1
|
Park RS, Jacobson RA, Gomez Casajus L, Nimmo F, Ermakov AI, Keane JT, McKinnon WB, Stevenson DJ, Akiba R, Idini B, Buccino DR, Magnanini A, Parisi M, Tortora P, Zannoni M, Mura A, Durante D, Iess L, Connerney JEP, Levin SM, Bolton SJ. Io's tidal response precludes a shallow magma ocean. Nature 2025; 638:69-73. [PMID: 39667409 PMCID: PMC11798835 DOI: 10.1038/s41586-024-08442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Io experiences tidal deformation as a result of its eccentric orbit around Jupiter, which provides a primary energy source for Io's continuing volcanic activity and infrared emission1. The amount of tidal energy dissipated within Io is enormous and has been suggested to support the large-scale melting of its interior and the formation of a global subsurface magma ocean. If Io has a shallow global magma ocean, its tidal deformation would be much larger than in the case of a more rigid, mostly solid interior2. Here we report the measurement of Io's tidal deformation, quantified by the gravitational tidal Love number k2, enabled by two recent flybys of the Juno spacecraft. By combining Juno3,4 and Galileo5-7 Doppler data from the NASA Deep Space Network and astrometric observations, we recover Re(k2) of 0.125 ± 0.047 (1σ) and the tidal dissipation parameter Q of 11.4 ± 3.6 (1σ). These measurements confirm that a shallow global magma ocean in Io does not exist and are consistent with Io having a mostly solid mantle2. Our results indicate that tidal forces do not universally create global magma oceans, which may be prevented from forming owing to rapid melt ascent, intrusion and eruption8,9, so even strong tidal heating-such as that expected on several known exoplanets and super-Earths10-may not guarantee the formation of magma oceans on moons or planetary bodies.
Collapse
Affiliation(s)
- R S Park
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - R A Jacobson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - L Gomez Casajus
- Centro Interdipartimentale di Ricerca Industriale Aerospaziale, Alma Mater Studiorum - Università di Bologna, Forlì, Italy
| | - F Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - A I Ermakov
- Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
| | - J T Keane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - W B McKinnon
- Department of Earth, Environmental, and Planetary Sciences, Washington University, St. Louis, MO, USA
| | - D J Stevenson
- California Institute of Technology, Pasadena, CA, USA
| | - R Akiba
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - B Idini
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - D R Buccino
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - A Magnanini
- Dipartimento di Ingegneria Industriale, Alma Mater Studiorum - Università di Bologna, Forlì, Italy
| | - M Parisi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - P Tortora
- Dipartimento di Ingegneria Industriale, Alma Mater Studiorum - Università di Bologna, Forlì, Italy
| | - M Zannoni
- Dipartimento di Ingegneria Industriale, Alma Mater Studiorum - Università di Bologna, Forlì, Italy
| | - A Mura
- Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Rome, Italy
| | - D Durante
- Sapienza Università di Roma, Rome, Italy
| | - L Iess
- Sapienza Università di Roma, Rome, Italy
| | | | - S M Levin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - S J Bolton
- Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
2
|
Dauphas N, Zhang ZJ, Chen X, Barboni M, Szymanowski D, Schoene B, Leya I, McKeegan KD. Completion of lunar magma ocean solidification at 4.43 Ga. Proc Natl Acad Sci U S A 2025; 122:e2413802121. [PMID: 39761406 PMCID: PMC11745400 DOI: 10.1073/pnas.2413802121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My. Here, we show that the Moon achieved >99% crystallization at 4,429 ± 76 Ma, indicating a lunar formation age of ~4,450 Ma or possibly older. Using the 176Lu-176Hf decay system (t1/2 = 37 Gy), we found that the initial 176Hf/177Hf ratios of lunar zircons with varied U-Pb ages are consistent with their crystallization from a KREEP-rich reservoir with a consistently low 176Lu/177Hf ratio of 0.0167 that emerged ~140 My after solar system formation. The previously proposed younger model age of ~4.33 Ga for the source of mare basalts (240 My after solar system formation) might reflect the timing of a large impact. Our results demonstrate that lunar magma ocean crystallization took place while the Moon was still battered by planetary embryos and planetesimals leftover from the main stage of planetary accretion. The study of Lu-Hf model ages for samples brought back from the South Pole-Aitken basin will help to assess the lateral continuity of KREEP and further understand its significance in the early history of the Moon.
