1
|
Wu XM, Lu B, He JY, Zhang YX, Wu ZY, Xiong ZQ. Aberrant outputs of glutamatergic neurons in deep cerebellar nuclei mediate dystonic movements. SCIENCE ADVANCES 2025; 11:eadp2377. [PMID: 40344058 PMCID: PMC12063653 DOI: 10.1126/sciadv.adp2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (Prrt2) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)-projecting neurons within the DCN during episodes of dystonia in Prrt2-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both Prrt2-associated and kainic acid-induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Yan He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
2
|
Chin PW, Augustine GJ. Serotonergic Input into the Cerebellar Cortex Modulates Anxiety-Like Behavior. J Neurosci 2025; 45:e1825242024. [PMID: 39929727 PMCID: PMC11968536 DOI: 10.1523/jneurosci.1825-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 04/04/2025] Open
Abstract
Because of the important roles of both serotonin (5-HT) and the cerebellum in regulating anxiety, we asked whether 5-HT signaling within the cerebellum is involved in anxiety behavior. Physiological 5-HT levels were measured in vivo by expressing a fluorescent sensor for 5-HT in lobule VII of the cerebellum, while using fiber photometry to measure sensor fluorescence during anxiety behavior on the elevated zero maze. Serotonin increased in lobule VII when male mice were less anxious and decreased when mice were more anxious. To establish a causal role for this serotonergic input in anxiety behavior, we photostimulated or photoinhibited serotonergic terminals in lobule VII while mice were in an elevated zero maze. Photostimulating these terminals reduced anxiety behavior in mice, while photoinhibiting them enhanced anxiety behavior. Our findings add to evidence that cerebellar lobule VII is a topographical locus for anxiety behavior and establish that 5-HT input into this lobule is necessary and sufficient to bidirectionally influence anxiety behavior. These results represent progress toward understanding how the cerebellum regulates anxiety behavior and provide new evidence for a functional connection between the cerebellum and the serotonin system within the anxiety circuit.
Collapse
Affiliation(s)
- Pei Wern Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| |
Collapse
|
3
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
4
|
Wang Y, Shi G, Zeng Y, Li J, Wu Y, Zheng J, Xu A, Ma Y, Zhang L, Li H. Antidepressant Effect and Mechanism of Picea mariana Essential Oil on Reserpine-Induced Depression Model Mice. J Microbiol Biotechnol 2024; 34:1778-1788. [PMID: 39113199 PMCID: PMC11473511 DOI: 10.4014/jmb.2405.05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024]
Abstract
The disturbance of brain biochemical substances serves as a primary cause and aggravating factor of depression. This study aimed to investigate the principal components of Picea mariana and its effect on reserpine-induced depression mice,w ith its relationship with brain central transmitters and related proteins. The main constituents of P. mariana essential oil (PMEO) were analyzed by GC-MS spectrometry. The quiescent time in the tail suspension test (TST) and forced swim test (FST), along with the weight change of the mice was detected. The number of normal neurons was quantified through Nissl staining. Immunohistochemistry was employed to determine the levels of 5HT-1A and 5HT-2A in the brain. Western blotting was utilized to detect 5HT-2A, CRF and TrkB protein levels. RT-qPCR was used to detect the mRNA levels of 5HT-1A, 5HT-2A, TrkB, CRF, and BDNF. The main active ingredients of PMEOs were (-) -bornyl acetate (44.95%), γ-Terpinene (14.17%), and β-Pinene (10.12%). PMEOs effectively improved the retardation and weight loss due to anorexia in depression-like mice. This improvement was associated with an increase in the number of normal neurons. After administering different doses of PMEOs, the levels of 5HT-1A, 5HT-2A, CRF, and TrkB were found to be increased in brain tissue. RT-qPCR revealed that the mRNA levels of CRF, 5HT-1A, and 5HT-2A were generally upregulated, whereas TrkB and BDNF were downregulated. PMEO can effectively alleviate depression induced by reserpine, which may be attributed to its regulation of 5HT-1A, 5HT-2A, CRF and TrkB protein expression, thus reducing brain nerve injury.
