1
|
Yin M, Li Y, Sun Z, Wu X, Ding L, Zhang Q, Zhou H, Zhang M, Qin D, Qin B, Wang L. α-Ketoglutarate inhibits the pluripotent-to-totipotent state transition in stem cells. FEBS J 2025; 292:2398-2409. [PMID: 39930914 DOI: 10.1111/febs.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 05/11/2025]
Abstract
In early mouse embryogenesis, the distinct enrichment of α-ketoglutarate (αKG) in blastocysts and L-2-hydroxyglutarate (L-2HG) in 2-cell (2C) embryos serves as a key metabolic signature. While elevated L-2HG levels inhibit the resolution of totipotency during the transition from the 2C stage to the blastocyst, the role of αKG remains elusive. Mouse embryonic stem cells (mESCs) cultured in vitro naturally harbor a subpopulation that transitions dynamically into a 2C-like totipotent state, providing a convenient model to investigate the role of αKG in totipotency reprogramming. This study demonstrates that αKG significantly inhibits the pluripotency to totipotency transition through upregulating ten-eleven translocation (TET) DNA hydroxylases. We further show that reducing endogenous αKG levels via glutamine withdrawal or inhibiting αKG-dependent dioxygenases by blocking succinate dehydrogenase (SDH) markedly enhances the induction of 2C-like cells (2CLCs). Finally, leveraging the potent SDH inhibitor dimethyl malonate (DMM), we have developed a highly efficient protocol for 2CLC induction, producing cells that transcriptionally resemble mid-to-late 2C embryos. Our findings deepen the understanding of the metabolic regulation of totipotency and provide a previously undescribed approach for capturing totipotent-like stem cells in vitro.
Collapse
Affiliation(s)
- Mengran Yin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenzhu Sun
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinyu Wu
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Zhang
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hai Zhou
- Guangzhou National Laboratory, Guangzhou, China
| | - Man Zhang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoming Qin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Lulu Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
3
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
5
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
6
|
Mazid MA, Ward C, Luo Z, Liu C, Li Y, Lai Y, Wu L, Li J, Jia W, Jiang Y, Liu H, Fu L, Yang Y, Ibañez DP, Lai J, Wei X, An J, Guo P, Yuan Y, Deng Q, Wang Y, Liu Y, Gao F, Wang J, Zaman S, Qin B, Wu G, Maxwell PH, Xu X, Liu L, Li W, Esteban MA. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022; 605:315-324. [PMID: 35314832 DOI: 10.1038/s41586-022-04625-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.
Collapse
Affiliation(s)
- Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Liang Wu
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Jiang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lixin Fu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - David P Ibañez
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pengcheng Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Yuan
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Shahriar Zaman
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Baoming Qin
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- BGI-Shenzhen, Shenzhen, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Han L, Wei X, Liu C, Volpe G, Zhuang Z, Zou X, Wang Z, Pan T, Yuan Y, Zhang X, Fan P, Guo P, Lai Y, Lei Y, Liu X, Yu F, Shangguan S, Lai G, Deng Q, Liu Y, Wu L, Shi Q, Yu H, Huang Y, Cheng M, Xu J, Liu Y, Wang M, Wang C, Zhang Y, Xie D, Yang Y, Yu Y, Zheng H, Wei Y, Huang F, Lei J, Huang W, Zhu Z, Lu H, Wang B, Wei X, Chen F, Yang T, Du W, Chen J, Xu S, An J, Ward C, Wang Z, Pei Z, Wong CW, Liu X, Zhang H, Liu M, Qin B, Schambach A, Isern J, Feng L, Liu Y, Guo X, Liu Z, Sun Q, Maxwell PH, Barker N, Muñoz-Cánoves P, Gu Y, Mulder J, Uhlen M, Tan T, Liu S, Yang H, Wang J, Hou Y, Xu X, Esteban MA, Liu L. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 2022; 604:723-731. [PMID: 35418686 DOI: 10.1038/s41586-022-04587-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022]
Abstract
Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.
