under mild conditions. This odourless electrophilic SCD3 reagent was widely applied to react with numerous representative nucleophiles and approached various valuable SCD3 analogues with excellent levels of deuterium content (>99% D). The divergent further transformations were smoothly carried out to obtain the significant derivatives with different oxidative states in high efficiency.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Hong-Yu Tian
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Jun Bai
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fei Cheng
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xu Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Miao-Lin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
23
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
24
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
25
|
Zhu X, Jiang M, Li X, Zhu E, Deng Q, Song X, Lv J, Yang D. Alkylsulfonium salts for the photochemical desulphurizative functionalization of heteroarenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01570b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A metal-free organic photoredox-catalyzed alkylation of heteroarenes using alkylsulfonium salts as alkylation reagents has been developed.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Enjie Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
26
|
Li W, Qu R, Liu W, Bourriquen F, Bartling S, Rockstroh N, Junge K, Beller M. Copper-catalysed low-temperature water-gas shift reaction for selective deuteration of aryl halides. Chem Sci 2021; 12:14033-14038. [PMID: 34760186 PMCID: PMC8565366 DOI: 10.1039/d1sc04259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
The introduction of deuterium atoms into organic compounds is of importance for basic chemistry, material sciences, and the development of drugs in the pharmaceutical industry, specifically for identification and quantification of metabolites. Hence, methodologies for the synthesis of selectively labelled compounds continue to be a major area of interest for many scientists. Herein, we present a practical and stable heterogeneous copper catalyst, which permits for dehalogenative deuteration via water–gas shift reaction at comparably low temperature. This novel approach allows deuteration of diverse (hetero)aryl halides with good functional group tolerance, and no reduction of the aromatic rings or other easily reducible formyl and cyano groups. Multi-gram experiments show the potential of this method in organic synthesis and medicinal chemistry. A practical and stable heterogeneous copper catalyst has been developed for dehalogenative deuteration via water–gas shift reaction at low temperature, allowing deuteration of diverse (hetero)aryl halides with good functional group tolerance.![]()
Collapse
Affiliation(s)
- Wu Li
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ruiyang Qu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Weiping Liu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Florian Bourriquen
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
27
|
Sun Q, Soulé JF. Broadening of horizons in the synthesis of CD 3-labeled molecules. Chem Soc Rev 2021; 50:10806-10835. [PMID: 34605827 DOI: 10.1039/d1cs00544h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiao Sun
- Process Chemistry Enabling Technology Platform, STA Pharmaceutical, a WuxiAppTech Company (Wuxi STA), Shanghai 201507, P. R. China
| | | |
Collapse
|
28
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross‐Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Binlin Zhao
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing 210037 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
29
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
30
|
Chen C, Wang M, Lu H, Zhao B, Shi Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross-Coupling Reactions by Copper Catalysis. Angew Chem Int Ed Engl 2021; 60:21756-21760. [PMID: 34378844 DOI: 10.1002/anie.202109723] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Alkyl groups are one of the most widely used groups in organic synthesis. Here, a a series of thianthrenium salts have been synthesized that act as reliable alkylation reagents and readily engage in copper-catalyzed Sonogashira reactions to build C(sp3 )-C(sp) bonds under mild photochemical conditions. Diverse alkyl thianthrenium salts, including methyl and disubstituted thianthrenium salts, are employed with great functional breadth, since sensitive Cl, Br, and I atoms, which are poorly tolerated in conventional approaches, are compatible. The generality of the developed alkyl reagents has also been demonstrated in copper-catalyzed Kumada reactions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
31
|
Moulay S. S-methylation of organosulfur substrates: A comprehensive overview. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1925672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Saad Moulay
- Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab de Blida, Blida, Algeria
| |
Collapse
|
32
|
Chen C, Wang ZJ, Lu H, Zhao Y, Shi Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C-B and C-C bond formation. Nat Commun 2021; 12:4526. [PMID: 34312381 PMCID: PMC8313578 DOI: 10.1038/s41467-021-24716-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfonium salts bearing a positively charged sulfur atom with three organic substituents have intrigued chemists for more than a century for their unusual structures and high chemical reactivity. These compounds are known to undergo facile single-electron reduction to emerge as a valuable and alternative source of aryl radicals for organic synthesis. However, the generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here we report the treatment of S-(alkyl) thianthrenium salts to generate non-stabilized alkyl radicals as key intermediates granting the controlled and selective outcome of the ensuing reactions under mild photoredox conditions. The value of these reagents has been demonstrated through the efficient construction of alkylboronates and other transformations, including heteroarylation, alkylation, alkenylation, and alkynylation. The developed method is practical, and provides the opportunity to convert C-OH bond to C-B and C-C bonds.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
33
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Li N, Ning Y, Wu X, Xie J, Li W, Zhu C. A highly selective decarboxylative deuteration of carboxylic acids. Chem Sci 2021; 12:5505-5510. [PMID: 34163771 PMCID: PMC8179560 DOI: 10.1039/d1sc00528f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report a mild and practical method for precise deuteration of aliphatic carboxylic acids by synergistic photoredox and HAT catalysis. The reaction delivers excellent D-incorporation (up to 99%) at predicted sites even in substrates bearing reactive C-H bonds or versatile functional groups. The use of a recirculation reactor with a peristaltic pump supports a scalable preparative ability (up to 50 mmol) under very mild reaction conditions. The practical and precise deuteration of readily available complex carboxylic acids makes this protocol promising for the preparation of deuterium-labelled compounds.
Collapse
Affiliation(s)
- Nian Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunyun Ning
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xiaopeng Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| |
Collapse
|