1
|
Ren X, Bloomfield‐Gadêlha H. Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406143. [PMID: 39696833 PMCID: PMC11809349 DOI: 10.1002/advs.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Indexed: 12/20/2024]
Abstract
Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility. This study uses numerical simulations to investigate the fluid mechanics of sperm swimming with asymmetrical flagellar beats. Results show that sperm rotation regularizes the swimming motion, allowing persistently progressive swimming even with asymmetrical flagellar beats. Crucially, 3D sperm head orientation, rather than the swimming path, provides critical insight into the flagellar symmetry state. Sperm rotations during swimming closely resemble spinning-top dynamics, with sperm head precession driven by the helical beating of the flagellum. These results may prove essential in future studies on the role of symmetry in microorganisms and artificial swimmers, as body orientation detection has been largely overlooked in favor of swimming path analysis. Altogether, this rotational mechanism provides a reliable solution for forward propulsion and navigation in nature, which would otherwise be challenging for flagella with broken symmetry.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| | - Hermes Bloomfield‐Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| |
Collapse
|
2
|
Zigelman A, Ben Zvi G, Or Y. Dynamics of Purcell-type microswimmers with active-elastic joints. Phys Rev E 2024; 110:014207. [PMID: 39160957 DOI: 10.1103/physreve.110.014207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Purcell's planar three-link microswimmer is a classic model of swimming in low-Reynolds-number fluid, inspired by motion of flagellated microorganisms. Many works analyzed this model, assuming that the two joint angles are directly prescribed in phase-shifted periodic inputs. In this work, we study a more realistic scenario by considering an extension of this model which accounts for joints' elasticity and mechanical actuation of periodic torques so that the joint angles are dynamically evolving. Numerical analysis of the swimmer's dynamics reveals multiplicity of periodic solutions, depending on parameters of the inputs-frequency and amplitude of excitation, joints' stiffness ratio, as well as joint's activation. We numerically study swimming direction reversal, as well as bifurcations, stability transitions, and symmetry breaking of the periodic solutions, which represent the effect of buckling instability observed in swimming microorganisms. The results demonstrate that this variant of Purcell's simple model displays rich nonlinear dynamic behavior with actuated-elastic joints. Similar results are also obtained when studying an extended model of a six-link microswimmer.
Collapse
|
3
|
Ren X, Hernández-Herrera P, Montoya F, Darszon A, Corkidi G, Bloomfield-Gadêlha H. Fluid flow reconstruction around a free-swimming sperm in 3D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596379. [PMID: 38853842 PMCID: PMC11160703 DOI: 10.1101/2024.05.29.596379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We investigate the dynamics and hydrodynamics of a human spermatozoa swimming freely in 3D. We simultaneously track the sperm flagellum and the sperm head orientation in the laboratory frame of reference via high-speed high-resolution 4D (3D+t) microscopy, and extract the flagellar waveform relative to the body frame of reference, as seen from a frame of reference that translates and rotates with the sperm in 3D. Numerical fluid flow reconstructions of sperm motility are performed utilizing the experimental 3D waveforms, with excellent accordance between predicted and observed 3D sperm kinematics. The reconstruction accuracy is validated by directly comparing the three linear and three angular sperm velocities with experimental measurements. Our microhydrodynamic analysis reveals a novel fluid flow pattern, characterized by a pair of vortices that circulate in opposition to each other along the sperm cell. Finally, we show that the observed sperm counter-vortices are not unique to the experimental beat, and can be reproduced by idealised waveform models, thus suggesting a fundamental flow structure for free-swimming sperm propelled by a 3D beating flagellum.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, BS8 1UB Bristol, UK
| | | | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Hermes Bloomfield-Gadêlha
- School of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, BS8 1UB Bristol, UK
| |
Collapse
|
4
|
Wei D, Quaranta G, Aubin-Tam ME, Tam DSW. The younger flagellum sets the beat for Chlamydomonas reinhardtii. eLife 2024; 13:e86102. [PMID: 38752724 PMCID: PMC11098555 DOI: 10.7554/elife.86102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Eukaryotes swim with coordinated flagellar (ciliary) beating and steer by fine-tuning the coordination. The model organism for studying flagellate motility, Chlamydomonas reinhardtii, employs synchronous, breaststroke-like flagellar beating to swim, and it modulates the beating amplitudes differentially to steer. This strategy hinges on both inherent flagellar asymmetries (e.g. different response to chemical messengers) and such asymmetries being effectively coordinated in the synchronous beating. In C. reinhardtii, the synchrony of beating is known to be supported by a mechanical connection between flagella; however, how flagellar asymmetries persist in the synchrony remains elusive. For example, it has been speculated for decades that one flagellum leads the beating, as its dynamic properties (i.e. frequency, waveform, etc.) appear to be copied by the other one. In this study, we combine experiments, computations, and modeling efforts to elucidate the roles played by each flagellum in synchronous beating. With a non-invasive technique to selectively load each flagellum, we show that the coordinated beating essentially only responds to load exerted on the cis flagellum; and that such asymmetry in response derives from a unilateral coupling between the two flagella. Our results highlight a distinct role for each flagellum in coordination and have implication for biflagellates' tactic behaviors.