Collapse
Affiliation(s)
- Lei Han
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoyu Wei
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Zhenkun Zhuang
- BGI-Shenzhen, Shenzhen, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xuanxuan Zou
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Wang
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China
| | - Taotao Pan
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengcheng Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Lei
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Xingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Yu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Guangyao Lai
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Quan Shi
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hao Yu
- BGI-Shenzhen, Shenzhen, China
| | - Yunting Huang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangshan Xu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Chunqing Wang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanhang Zhang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Duo Xie
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Yang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yeya Yu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiwen Zheng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanrong Wei
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fubaoqian Huang
- BGI-Shenzhen, Shenzhen, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Junjie Lei
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Waidong Huang
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Zhu
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haorong Lu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Bo Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xiaofeng Wei
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Fengzhen Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Tao Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Wensi Du
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jing Chen
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Shibo Xu
- Institute for Stem Cells and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Science and Technology of China, Hefei, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zongren Wang
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Xiaolei Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huafeng Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baoming Qin
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Harvard Medical School, MA, Boston, USA
| | - Joan Isern
- Spanish National Center for Cardiovascular Research (CNIC), Madrid, Spain
| | - Liqiang Feng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Liu
- Institute for Stem Cells and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Guo
- Jinan University, Guangzhou, China.,Hubei Topgene Biotechnology Co., Ltd, Wuhan, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nick Barker
- A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), ICREA and CIBERNED, Barcelona, Spain
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
| | - Jan Mulder
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mathias Uhlen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shiping Liu
- BGI-Shenzhen, Shenzhen, China.,BGI-Beijing, Beijing, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China. .,BGI-Beijing, Beijing, China. .,Shenzhen Bay Laboratory, Shenzhen, China. .,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China. .,BGI-Beijing, Beijing, China. .,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China. .,Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Miguel A Esteban
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China. .,Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China. .,BGI-Beijing, Beijing, China. .,Shenzhen Bay Laboratory, Shenzhen, China. .,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Xu X, Ahmed T, Wang L, Cao X, Zhang Z, Wang M, Lv Y, Kanwal S, Tariq M, Lin R, Zhang H, Huang Y, Peng H, Lin D, Shi X, Geng D, Liu B, Zhang X, Yi W, Qin Y, Esteban MA, Qin B. The mTORC1-eIF4F axis controls paused pluripotency. EMBO Rep 2022; 23:e53081. [PMID: 34866316 PMCID: PMC8811634 DOI: 10.15252/embr.202153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can self-renew indefinitely and maintain pluripotency. Inhibition of mechanistic target of rapamycin (mTOR) by the kinase inhibitor INK128 is known to induce paused pluripotency in mESCs cultured with traditional serum/LIF medium (SL), but the underlying mechanisms remain unclear. In this study, we demonstrate that mTOR complex 1 (mTORC1) but not complex 2 (mTORC2) mediates mTOR inhibition-induced paused pluripotency in cells grown in both SL and 2iL medium (GSK3 and MEK inhibitors and LIF). We also show that mTORC1 regulates self-renewal in both conditions mainly through eIF4F-mediated translation initiation that targets mRNAs of both cytosolic and mitochondrial ribosome subunits. Moreover, inhibition of mitochondrial translation is sufficient to induce paused pluripotency. Interestingly, eIF4F also regulates maintenance of pluripotency in an mTORC1-independent but MEK/ERK-dependent manner in SL, indicating that translation of pluripotency genes is controlled differently in SL and 2iL. Our study reveals a detailed picture of how mTOR governs self-renewal in mESCs and uncovers a context-dependent function of eIF4F in pluripotency regulation.
Collapse
Affiliation(s)
- Xueting Xu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Tanveer Ahmed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Lulu Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xintao Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zeyu Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Ming Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Yuan Lv
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Shahzina Kanwal
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Muqddas Tariq
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Runxia Lin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Yinghua Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Hao Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Danni Lin
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Xue Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease PreventionDepartment of Biochemistry & Molecular BiologyShenzhen University Health Science CenterShenzhenChina
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & ProtectionCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Qin
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Miguel A Esteban
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Laboratory of Integrative BiologyGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Institute of Stem Cells and RegenerationChinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, GIBH‐HKU Guangdong‐Hong Kong Stem Cell and Regenerative Medicine Research Center, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Laboratory of Metabolism and Cell FateGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Joint School of Life SciencesGuangzhou Institutes of Biomedicine and Health and Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Guo X, Tariq M, Lai Y, Kanwal S, Lv Y, Wang X, Li N, Jiang M, Meng J, Hu J, Yuan J, Luo Z, Ward C, Volpe G, Wang D, Yin M, Qin B, Zhang B, Bao X, Esteban MA. Capture of the newly transcribed RNA interactome using click chemistry. Nat Protoc 2021; 16:5193-5219. [PMID: 34697467 DOI: 10.1038/s41596-021-00609-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Application of synthetic nucleoside analogues to capture newly transcribed RNAs has unveiled key features of RNA metabolism. Whether this approach could be adapted to isolate the RNA-bound proteome (RNA interactome) was, however, unexplored. We have developed a new method (capture of the newly transcribed RNA interactome using click chemistry, or RICK) for the systematic identification of RNA-binding proteins based on the incorporation of 5-ethynyluridine into newly transcribed RNAs followed by UV cross-linking and click chemistry-mediated biotinylation. The RNA-protein adducts are then isolated by affinity capture using streptavidin-coated beads. Through high-throughput RNA sequencing and mass spectrometry, the RNAs and proteins can be elucidated globally. A typical RICK experimental procedure takes only 1 d, excluding the steps of cell preparation, 5-ethynyluridine labeling, validation (silver staining, western blotting, quantitative reverse-transcription PCR (qRT-PCR) or RNA sequencing (RNA-seq)) and proteomics. Major advantages of RICK are the capture of RNA-binding proteins interacting with any type of RNA and, particularly, the ability to discern between newly transcribed and steady-state RNAs through controlled labeling. Thanks to its versatility, RICK will facilitate the characterization of the total and newly transcribed RNA interactome in different cell types and conditions.