Collapse
Affiliation(s)
- Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Guofeng Shi
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yixi Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Juting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yongyu Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Jiahui Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Anjing Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yanqing Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Hui Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
- Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou 510080, P.R. China
| |
Collapse
|
5
|
Wu X, Zhu X, Pan Y, Gu X, Liu X, Chen S, Zhang Y, Xu T, Xu N, Sun S. Amygdala neuronal dyshomeostasis via 5-HT receptors mediates mood and cognitive defects in Alzheimer's disease. Aging Cell 2024; 23:e14187. [PMID: 38716507 PMCID: PMC11320345 DOI: 10.1111/acel.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024] Open
Abstract
Behavioral changes or neuropsychiatric symptoms (NPSs) are common features in dementia and are associated with accelerated cognitive impairment and earlier deaths. However, how NPSs are intertwined with cognitive decline remains elusive. In this study, we identify that the basolateral amygdala (BLA) is a key brain region that is associated with mood disorders and memory decline in the AD course. During the process from pre- to post-onset in AD, the dysfunction of parvalbumin (PV) interneurons and pyramidal neurons in the amygdala leads to hyperactivity of pyramidal neurons in the basal state and insensitivity to external stimuli. We further demonstrate that serotonin (5-HT) receptors in distinct neurons synergistically regulate the BLA microcircuit of AD rather than 5-HT levels, in which both restrained inhibitory inputs by excessive 5-HT1AR signaling in PV interneurons and depolarized pyramidal neurons via upregulated 5-HT2AR contribute to aberrant neuronal hyperactivity. Downregulation of these two 5-HT receptors simultaneously enables neurons to resist β-amyloid peptides (Aβ) neurotoxicity and ameliorates the mood and cognitive defects. Therefore, our study reveals a crucial role of 5-HT receptors for regulating neuronal homeostasis in AD pathogenesis, and this would provide early intervention and potential targets for AD cognitive decline.
Collapse
Affiliation(s)
- Xin‐Rong Wu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao‐Na Zhu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan‐Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Gu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xian‐Dong Liu
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Si Chen
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhang
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tian‐Le Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nan‐Jie Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain ScienceShanghai Jiao Tong University School of MedicineShanghaiChina
- Songjiang Hospital and Songjiang Research InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Emotions and Affective DisordersShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Suya Sun
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Dressler D, Kopp B, Pan L, Adib Saberi F. Excessive psychological stress preceding the onset of idiopathic cervical dystonia. J Neural Transm (Vienna) 2024; 131:53-57. [PMID: 37773224 PMCID: PMC10770183 DOI: 10.1007/s00702-023-02694-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Idiopathic cervical dystonia (ICD) is the largest subgroup of dystonia. Psychological stress as a triggering factor has long been discussed, but detailed descriptions are lacking. We report on a group of 13 patients with ICD and preceding excessive psychological stress (age at ICD onset 39.0 ± 13.9 years, 7 females, 6 males). The observation period was 7.8 ± 5.0 years. Excessive psychological stress included partner conflicts (divorce and separation, domestic violence), special familial burdens, legal disputes and migration. It started 8.3 ± 3.9 months before ICD onset. In 85% of our patients (typical cases), ICD developed within 5.8 ± 4.4 weeks, then lasted 18.5 ± 8.3 months, before it started to remit 2.7 ± 0.8 years after its onset to 54.5 ± 35.3% of its maximal severity. Idiopathic dystonia is thought to be based upon a genetic predisposition triggered by epigenetic factors. Our study suggests that excessive psychological stress could be one of them. Pathophysiologic elements are only vaguely identified, but could include the endoplasmic reticulum stress response, cerebellar 5HT-2A receptors and the metabolism of heat shock proteins. Whilst the clinical presentation of ICD preceded by excessive psychological stress is typical, its course is atypical with rapid onset and fast and substantial remission.
Collapse
Affiliation(s)
- Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lizhen Pan
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Neurology, Neurotoxin Research Center, Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
7
|
Keys P, Davila-Siliezar P, Laylani N, Lee AG. Stress-Induced Oculogyric Crisis in Septo-Optic Dysplasia: Case Report. Case Rep Ophthalmol 2024; 15:406-410. [PMID: 38682038 PMCID: PMC11052561 DOI: 10.1159/000534493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/03/2023] [Indexed: 05/01/2024] Open
Abstract
Introduction Oculogyric crisis (OGC) is a dystonic movement disorder of varying durations that manifests as bilateral paroxysmal upward eye deviation accompanied by involuntary blinking, tongue protrusion, and autonomic symptoms. Separately, septo-optic dysplasia (SOD) is a congenital disorder involving hypoplasia of the optic nerve as well as hypothalamic and pituitary abnormalities. In the presented case, we report a case of OGC in the setting of SOD with proposed pathogenesis. Case Presentation A 27-year-old female presented with a history of SOD (optic nerve hypoplasia and hypopituitarism) with acute, recurrent, painless, bilateral, intermittent, simultaneous tonic conjugate upward eye deviation (i.e., OGC) and dystonic body posturing. She experienced her first episode upon meeting her biological sister for the first time at a loud, crowded public restaurant with continued episodes of OGC increasing in frequency and duration over the subsequent months. She later responded well to treatment with carbidopa/levodopa. Conclusion Based on our current understanding of OGC, we hypothesize that acute stressful life events in the setting of prior hypothalamic-pituitary axis dysfunction secondary to SOD could lower the threshold for developing OGC. Although most cases of OGC are idiopathic, various etiologies including medications, stress, and hormonal imbalance have been postulated as possible pathogenic mechanisms. We describe a case of SOD with OGC, and based upon our review of the English language ophthalmic literature, we believe that our case is novel.