Collapse
Affiliation(s)
- Da Wei
- Department of Bionanoscience, Delft University of TechnologyDelftNetherlands
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijingChina
| | - Greta Quaranta
- Laboratory for Aero and Hydrodynamics, Delft University of TechnologyDelftNetherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Delft University of TechnologyDelftNetherlands
| | - Daniel SW Tam
- Laboratory for Aero and Hydrodynamics, Delft University of TechnologyDelftNetherlands
| |
Collapse
|
5
|
Hernández HO, Montoya F, Hernández-Herrera P, Díaz-Guerrero DS, Olveres J, Bloomfield-Gadêlha H, Darszon A, Escalante-Ramírez B, Corkidi G. Feature-based 3D+t descriptors of hyperactivated human sperm beat patterns. Heliyon 2024; 10:e26645. [PMID: 38444471 PMCID: PMC10912238 DOI: 10.1016/j.heliyon.2024.e26645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/23/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
The flagellar movement of the mammalian sperm plays a crucial role in fertilization. In the female reproductive tract, human spermatozoa undergo a process called capacitation which promotes changes in their motility. Only capacitated spermatozoa may be hyperactivated and only those that transition to hyperactivated motility are capable of fertilizing the egg. Hyperactivated motility is characterized by asymmetric flagellar bends of greater amplitude and lower frequency. Historically, clinical fertilization studies have used two-dimensional analysis to classify sperm motility, despite the inherently three-dimensional (3D) nature of sperm motion. Recent research has described several 3D beating features of sperm flagella. However, the 3D motility pattern of hyperactivated spermatozoa has not yet been characterized. One of the main challenges in classifying these patterns in 3D is the lack of a ground-truth reference, as it can be difficult to visually assess differences in flagellar beat patterns. Additionally, it is worth noting that only a relatively small proportion, approximately 10-20% of sperm incubated under capacitating conditions exhibit hyperactivated motility. In this work, we used a multifocal image acquisition system that can acquire, segment, and track sperm flagella in 3D+t. We developed a feature-based vector that describes the spatio-temporal flagellar sperm motility patterns by an envelope of ellipses. The classification results obtained using our 3D feature-based descriptors can serve as potential label for future work involving deep neural networks. By using the classification results as labels, it will be possible to train a deep neural network to automatically classify spermatozoa based on their 3D flagellar beating patterns. We demonstrated the effectiveness of the descriptors by applying them to a dataset of human sperm cells and showing that they can accurately differentiate between non-hyperactivated and hyperactivated 3D motility patterns of the sperm cells. This work contributes to the understanding of 3D flagellar hyperactive motility patterns and provides a framework for research in the fields of human and animal fertility.
Collapse
Affiliation(s)
- Haydee O. Hernández
- Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Dan S. Díaz-Guerrero
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - Jimena Olveres
- Departamento de Procesamiento de Señales, Facultad de Ingeniería, UNAM, Ciudad de México, Mexico
| | - Hermes Bloomfield-Gadêlha
- Department of Engineering Mathematics and Technology, Bristol Robotics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Ciudad de México, Mexico
| | - Boris Escalante-Ramírez
- Departamento de Procesamiento de Señales, Facultad de Ingeniería, UNAM, Ciudad de México, Mexico
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| |
Collapse
|
6
|
Corkidi G, Montoya F, González-Cota AL, Hernández-Herrera P, Bruce NC, Bloomfield-Gadêlha H, Darszon A. Human sperm rotate with a conserved direction during free swimming in four dimensions. J Cell Sci 2023; 136:jcs261306. [PMID: 37902031 PMCID: PMC10729817 DOI: 10.1242/jcs.261306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Head rotation in human spermatozoa is essential for different swimming modes and fertilisation, as it links the molecular workings of the flagellar beat with sperm motion in three-dimensional (3D) space over time. Determining the direction of head rotation has been hindered by the symmetry and translucent nature of the sperm head, and by the fast 3D motion driven by the helical flagellar beat. Analysis has been mostly restricted to two-dimensional (2D) single focal plane image analysis, which enables tracking of head centre position but not tracking of head rotation. Despite the conserved helical beating of the human sperm flagellum, human sperm head rotation has been reported to be uni- or bi-directional, and even to intermittently change direction in a given cell. Here, we directly measure the head rotation of freely swimming human sperm using multi-plane 4D (3D+t) microscopy and show that: (1) 2D microscopy is unable to distinguish head rotation direction in human spermatozoa; (2) head rotation direction in non-capacitating and capacitating solutions, for both aqueous and viscous media, is counterclockwise (CCW), as seen from head to tail, in all rotating spermatozoa, regardless of the experimental conditions; and (3) head rotation is suppressed in 36% of spermatozoa swimming in non-capacitating viscous medium, although CCW rotation is recovered after incubation in capacitating conditions within the same viscous medium, possibly unveiling an unexplored aspect of the essential need of capacitation for fertilisation. Our observations show that the CCW head rotation in human sperm is conserved. It constitutes a robust and persistent helical driving mechanism that influences sperm navigation in 3D space over time, and thus is of critical importance in cell motility, propulsion of flagellated microorganisms, sperm motility assessments, human reproduction research, and self-organisation of flagellar beating patterns and swimming in 3D space.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Ana L. González-Cota