Collapse
Affiliation(s)
- Xiangpeng Guo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Muqddas Tariq
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shahzina Kanwal
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiwei Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Na Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengling Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jin Meng
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Jieyi Hu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianwen Yuan
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dongye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Menghui Yin
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Biliang Zhang
- Laboratory of RNA Chemical Biology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Liu T, Liu B, Liu Y, Feng X, Jiang X, Long J, Gao Q, Yang Z. Vesicle transporter GOLT1B mediates the cell membrane localization of DVL2 and PD-L2 and promotes colorectal cancer metastasis. Cancer Cell Int 2021; 21:287. [PMID: 34059062 PMCID: PMC8166103 DOI: 10.1186/s12935-021-01991-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer death worldwide. Hallmark proteins processing is usually dysregulated in cancers. Finding key regulatory molecules is of great importance for CRC metastasis intervention. GOLT1B is a vesicle transport protein which is involved in cytosolic proteins trafficking. However, its role in cancer has never been addressed. Methods CRC cell lines and subcutaneous xenograft animal model were utilized to investigate the biological function of GOLT1B. Patients samples were used to validate the correlation between GOLT1B and clinical outcome. In vivo targeted delivery of GOLT1B-siRNA was investigated in PDX (Patient derived tumor xenograft) model. Results We found that GOLT1B was highly expressed in CRC, and was an independent prognostic marker of overall survival (OS) and progression free survival (PFS). GOLT1B could promote CRC metastasis in vitro and in vivo. GOLT1B overexpression could increase DVL2 level and enhance its plasma membrane translocation, which subsequently activated downstream Wnt/β-catenin pathway and increase the nuclear β-catenin level, hence induce epithelial-mesenchymal transition (EMT). In addition, GOLT1B could also interact with PD-L2 and increase its membrane level. Co-culture of GOLT1B-overexpresed CRC cells with Jurkat cells significantly induced T cells apoptosis, which might further promote cancer cell the migration and invasion. Further, targeted delivery of GOLT1B siRNA could significantly inhibit tumor progression in GOLT1B highly expressed PDX model. Conclusion Taken together, our findings suggest that the vesicle transporter GOLT1B could promote CRC metastasis not only by assisting DVL2 translocation and activating Wnt/β-catenin pathway, but also facilitating PD-L2 membrane localization to induce immune suppression. Targeted inhibition of GOLT1B could be a potential therapeutic strategy for CRC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01991-z.
Collapse
Affiliation(s)
- Tengfei Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Binbin Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jiahui Long
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
11
|
Sun L, Fu X, Ma G, Hutchins AP. Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Front Cell Dev Biol 2021; 9:637309. [PMID: 33681220 PMCID: PMC7930395 DOI: 10.3389/fcell.2021.637309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
A major event in embryonic development is the rearrangement of epigenetic information as the somatic genome is reprogrammed for a new round of organismal development. Epigenetic data are held in chemical modifications on DNA and histones, and there are dramatic and dynamic changes in these marks during embryogenesis. However, the mechanisms behind this intricate process and how it is regulating and responding to embryonic development remain unclear. As embryos develop from totipotency to pluripotency, they pass through several distinct stages that can be captured permanently or transiently in vitro. Pluripotent naïve cells resemble the early epiblast, primed cells resemble the late epiblast, and blastomere-like cells have been isolated, although fully totipotent cells remain elusive. Experiments using these in vitro model systems have led to insights into chromatin changes in embryonic development, which has informed exploration of pre-implantation embryos. Intriguingly, human and mouse cells rely on different signaling and epigenetic pathways, and it remains a mystery why this variation exists. In this review, we will summarize the chromatin rearrangements in early embryonic development, drawing from genomic data from in vitro cell lines, and human and mouse embryos.
Collapse
Affiliation(s)
| | | | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|