Collapse
Affiliation(s)
- Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL60637
| | - Zhe J. Zhang
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL60637
| | - Xi Chen
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL60637
| | - Mélanie Barboni
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ85281
| | - Dawid Szymanowski
- Institute of Geochemistry and Petrology, ETH Zurich, Zurich8092, Switzerland
- Department of Geosciences, Princeton University, Princeton, NJ08544
| | - Blair Schoene
- Department of Geosciences, Princeton University, Princeton, NJ08544
| | - Ingo Leya
- Space Sciences and Planetology, University of Bern, Bern3012, Switzerland
| | - Kevin D. McKeegan
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Nimmo F, Kleine T, Morbidelli A. Tidally driven remelting around 4.35 billion years ago indicates the Moon is old. Nature 2024; 636:598-602. [PMID: 39695207 PMCID: PMC11655352 DOI: 10.1038/s41586-024-08231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024]
Abstract
The last giant impact on Earth is thought to have formed the Moon1. The timing of this event can be determined by dating the different rocks assumed to have crystallized from the lunar magma ocean (LMO). This has led to a wide range of estimates for the age of the Moon between 4.35 and 4.51 billion years ago (Ga), depending on whether ages for lunar whole-rock samples2-4 or individual zircon grains5-7 are used. Here we argue that the frequent occurrence of approximately 4.35-Ga ages among lunar rocks and a spike in zircon ages at about the same time8 is indicative of a remelting event driven by the Moon's orbital evolution rather than the original crystallization of the LMO. We show that during passage through the Laplace plane transition9, the Moon experienced sufficient tidal heating and melting to reset the formation ages of most lunar samples, while retaining an earlier frozen-in shape10 and rare, earlier-formed zircons. This paradigm reconciles existing discrepancies in estimates for the crystallization time of the LMO, and permits formation of the Moon within a few tens of million years of Solar System formation, consistent with dynamical models of terrestrial planet formation11. Remelting of the Moon also explains the lower number of lunar impact basins than expected12,13, and allows metal from planetesimals accreted to the Moon after its formation to be removed to the lunar core, explaining the apparent deficit of such materials in the Moon compared with Earth14.
Collapse
Affiliation(s)
- Francis Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Thorsten Kleine
- Max Planck Institute for Solar System Research, Göttingen, Germany.
| | - Alessandro Morbidelli
- Collège de France, CNRS, PSL University, Sorbonne University, Paris, France
- Laboratoire Lagrange, Université Cote d'Azur, CNRS, Observatoire de la Côte d'Azur, Boulevard de l'Observatoire, Nice, France
| |
Collapse
|
4
|
Barboni M, Szymanowski D, Schoene B, Dauphas N, Zhang ZJ, Chen X, McKeegan KD. High-precision U-Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga. SCIENCE ADVANCES 2024; 10:eadn9871. [PMID: 39047092 PMCID: PMC11268413 DOI: 10.1126/sciadv.adn9871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
The Moon has had a complex history, with evidence of its primary crust formation obscured by later impacts. Existing U-Pb dates of >500 zircons from several locations on the lunar nearside reveal a pronounced age peak at 4.33 billion years (Ga), suggesting a major, potentially global magmatic event. However, the precision of existing geochronology is insufficient to determine whether this peak represents a brief event or a more protracted period of magmatism occurring over tens of millions of years. To improve the temporal resolution, we have analyzed Apollo 14, 15, and 17 zircons that were previously dated by ion microprobe at ~4.33 Ga using isotope dilution thermal ionization mass spectrometry. Concordant dates with sub-million-year uncertainty span ~4 million years from 4.338 to 4.334 Ga. Combined with Hf isotopic ratios and trace element concentrations, the data suggest zircon formation in a large impact melt sheet, possibly linked to the South Pole-Aitken basin.