- Departamento de Genética del Desarrollo y Fisiología Molecular and Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Paul Hernández-Herrera
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Neil C. Bruce
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Hermes Bloomfield-Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1TW, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular and Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
7
|
Chen Z, Shiozaki M, Haas KM, Skinner WM, Zhao S, Guo C, Polacco BJ, Yu Z, Krogan NJ, Lishko PV, Kaake RM, Vale RD, Agard DA. De novo protein identification in mammalian sperm using in situ cryoelectron tomography and AlphaFold2 docking. Cell 2023; 186:5041-5053.e19. [PMID: 37865089 PMCID: PMC10842264 DOI: 10.1016/j.cell.2023.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/02/2023] [Accepted: 09/16/2023] [Indexed: 10/23/2023]
Abstract
To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kelsey M Haas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Will M Skinner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shumei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; J. David Gladstone Institutes, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Chen Z, Greenan GA, Shiozaki M, Liu Y, Skinner WM, Zhao X, Zhao S, Yan R, Yu Z, Lishko PV, Agard DA, Vale RD. In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes. Nat Struct Mol Biol 2023; 30:360-369. [PMID: 36593309 PMCID: PMC10023559 DOI: 10.1038/s41594-022-00861-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/11/2022] [Indexed: 01/04/2023]
Abstract
The flagella of mammalian sperm display non-planar, asymmetric beating, in contrast to the planar, symmetric beating of flagella from sea urchin sperm and unicellular organisms. The molecular basis of this difference is unclear. Here, we perform in situ cryo-electron tomography of mouse and human sperm, providing the highest-resolution structural information to date. Our subtomogram averages reveal mammalian sperm-specific protein complexes within the microtubules, the radial spokes and nexin-dynein regulatory complexes. The locations and structures of these complexes suggest potential roles in enhancing the mechanical strength of mammalian sperm axonemes and regulating dynein-based axonemal bending. Intriguingly, we find that each of the nine outer microtubule doublets is decorated with a distinct combination of sperm-specific complexes. We propose that this asymmetric distribution of proteins differentially regulates the sliding of each microtubule doublet and may underlie the asymmetric beating of mammalian sperm.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrett A Greenan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanxin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Will M Skinner
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xiaowei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shumei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rui Yan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
9
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Picazo-Bueno JÁ, Sanz M, Granero L, García J, Micó V. Multi-Illumination Single-Holographic-Exposure Lensless Fresnel (MISHELF) Microscopy: Principles and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1472. [PMID: 36772511 PMCID: PMC9918952 DOI: 10.3390/s23031472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.
Collapse
Affiliation(s)
- José Ángel Picazo-Bueno
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Martín Sanz
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Luis Granero
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Javier García
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| | - Vicente Micó
- Department of Optics, Optometry and Vision Science, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
11
|
Hardware Implementation of a Home Energy Management System Using Remodeled Sperm Swarm Optimization (RMSSO) Algorithm. ENERGIES 2022. [DOI: 10.3390/en15145008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A remodeled sperm swarm optimization (RMSSO) algorithm for a home energy management (HEM) system is proposed, and its real-time efficacy was evaluated using a hardware experimental model. This home environment comprised sixteen residential loads, a smart meter and a Raspberry Pi controller to optimize the energy consumption cost (ECC) in response to the Indian day-ahead pricing (DAP) scheme. A wired/wireless communication network was considered to communicate with the smart meter and controller. To address this optimization problem, the sperm swarm optimization (SSO) algorithm’s constriction coefficient was remodeled to improve its global searching capability and proposed as RMSSO. For the first time, salp swarm optimization (SSA), SSO, and RMSSO algorithms were employed to schedule home appliances in the Indian scenario. To validate the proposed technique’s outcome, the results were compared to those of the conventional SSO and SSA algorithms. This problem was solved using the Python/GUROBI optimizer tool. As a consequence, consumers can use this control strategy in real-time to reduce energy consumption costs.
Collapse
|
12
|
Hernandez HO, Hernandez-Herrera P, Montoya F, Olveres J, Bloomfield-Gadelha H, Darszon A, Escalante-Ramirez B, Corkidi G. 3D+t feature-based descriptor for unsupervised flagellar human sperm beat classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:488-492. [PMID: 36085948 DOI: 10.1109/embc48229.2022.9871419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human spermatozoa must swim through the female reproductive tract, where they undergo a series of biochemical and biophysical reactions called capacitation, a necessary step to fertilize the egg. Capacitation promotes changes in the motility pattern. Historically, a two-dimensional analysis has been used to classify sperm motility and clinical fertilization studies. Nevertheless, in a natural environment sperm motility is three-dimensional (3D). Imaging flagella of freely swimming sperm is a difficult task due to their high beating frequency of up to 25 Hz. Very recent studies have described several sperm flagellum 3D beating features (curvature, torsion, asymmetries, etc.). However, up to date, the 3D motility pattern of hyperactivated spermatozoa has not been characterized. The main difficulty in classifying these patterns in 3D is the lack of a ground truth reference since differences in flagellar beat patterns are very difficult to assess visually. Moreover, only around 10-20% of induced to capacitate spermatozoa are truly capacitated, i.e., hyperactivated. We used an image acquisition system that can acquire, segment, and track spermatozoa flagella in 3D+t. In this work, we propose an original three-dimensional feature vector formed by ellipses describing the envelope of the 3D+t spatio-temporal flagellar sperm motility patterns. These features allowed compressing an unlabeled 3D+t dataset to separate hyperactivated cells from others (capacitated from non-capacitated cells) using unsupervised hierarchical clustering. Preliminary results show three main clusters of flagellar motility patterns. The first principal component of these 3D flagella measurements correlated with 2D OpenCASA head determinations as a first approach to validate the unsupervised classification, showing a reasonable correlation coefficient near to 0.7. Clinical relevance- The novelty of this work is defining a 3D+t feature-based descriptor consisting of a set of ellipses enveloping the flagellar motion of human sperm for its unsu-pervised classification. This is a new promising tool to determine the viability of human sperm to fertilize the egg.
Collapse
|
13
|
Zhu H, Zhu Y, Sun C, Jiang F. A Preliminary Study on the Evaluation of Human Sperm Head Morphology with a Domestic Digital Holographic Image System. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:130-135. [PMID: 36939764 PMCID: PMC9590537 DOI: 10.1007/s43657-022-00046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
The head of sperm was imaged with domestic digital holographic microscopy (DHM), and then the quantitative three-dimensional size information of normal sperm and teratozoospermic sperm was compared and analyzed. DHM sperm imaging and repeated quantitative evaluation were used to determine the morphology of the sperm head in two patients with teratozoospermia and four volunteers with normal semen parameters. Sixty and 139 sperm of teratozoospermia patients and normal people were photographed by digital hologram, respectively. The differences in head height and width were compared and statistically analyzed. The sperm head height of the teratozoospermia group was 3.06 ± 1.66 μm, which was significantly lower than that of the normal sperm group (4.54 ± 1.60 μm, p < 0.01), but there was no significant difference in the head width between the two groups. Compared with the traditional two-dimensional optical microscope observation method, the DHM system can provide three-dimensional quantitative information for the sperm head and thus may help in the comprehensive clinical evaluation of the sperm head structure.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Urology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Yong Zhu
- Human Sperm Bank of Fudan University, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Can Sun
- Human Sperm Bank of Fudan University, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Feng Jiang
- Shanghai JiAi Genetics and IVF Institute China-USA Center, Shanghai, 200011 China
| |
Collapse
|
14
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
15
|
Advancements in mammalian X and Y sperm differences and sex control technology. ZYGOTE 2022; 30:423-430. [DOI: 10.1017/s0967199421000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Summary
Mammal sex determination depends on whether the X sperm or Y sperm binds to the oocyte during fertilization. If the X sperm joins in oocyte, the offspring will be female, if the Y sperm fertilizes, the offspring will be male. Livestock sex control technology has tremendous value for livestock breeding as it can increase the proportion of female offspring and improve the efficiency of livestock production. This review discusses the detailed differences between mammalian X and Y sperm with respect to their morphology, size, and motility in the reproductive tract and in in vitro conditions, as well as ’omics analysis results. Moreover, research progress in mammalian sex control technology has been summarized.
Collapse
|
16
|
Chen Q, Tang S, Li Y, Cong Z, Lu D, Yang Q, Zhang X, Wu S. Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58382-58392. [PMID: 34860489 DOI: 10.1021/acsami.1c18597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilizing spermatozoa as the engine unit of robotic systems at a microscale has brought revolutionized inspirations and strategies to the biomedical community. However, the motility of sperms is impaired by the surrounding threats. For example, the antisperm antibody (AsA) can specifically bind with surface antigens on the sperm membrane and adversely affect their propulsion, hindering the operation of sperm-based microrobots in practical environments. In the present work, we report a biohybrid sperm microrobot by encapsulating sperm cells within metal-organic frameworks (MOFs) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) (ZIFSpermbot), capable of active drug delivery and cytoprotection from the biological threats of AsA. ZIF-8 NPs can be facilely coated on the sperm membrane through complexation with tannic acid. Such cell surface engineering has a negligible impact on sperm motility under optimized conditions. The selective permeability of the resulting porous ZIF-8 wrappings protects ZIFSpermbots from the specific binding of AsA, enabling the preservation of intrinsic propulsion of the sperm engine. Besides, ZIF-8 wrappings sustainably release zinc ions and attenuate the oxidative damage generated in sperm cells, allowing the maintenance of sperm movement. Combining the effective protection of sperm propulsion with the drug-loading capacity of ZIF-8 NPs provides new applicability to ZIFSpermbots in risky surroundings with AsA, exhibiting rapid migration in a microfluidic device for active drug delivery with enhanced therapeutic efficacy due to their retained effective propulsion. Imparting bioengine-based microrobots with multifunctional wrappings holds great promise for designing adaptive cell robots that endure harsh environments toward locally extended and diverse operations, facilitating their use in practical and clinical applications.