Collapse
Affiliation(s)
- Mélanie Barboni
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Dawid Szymanowski
- Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Blair Schoene
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhe J. Zhang
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xi Chen
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Kevin D. McKeegan
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Avdellidou C, Delbo' M, Nesvorný D, Walsh KJ, Morbidelli A. Dating the Solar System's giant planet orbital instability using enstatite meteorites. Science 2024; 384:348-352. [PMID: 38624242 DOI: 10.1126/science.adg8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/16/2024] [Indexed: 04/17/2024]
Abstract
The giant planets of the Solar System formed on initially compact orbits, which transitioned to the current wider configuration by means of an orbital instability. The timing of that instability is poorly constrained. In this work, we use dynamical simulations to demonstrate that the instability implanted planetesimal fragments from the terrestrial planet region into the asteroid main belt. We use meteorite data to show that the implantation occurred >60 million years (Myr) after the Solar System began to form. Combining this constraint with a previous upper limit derived from Jupiter's trojan asteroids, we conclude that the orbital instability occurred 60 to 100 Myr after the beginning of Solar System formation. The giant impact that formed the Moon occurred within this range, so it might be related to the giant planet instability.
Collapse
Affiliation(s)
- Chrysa Avdellidou
- Laboratoire Lagrange, Centre National de la Recherche Scientifique, Observatoire de la Côte d'Azur, Université Côte d'Azur, 06304 Nice, France
- School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
| | - Marco Delbo'
- Laboratoire Lagrange, Centre National de la Recherche Scientifique, Observatoire de la Côte d'Azur, Université Côte d'Azur, 06304 Nice, France
- School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
| | | | - Kevin J Walsh
- Southwest Research Institute, Boulder, CO 80302, USA
| | - Alessandro Morbidelli
- Laboratoire Lagrange, Centre National de la Recherche Scientifique, Observatoire de la Côte d'Azur, Université Côte d'Azur, 06304 Nice, France
- Collège de France, Centre National de la Recherche Scientifique, Université Paris Sciences et Lettres, Sorbonne Université, 75014 Paris, France
| |
Collapse
|
6
|
Yu S, Xiao X, Gong S, Tosi N, Huang J, Breuer D, Xiao L, Ni D. Long-lived lunar volcanism sustained by precession-driven core-mantle friction. Natl Sci Rev 2024; 11:nwad276. [PMID: 38213526 PMCID: PMC10776352 DOI: 10.1093/nsr/nwad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 01/13/2024] Open
Abstract
Core-mantle friction induced by the precession of the Moon's spin axis is a strong heat source in the deep lunar mantle during the early phase of a satellite's evolution, but its influence on the long-term thermal evolution still remains poorly explored. Using a one-dimensional thermal evolution model, we show that core-mantle friction can sustain global-scale partial melting in the upper lunar mantle until ∼3.1 Ga, thus accounting for the intense volcanic activity on the Moon before ∼3.0 Ga. Besides, core-mantle friction tends to suppress the secular cooling of the lunar core and is unlikely to be an energy source for the long-lived lunar core dynamo. Our model also favours the transition of the Cassini state before the end of the lunar magma ocean phase (∼4.2 Ga), which implies a decreasing lunar obliquity over time after the solidification of the lunar magma ocean. Such a trend of lunar obliquity evolution may allow volcanically released water to be buried in the lunar regolith of the polar regions. As a consequence, local water ice could be more abundant than previously thought when considering only its accumulation caused by solar wind and comet spreading.