Collapse
Affiliation(s)
- Qiwei Chen
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Zhaoqing Cong
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Dongdong Lu
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Qingxin Yang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song Wu
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
17
|
Revisiting the male gamete's contribution to the conceptus: parental guidance advised. J Assist Reprod Genet 2021; 38:1895-1896. [PMID: 34448112 DOI: 10.1007/s10815-021-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
18
|
Dai C, Zhang Z, Shan G, Chu LT, Huang Z, Moskovtsev S, Librach C, Jarvi K, Sun Y. Advances in sperm analysis: techniques, discoveries and applications. Nat Rev Urol 2021; 18:447-467. [PMID: 34075227 DOI: 10.1038/s41585-021-00472-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Infertility affects one in six couples worldwide, and fertility continues to deteriorate globally, partly owing to a decline in semen quality. Sperm analysis has a central role in diagnosing and treating male factor infertility. Many emerging techniques, such as digital holography, super-resolution microscopy and next-generation sequencing, have been developed that enable improved analysis of sperm motility, morphology and genetics to help overcome limitations in accuracy and consistency, and improve sperm selection for infertility treatment. These techniques have also improved our understanding of fundamental sperm physiology by enabling discoveries in sperm behaviour and molecular structures. Further progress in sperm analysis and integrating these techniques into laboratories and clinics requires multidisciplinary collaboration, which will increase discovery and improve clinical outcomes.
Collapse
Affiliation(s)
- Changsheng Dai
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Lap-Tak Chu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | | | | | - Keith Jarvi
- Division of Urology, Mount Sinai Hospital, Toronto, Canada. .,Department of Surgery, University of Toronto, Toronto, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada. .,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Canada. .,Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada. .,Department of Computer Science, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Gaffney EA, Ishimoto K, Walker BJ. Modelling Motility: The Mathematics of Spermatozoa. Front Cell Dev Biol 2021; 9:710825. [PMID: 34354994 PMCID: PMC8329702 DOI: 10.3389/fcell.2021.710825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
In one of the first examples of how mechanics can inform axonemal mechanism, Machin's study in the 1950s highlighted that observations of sperm motility cannot be explained by molecular motors in the cell membrane, but would instead require motors distributed along the flagellum. Ever since, mechanics and hydrodynamics have been recognised as important in explaining the dynamics, regulation, and guidance of sperm. More recently, the digitisation of sperm videomicroscopy, coupled with numerous modelling and methodological advances, has been bringing forth a new era of scientific discovery in this field. In this review, we survey these advances before highlighting the opportunities that have been generated for both recent research and the development of further open questions, in terms of the detailed characterisation of the sperm flagellum beat and its mechanics, together with the associated impact on cell behaviour. In particular, diverse examples are explored within this theme, ranging from how collective behaviours emerge from individual cell responses, including how these responses are impacted by the local microenvironment, to the integration of separate advances in the fields of flagellar analysis and flagellar mechanics.
Collapse
Affiliation(s)
- Eamonn A. Gaffney
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
| | - Benjamin J. Walker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Gong A, Rode S, Gompper G, Kaupp UB, Elgeti J, Friedrich BM, Alvarez L. Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:87. [PMID: 34196906 PMCID: PMC8249298 DOI: 10.1140/epje/s10189-021-00076-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
The eukaryotic flagellum propels sperm cells and simultaneously detects physical and chemical cues that modulate the waveform of the flagellar beat. Most previous studies have characterized the flagellar beat and swimming trajectories in two space dimensions (2D) at a water/glass interface. Here, using refined holographic imaging methods, we report high-quality recordings of three-dimensional (3D) flagellar bending waves. As predicted by theory, we observed that an asymmetric and planar flagellar beat results in a circular swimming path, whereas a symmetric and non-planar flagellar beat results in a twisted-ribbon swimming path. During swimming in 3D, human sperm flagella exhibit torsion waves characterized by maxima at the low curvature regions of the flagellar wave. We suggest that these torsion waves are common in nature and that they are an intrinsic property of beating axonemes. We discuss how 3D beat patterns result in twisted-ribbon swimming paths. This study provides new insight into the axoneme dynamics, the 3D flagellar beat, and the resulting swimming behavior.
Collapse
Affiliation(s)
- A Gong
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - S Rode
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - G Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - U B Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - J Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - B M Friedrich
- Biological Algorithms Group, TU Dresden, Cluster of Excellence 'Physics of Life' and Center for Advancing Electronics Dresden (cfaed), Helmholtzstr. 18, 01069, Dresden, Germany
| | - L Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
21
|
Khanal S, Leung MR, Royfman A, Fishman EL, Saltzman B, Bloomfield-Gadêlha H, Zeev-Ben-Mordehai T, Avidor-Reiss T. A dynamic basal complex modulates mammalian sperm movement. Nat Commun 2021; 12:3808. [PMID: 34155206 PMCID: PMC8217517 DOI: 10.1038/s41467-021-24011-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail - the centriole - but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC's right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Miguel Ricardo Leung
- The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Emily L Fishman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Barbara Saltzman
- School of Population Health, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Hermes Bloomfield-Gadêlha
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| | - Tzviya Zeev-Ben-Mordehai
- The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK.