Collapse
Affiliation(s)
- Shuoran Yu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China
| | - Xiao Xiao
- Planetary Science Institute, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shengxia Gong
- CAS Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Shanghai 200030, China
| | - Nicola Tosi
- Institute of Planetary Research, German Aerospace Centre (DLR), Berlin 12489, Germany
| | - Jun Huang
- Planetary Science Institute, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Doris Breuer
- Institute of Planetary Research, German Aerospace Centre (DLR), Berlin 12489, Germany
| | - Long Xiao
- Planetary Science Institute, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Dongdong Ni
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
7
|
Prissel TC, Zhang N, Jackson CRM, Li H. Rapid transition from primary to secondary crust building on the Moon explained by mantle overturn. Nat Commun 2023; 14:5002. [PMID: 37591857 PMCID: PMC10435462 DOI: 10.1038/s41467-023-40751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
Geochronology indicates a rapid transition (tens of Myrs) from primary to secondary crust building on the Moon. The processes responsible for initiating secondary magmatism, however, remain in debate. Here we test the hypothesis that the earliest secondary crust (Mg-suite) formed as a direct consequence of density-driven mantle overturn, and advance 3D mantle convection models to quantify the resulting extent of lower mantle melting. Our modeling demonstrates that overturn of thin ilmenite-bearing cumulates ≤ 100 km triggers a rapid and short-lived episode of lower mantle melting which explains the key volume, geochronological, and spatial characteristics of early secondary crust building without contributions from other energy sources, namely KREEP (potassium, rare earth elements, phosphorus, radiogenic U, Th). Observations of globally distributed Mg-suite eliminate degree-1 overturn scenarios. We propose that gravitational instabilities in magma ocean cumulate piles are major driving forces for the onset of mantle convection and secondary crust building on differentiated bodies.
Collapse
Affiliation(s)
- Tabb C Prissel
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, 2101 NASA Parkway, MailCode XI3, Houston, TX, 77058, USA.
| | - Nan Zhang
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Bentley, WA, 6845, Australia.
| | - Colin R M Jackson
- Department of Earth and Environmental Sciences, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118-5698, USA
| | - Haoyuan Li
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Viscous relaxation as a probe of heat flux and crustal plateau composition on Venus. Proc Natl Acad Sci U S A 2023; 120:e2216311120. [PMID: 36623181 PMCID: PMC9934203 DOI: 10.1073/pnas.2216311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has recently been suggested that deformed crustal plateaus on Venus may be composed of felsic (silica-rich) rocks, possibly supporting the idea of an ancient ocean there. However, these plateaus have a tendency to collapse owing to flow of the viscous lower crust. Felsic minerals, especially water-bearing ones, are much weaker and thus lead to more rapid collapse, than more mafic minerals. We model plateau topographic evolution using a non-Newtonian viscous relaxation code. Despite uncertainties in the likely crustal thickness and surface heat flux, we find that quartz-dominated rheologies relax too rapidly to be plausible plateau-forming material. For plateaus dominated by a dry anorthite rheology, survival is possible only if the background crustal thickness is less than 29 km, unless the heat flux on Venus is less than the radiogenic lower bound of 34 [Formula: see text]. Future spacecraft determinations of plateau crustal thickness and mineralogy will place firmer constraints on Venus's heat flux.
Collapse
|
9
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
10
|
Srivastava Y, Basu Sarbadhikari A, Day JMD, Yamaguchi A, Takenouchi A. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon. Nat Commun 2022; 13:7594. [PMID: 36494367 PMCID: PMC9734159 DOI: 10.1038/s41467-022-35260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Sample return missions have provided the basis for understanding the thermochemical evolution of the Moon. Mare basalt sources are likely to have originated from partial melting of lunar magma ocean cumulates after solidification from an initially molten state. Some of the Apollo mare basalts show evidence for the presence in their source of a late-stage radiogenic heat-producing incompatible element-rich layer, known for its enrichment in potassium, rare-earth elements, and phosphorus (KREEP). Here we show the most depleted lunar meteorite, Asuka-881757, and associated mare basalts, represent ancient (~3.9 Ga) partial melts of KREEP-free Fe-rich mantle. Petrological modeling demonstrates that these basalts were generated at lower temperatures and shallower depths than typical Apollo mare basalts. Calculated mantle potential temperatures of these rocks suggest a relatively cooler mantle source and lower surface heat flow than those associated with later-erupted mare basalts, suggesting a fundamental shift in melting regime in the Moon from ~3.9 to ~3.3 Ga.