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
22
|
Wang P, Al Azad MAR, Yang X, Martelli PR, Cheung KY, Shi J, Shen Y. Self-adaptive and efficient propulsion of Ray sperms at different viscosities enabled by heterogeneous dual helixes. Proc Natl Acad Sci U S A 2021; 118:e2024329118. [PMID: 34088836 PMCID: PMC8201849 DOI: 10.1073/pnas.2024329118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We disclose a peculiar rotational propulsion mechanism of Ray sperms enabled by its unusual heterogeneous dual helixes with a rigid spiral head and a soft tail, named Heterogeneous Dual Helixes (HDH) model for short. Different from the conventional beating propulsion of sperm, the propulsion of Ray sperms is from both the rotational motion of the soft helical tail and the rigid spiral head. Such heterogeneous dual helical propulsion style provides the Ray sperm with high adaptability in viscous solutions along with advantages in linearity, straightness, and bidirectional motion. This HDH model is further corroborated by a miniature swimming robot actuated via a rigid spiral head and a soft tail, which demonstrates similar superiorities over conventional ones in terms of adaptability and efficiency under the same power input. Such findings expand our knowledge on microorganisms' motion, motivate further studies on natural fertilization, and inspire engineering designs.
Collapse
Affiliation(s)
- Panbing Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - M A R Al Azad
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Kam Yan Cheung
- Veterinary Department, Ocean Park Corporation, Hong Kong, China
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China;
- Shenzhen Research Institute, City University of Hong Kong, Shen Zhen, China
- Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong, China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China;
- Shenzhen Research Institute, City University of Hong Kong, Shen Zhen, China
| |
Collapse
|
23
|
Poli G, Hasan S, Belia S, Cenciarini M, Tucker SJ, Imbrici P, Shehab S, Pessia M, Brancorsini S, D’Adamo MC. Kcnj16 (Kir5.1) Gene Ablation Causes Subfertility and Increases the Prevalence of Morphologically Abnormal Spermatozoa. Int J Mol Sci 2021; 22:5972. [PMID: 34205849 PMCID: PMC8199489 DOI: 10.3390/ijms22115972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+]o, and hence provides a link between pHi and [K+]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi- and [K+]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility.
Collapse
Affiliation(s)
- Giulia Poli
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.P.); (S.B.)
| | - Sonia Hasan
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Silvia Belia
- Department of Chemistry Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | - Marta Cenciarini
- Section of Physiology & Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK;
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari ‘‘Aldo Moro”, 70125 Bari, Italy;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Stefano Brancorsini
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.P.); (S.B.)
| | - Maria Cristina D’Adamo
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
24
|
Tung CK, Suarez SS. Co-Adaptation of Physical Attributes of the Mammalian Female Reproductive Tract and Sperm to Facilitate Fertilization. Cells 2021; 10:cells10061297. [PMID: 34073739 PMCID: PMC8225031 DOI: 10.3390/cells10061297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
The functions of the female reproductive tract not only encompass sperm migration, storage, and fertilization, but also support the transport and development of the fertilized egg through to the birth of offspring. Further, because the tract is open to the external environment, it must also provide protection against invasive pathogens. In biophysics, sperm are considered “pusher microswimmers”, because they are propelled by pushing fluid behind them. This type of swimming by motile microorganisms promotes the tendency to swim along walls and upstream in gentle fluid flows. Thus, the architecture of the walls of the female tract, and the gentle flows created by cilia, can guide sperm migration. The viscoelasticity of the fluids in the tract, such as mucus secretions, also promotes the cooperative swimming of sperm that can improve fertilization success; at the same time, the mucus can also impede the invasion of pathogens. This review is focused on how the mammalian female reproductive tract and sperm interact physically to facilitate the movement of sperm to the site of fertilization. Knowledge of female/sperm interactions can not only explain how the female tract can physically guide sperm to the fertilization site, but can also be applied for the improvement of in vitro fertilization devices.
Collapse
Affiliation(s)
- Chih-Kuan Tung
- Department of Physics, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence:
| | - Susan S. Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
25
|
Striggow F, Nadporozhskaia L, Friedrich BM, Schmidt OG, Medina-Sánchez M. Micromotor-mediated sperm constrictions for improved swimming performance. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:67. [PMID: 33974155 PMCID: PMC8113191 DOI: 10.1140/epje/s10189-021-00050-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/03/2021] [Indexed: 05/26/2023]
Abstract
Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell's motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors.
Collapse
Affiliation(s)
- Friedrich Striggow
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany
| | | | - Benjamin M Friedrich
- Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany.
- Cluster of Excellence 'Physics of Life', TU Dresden, 01307, Dresden, Germany.
- School of Science, TU Dresden, 01062, Dresden, Germany.
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany
- School of Science, TU Dresden, 01062, Dresden, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, 09126, Chemnitz, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, 01069, Dresden, Germany.
| |
Collapse
|
26
|
Gadêlha H, Hernández-Herrera P, Montoya F, Darszon A, Corkidi G. Retraction of the Research Article: "Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering". SCIENCE ADVANCES 2021; 7:7/21/eaau9116. [PMID: 34019482 PMCID: PMC8133707 DOI: 10.1126/sciadv.aau9116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Hermes Gadêlha
- Department of Engineering Mathematics, University of Bristol, BS8 1UB Bristol, UK
- Corresponding author. (H.G.); (A.D.); (G.C.)
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Corresponding author. (H.G.); (A.D.); (G.C.)
| | - Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Corresponding author. (H.G.); (A.D.); (G.C.)
| |
Collapse
|
27
|
Qin K, Peng Z, Chen Y, Nganguia H, Zhu L, Pak OS. Propulsion of an elastic filament in a shear-thinning fluid. SOFT MATTER 2021; 17:3829-3839. [PMID: 33885447 DOI: 10.1039/d0sm02130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.
Collapse
Affiliation(s)
- Ke Qin
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California, 95053, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Leung MR, Roelofs MC, Ravi RT, Maitan P, Henning H, Zhang M, Bromfield EG, Howes SC, Gadella BM, Bloomfield‐Gadêlha H, Zeev‐Ben‐Mordehai T. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO J 2021; 40:e107410. [PMID: 33694216 PMCID: PMC8013824 DOI: 10.15252/embj.2020107410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- The Division of Structural BiologyWellcome Centre for Human GeneticsThe University of OxfordOxfordUK
| | - Marc C Roelofs
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Ravi Teja Ravi
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Paula Maitan
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Veterinary DepartmentUniversidade Federal de ViçosaViçosaBrazil
| | - Heiko Henning
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Min Zhang
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Elizabeth G Bromfield
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Priority Research Centre for Reproductive ScienceFaculty of ScienceThe University of NewcastleCallaghanNSWAustralia
| | - Stuart C Howes
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Bart M Gadella
- Department of Farm & Animal Health and Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | - Tzviya Zeev‐Ben‐Mordehai
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- The Division of Structural BiologyWellcome Centre for Human GeneticsThe University of OxfordOxfordUK
| |
Collapse
|
29
|
Giuliani N, Rossi M, Noselli G, DeSimone A. How Euglena gracilis swims: Flow field reconstruction and analysis. Phys Rev E 2021; 103:023102. [PMID: 33736112 DOI: 10.1103/physreve.103.023102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Euglena gracilis is a unicellular organism that swims by beating a single anterior flagellum. We study the nonplanar waveforms spanned by the flagellum during a swimming stroke and the three-dimensional flows that they generate in the surrounding fluid. Starting from a small set of time-indexed images obtained by optical microscopy on a swimming Euglena cell, we construct a numerical interpolation of the stroke. We define an optimal interpolation (which we call synthetic stroke) by minimizing the discrepancy between experimentally measured velocities (of the swimmer) and those computed by solving numerically the equations of motion of the swimmer driven by the trial interpolated stroke. The good match we obtain between experimentally measured and numerically computed trajectories provides a first validation of our synthetic stroke. We further validate the procedure by studying the flow velocities induced in the surrounding fluid. We compare the experimentally measured flow fields with the corresponding quantities computed by solving numerically the Stokes equations for the fluid flow, in which the forcing is provided by the synthetic stroke, and find good matching. Finally, we use the synthetic stroke to derive a coarse-grained model of the flow field resolved in terms of a few dominant singularities. The far field is well approximated by a time-varying Stresslet, and we show that the average behavior of Euglena during one stroke is that of an off-axis puller. The reconstruction of the flow field closer to the swimmer body requires a more complex system of singularities. A system of two Stokeslets and one Rotlet, that can be loosely associated with the force exerted by the flagellum, the drag of the body, and a torque to guarantee rotational equilibrium, provides a good approximation.
Collapse
Affiliation(s)
- Nicola Giuliani
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Massimiliano Rossi
- DTU-Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Giovanni Noselli
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Antonio DeSimone
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy.,The BioRobotics Institute and Dept. of Excellence in Robotics and AI, Scuola Universitaria Superiore Pisa, Piazza Martiri della Libertà, 56127 Pisa, Italy
| |
Collapse
|
30
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
31
|
Cortese D, Wan KY. Control of Helical Navigation by Three-Dimensional Flagellar Beating. PHYSICAL REVIEW LETTERS 2021; 126:088003. [PMID: 33709750 DOI: 10.1103/physrevlett.126.088003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Helical swimming is a ubiquitous strategy for motile cells to generate self-gradients for environmental sensing. The model biflagellate Chlamydomonas reinhardtii rotates at a constant 1-2 Hz as it swims, but the mechanism is unclear. Here, we show unequivocally that the rolling motion derives from a persistent, nonplanar flagellar beat pattern. This is revealed by high-speed imaging and micromanipulation of live cells. We construct a fully 3D model to relate flagellar beating directly to the free-swimming trajectories. For realistic geometries, the model reproduces both the sense and magnitude of the axial rotation of live cells. We show that helical swimming requires further symmetry breaking between the two flagella. These functional differences underlie all tactic responses, particularly phototaxis. We propose a control strategy by which cells steer toward or away from light by modulating the sign of biflagellar dominance.