Collapse
Affiliation(s)
- Yash Srivastava
- Physical Research Laboratory, Ahmedabad, 380009, India
- Indian Institute of Technology Gandhinagar, Gujarat, 382355, India
| | | | - James M D Day
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0244, USA
| | - Akira Yamaguchi
- National Institute of Polar Research (NIPR), Tokyo, 190-8518, Japan
| | - Atsushi Takenouchi
- National Institute of Polar Research (NIPR), Tokyo, 190-8518, Japan
- The Kyoto University Museum, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
12
|
Exploring the depths of Solar System evolution. Proc Natl Acad Sci U S A 2022; 119:e2216309119. [PMID: 36252015 PMCID: PMC9618046 DOI: 10.1073/pnas.2216309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Abstract
The origin of volatile species such as water in the Earth-Moon system is a subject of intense debate but is obfuscated by the potential for volatile loss during the Giant Impact that resulted in the formation of these bodies. One way to address these topics and place constraints on the temporal evolution of volatile components in planetary bodies is by using the observed decay of 87Rb to 87Sr because Rb is a moderately volatile element, whereas Sr is much more refractory. Here, we show that lunar highland rocks that crystallized ∼4.35 billion years ago exhibit very limited ingrowth of 87Sr, indicating that prior to the Moon-forming impact, the impactor commonly referred to as "Theia" and the proto-Earth both must have already been strongly depleted in volatile elements relative to primitive meteorites. These results imply that 1) the volatile element depletion of the Moon did not arise from the Giant Impact, 2) volatile element distributions on the Moon and Earth were principally inherited from their precursors, 3) both Theia and the proto-Earth probably formed in the inner solar system, and 4) the Giant Impact occurred relatively late in solar system history.
Collapse
|
14
|
Michaut C, Neufeld JA. Formation of the Lunar Primary Crust From a Long-Lived Slushy Magma Ocean. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL095408. [PMID: 35865331 PMCID: PMC9286579 DOI: 10.1029/2021gl095408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Classical fractional crystallization scenarios of early lunar evolution suggest crustal formation by the flotation of light anorthite minerals from a liquid magma ocean. However, this model is challenged by the> 200 Myr age range of primitive ferroan anorthosites, their concordance with Mg-suite magmatism and by the compositional diversity observed in lunar anorthosites. Here, we propose a new model of slushy magma ocean crystallization in which crystals remain suspended in the lunar interior and crust formation only begins once a critical crystal content is reached. Thereafter crustal formation occurs by buoyant melt extraction and magmatism. The mixture viscosity strongly depends on temperature and solid fraction driving the development of a surface stagnant lid where enhanced solidification and buoyant ascent of melt lead to an anorthite-enriched crust. This model explains lunar anorthosites heterogeneity and suggests a crustal formation timescale of 100s Ma, reconciling anorthosite ages with an early age of the Moon.
Collapse
Affiliation(s)
- Chloé Michaut
- Ecole Normale Supérieure de LyonUniversité de LyonUniversité Claude Bernard Lyon 1Laboratoire de Géologie de Lyon, Terre, Planètes, EnvironnementLyonFrance
- Institut Universitaire de FranceParisFrance
| | - Jerome A. Neufeld
- Centre for Environmental and Industrial FlowsUniversity of CambridgeCambridgeUK
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
| |
Collapse
|
15
|
Chemical heterogeneities reveal early rapid cooling of Apollo Troctolite 76535. Nat Commun 2021; 12:7054. [PMID: 34907200 PMCID: PMC8671448 DOI: 10.1038/s41467-021-26841-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The evolution of the lunar interior is constrained by samples of the magnesian suite of rocks returned by the Apollo missions. Reconciling the paradoxical geochemical features of this suite constitutes a feasibility test of lunar differentiation models. Here we present the results of a microanalytical examination of the archetypal specimen, troctolite 76535, previously thought to have cooled slowly from a large magma body. We report a degree of intra-crystalline compositional heterogeneity (phosphorus in olivine and sodium in plagioclase) fundamentally inconsistent with prolonged residence at high temperature. Diffusion chronometry shows these heterogeneities could not have survived magmatic temperatures for >~20 My, i.e., far less than the previous estimated cooling duration of >100 My. Quantitative modeling provides a constraint on the thermal history of the lower lunar crust, and the textural evidence of dissolution and reprecipitation in olivine grains supports reactive melt infiltration as the mechanism by which the magnesian suite formed.