Collapse
Affiliation(s)
- Dario Cortese
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Kirsty Y Wan
- Living Systems Institute and College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
32
|
Corkidi G, Hernández-Herrera P, Montoya F, Gadêlha H, Darszon A. Long-term segmentation-free assessment of head-flagellum movement and intracellular calcium in swimming human sperm. J Cell Sci 2021; 134:jcs.250654. [PMID: 33431515 DOI: 10.1242/jcs.250654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Human spermatozoa are the archetype of long-term self-organizing transport in nature and are critical for reproductive success. They utilize coordinated head and flagellar movements to swim long distances within the female reproductive tract in order to find and fertilize the egg. However, to date, long-term analysis of the sperm head-flagellar movements, or indeed those of other flagellated microorganisms, remains elusive due to limitations in microscopy and flagellar-tracking techniques. Here, we present a novel methodology based on local orientation and isotropy of bio-images to obtain long-term kinematic and physiological parameters of individual free-swimming spermatozoa without requiring image segmentation (thresholding). This computer-assisted segmentation-free method evaluates, for the first time, characteristics of the head movement and flagellar beating for up to 9.2 min. We demonstrate its powerful use by showing how releasing Ca2+ from internal stores significantly alters long-term sperm behavior. The method allows for straightforward generalization to other bio-imaging applications, such as studies of bull sperm and Trypanosoma, or indeed of other flagellated microorganisms - appealing to communities other than those investigating sperm biology.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Hermes Gadêlha
- Department of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1QU, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| |
Collapse
|
33
|
Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020; 518:110987. [PMID: 32810575 PMCID: PMC7606549 DOI: 10.1016/j.mce.2020.110987] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Centrioles are eukaryotic subcellular structures that produce and regulate massive cytoskeleton superstructures. They form centrosomes and cilia, regulate new centriole formation, anchor cilia to the cell, and regulate cilia function. These basic centriolar functions are executed in sperm cells during their amplification from spermatogonial stem cells during their differentiation to spermatozoa, and finally, after fertilization, when the sperm fuses with the egg. However, sperm centrioles exhibit many unique characteristics not commonly observed in other cell types, including structural remodeling, centriole-flagellum transition zone migration, and cell membrane association during meiosis. Here, we discuss five roles of sperm centrioles: orchestrating early spermatogenic cell divisions, forming the spermatozoon flagella, linking the spermatozoon head and tail, controlling sperm tail beating, and organizing the cytoskeleton of the zygote post-fertilization. We present the historic discovery of the centriole as a sperm factor that initiates embryogenesis, and recent genetic studies in humans and other mammals evaluating the current evidence for the five functions of sperm centrioles. We also examine information connecting the various sperm centriole functions to distinct clinical phenotypes. The emerging picture is that centrioles are essential sperm components with remarkable functional diversity and specialization that will require extensive and in-depth future studies.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA; Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| | - Alexa Carr
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
34
|
Kumar N, Singh AK. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol Reprod 2020; 104:508-520. [PMID: 33238303 DOI: 10.1093/biolre/ioaa213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperms have attracted attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and different function to play in carrying life. Sperm tail is most complicated structure with more than 1000 proteins involved in its functioning. With the advent of three-dimensional microscopes, many studies are undergoing to understand exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Each subunit of tail, including axonemal, peri-axonemal structures, plays essential roles in sperm motility, capacitation, hyperactivation, fertilization. Furthermore, over 2300 genes are involved in spermatogenesis. A number of genetic mutations have been linked with abnormal sperm flagellar development leading to motility defects and male infertility. It was found that 6% of male infertility cases are related to genetic causes, and 4% of couples undergoing intracytoplasmic sperm injection for male subfertility have chromosomal abnormalities. Hence, an understanding of sperm tail development and genes associated with its normal functioning can help in better diagnosis of male infertility and its management. There is still a lot that needs to be discovered about genes, proteins contributing to normal human sperm tail development, movement, and role in male fertility. Sperm tail has complex anatomy, with surrounding axoneme having 9 + 2 microtubules arrangement along its entire length and peri-axonemal structures that contribute in sperm motility and fertilization. In future sperm tail-associated genes, proteins and subunits can be used as markers of male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Guntur, Andhra Pradesh 522503, India
| | - Amit Kant Singh
- Department of Physiology, U.P. University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
| |
Collapse
|
35
|
Calcium signaling modulates the dynamics of cilia and flagella. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:619-631. [PMID: 33105487 DOI: 10.1007/s00249-020-01471-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
To adapt to changing environments cells must signal and signaling requires messengers whose concentration varies with time in space. We here consider the messenger role of calcium ions implicated in regulation of the wave-like bending dynamics of cilia and flagella. The emphasis is on microtubules as polyelectrolytes serving as transmission lines for the flow of Ca2+ signals in the axoneme. This signaling is superimposed with a geometric clutch mechanism for the regulation of flagella bending dynamics and our modeling produces results in agreement with experimental data.
Collapse
|
36
|
|