Collapse
|
16
|
Daher H, Arbic BK, Williams JG, Ansong JK, Boggs DH, Müller M, Schindelegger M, Austermann J, Cornuelle BD, Crawford EB, Fringer OB, Lau HCP, Lock SJ, Maloof AC, Menemenlis D, Mitrovica JX, Green JAM, Huber M. Long-Term Earth-Moon Evolution With High-Level Orbit and Ocean Tide Models. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006875. [PMID: 35846556 PMCID: PMC9285098 DOI: 10.1029/2021je006875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 05/25/2023]
Abstract
Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.
Collapse
Affiliation(s)
- Houraa Daher
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
- Rosenstiel School for Marine and Atmospheric ScienceUniversity of MiamiMiamiFLUSA
| | - Brian K. Arbic
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Institut des Géosciences de L'Environnement (IGE)GrenobleFrance
- Laboratoire des Etudes en Géophysique et Océanographie Spatiale (LEGOS)ToulouseFrance
| | - James G. Williams
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Joseph K. Ansong
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Department of MathematicsUniversity of GhanaAccraGhana
| | - Dale H. Boggs
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | | | - Bruce D. Cornuelle
- Scripps Institution of OceanographyUniversity of CaliforniaLa JollaCAUSA
| | - Eliana B. Crawford
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
- Swift NavigationSan FranciscoCAUSA
- Department of PhysicsKenyon CollegeGambierOHUSA
| | - Oliver B. Fringer
- Department of Civil and Environmental EngineeringStanford UniversityStanfordCAUSA
| | - Harriet C. P. Lau
- Department of Earth and Planetary SciencesUniversity of CaliforniaBerkeleyCAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | - Simon J. Lock
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Adam C. Maloof
- Department of GeosciencesPrinceton UniversityPrincetonNJUSA
| | | | - Jerry X. Mitrovica
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| | | | - Matthew Huber
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
17
|
Large impact cratering during lunar magma ocean solidification. Nat Commun 2021; 12:5433. [PMID: 34521860 PMCID: PMC8440705 DOI: 10.1038/s41467-021-25818-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The lunar cratering record is used to constrain the bombardment history of both the Earth and the Moon. However, it is suggested from different perspectives, including impact crater dating, asteroid dynamics, lunar samples, impact basin-forming simulations, and lunar evolution modelling, that the Moon could be missing evidence of its earliest cratering record. Here we report that impact basins formed during the lunar magma ocean solidification should have produced different crater morphologies in comparison to later epochs. A low viscosity layer, mimicking a melt layer, between the crust and mantle could cause the entire impact basin size range to be susceptible to immediate and extreme crustal relaxation forming almost unidentifiable topographic and crustal thickness signatures. Lunar basins formed while the lunar magma ocean was still solidifying may escape detection, which is agreeing with studies that suggest a higher impact flux than previously thought in the earliest epoch of Earth-Moon evolution.
Collapse
|
18
|
The search for lunar mantle rocks exposed on the surface of the Moon. Nat Commun 2021; 12:4659. [PMID: 34344883 PMCID: PMC8333336 DOI: 10.1038/s41467-021-24626-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
The lunar surface is ancient and well-preserved, recording Solar System history and planetary evolution processes. Ancient basin-scale impacts excavated lunar mantle rocks, which are expected to remain present on the surface. Sampling these rocks would provide insight into fundamental planetary processes, including differentiation and magmatic evolution. There is contention among lunar scientists as to what lithologies make up the upper lunar mantle, and where they may have been exposed on the surface. We review dynamical models of lunar differentiation in the context of recent experiments and spacecraft data, assessing candidate lithologies, their distribution, and implications for lunar evolution. Vast, ancient impact basins scattered mantle materials across the lunar surface. We review lunar evolution models to identify candidate mantle lithologies, then assess orbital observations to evalutae the current distribution of these materials and implications for fundamental planetary processes.
Collapse
|
19
|
Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proc Natl Acad Sci U S A 2020; 118:2015211118. [PMID: 33443165 DOI: 10.1073/pnas.2015211118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites-volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a 143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic 143Nd/144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core-mantle boundary. PREMA could have been stored in these structures for most of Earth's history, partially shielded from convective homogenization.
Collapse
|