Collapse
Affiliation(s)
- Phillip Keys
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX, USA
| | - Pamela Davila-Siliezar
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Noor Laylani
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew G. Lee
- Department of Ophthalmology, University of Texas Medical Branch School of Medicine, Galveston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A and M College of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
8
|
Leon LES, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564790. [PMID: 37961355 PMCID: PMC10635001 DOI: 10.1101/2023.10.30.564790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor (sleep-related) symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects- Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx -which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the cerebellar fastigial and interposed nuclei, we modulated sleep dysfunction by enhancing sleep quality and timing in both models. This DBS paradigm improved wakefulness (decreased) and rapid eye movement (REM) sleep (increased) in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1a Cre ;Vglut2 fx/fx mutant mice. These findings highlight the potential for using cerebellar DBS to improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
|
9
|
Martino D. What can epidemiological studies teach on the pathophysiology of adult-onset isolated dystonia? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:21-60. [PMID: 37482393 DOI: 10.1016/bs.irn.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Several demographic and environmental factors may play an important role in determining the risk of developing adult-onset isolated dystonia (AOID) and/or modifying its course. However, epidemiologic studies have provided to date only partial insight on the disease mechanisms that are actively influenced by these factors. The age-related increase in female predominance in both patients diagnosed with AOID and subjects carrying its putative mediational phenotype suggests sexual dimorphism that has been demonstrated for mechanisms related to blepharospasm and cervical dystonia. The opposite relationship that spread and spontaneous remission of AOID have with age suggests age-related decline of compensatory mechanisms that protect from the progression of AOID. Epidemiological studies focusing on environmental risk factors yielded associations only with specific forms of AOID, even for those factors that are not likely to predispose exclusively to specific focal forms (for example, only writing dystonia was found associated with head trauma, and only blepharospasm with coffee intake). Other factors show biological plausibility of their mechanistic role for specific forms, e.g., dry eye syndrome or sunlight exposure for blepharospasm, scoliosis for cervical dystonia, repetitive writing for writing dystonia. Overall, the relationship between environment and AOID remains complex and incompletely defined. Both hypothesis-driven preclinical studies and well-designed cross-sectional or prospective clinical studies are still necessary to decipher this intricate relationship.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Health Sciences Centre, Hospital Drive NW, Calgary, AB, Canada; The Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
11
|
Leon LES, Sillitoe RV. Disrupted sleep in dystonia depends on cerebellar function but not motor symptoms in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527916. [PMID: 36798256 PMCID: PMC9934608 DOI: 10.1101/2023.02.09.527916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Although dystonia is the third most common movement disorder, patients often also experience debilitating nonmotor defects including impaired sleep. The cerebellum is a central component of a "dystonia network" that plays various roles in sleep regulation. Importantly, the primary driver of sleep impairments in dystonia remains poorly understood. The cerebellum, along with other nodes in the motor circuit, could disrupt sleep. However, it is unclear how the cerebellum might alter sleep and mobility. To disentangle the impact of cerebellar dysfunction on motion and sleep, we generated two mouse genetic models of dystonia that have overlapping cerebellar circuit miswiring but show differing motor phenotype severity: Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx mice. In both models, excitatory climbing fiber to Purkinje cell neurotransmission is blocked, but only the Ptf1a Cre ;Vglut2 fx/fx mice have severe twisting. Using in vivo ECoG and EMG recordings we found that both mutants spend greater time awake and in NREM sleep at the expense of REM sleep. The increase in awake time is driven by longer awake bouts rather than an increase in bout number. We also found a longer latency to reach REM in both mutants, which is similar to what is reported in human dystonia. We uncovered independent but parallel roles for cerebellar circuit dysfunction and motor defects in promoting sleep quality versus posture impairments in dystonia.
Collapse
|
12
|
Rafee S, Al-Hinai M, Douglas G, Ndukwe I, Hutchinson M. Mood symptoms in cervical dystonia: Relationship with motor symptoms and quality of life. Clin Park Relat Disord 2023; 8:100186. [PMID: 36747896 PMCID: PMC9898436 DOI: 10.1016/j.prdoa.2023.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 02/03/2023] Open
Abstract
Background Cervical dystonia (CD) has a high prevalence of anxiety and depression. The relationship between motor severity, mood symptoms and QoL is unclear and how to adequately assess these is also unknown. Instruments like the BAI, BDI and HADS are often used but items within these relating to somatic symptoms might influence the results. Methods Patients with idiopathic cervical dystonia (CD) were included. The BAI, BDI, HADS, CIDP58 and TWSTRS2- severity score were used for assessment of motor, mood and QoL symptoms. Pearson's correlations between motor and non-motor symptom scores were assessed. The psychometric properties of the psychiatric tools were measured and principal component analysis performed after identifying items that could correspond to somatic symptoms. Results 201 participants were included. 42% of participants had either significant depression or anxiety symptoms or both when measured by BAI and BDI and 51% of patients met criteria on HADS. HADS-A and HADS-D, BAI and BDI were poorly correlated with TWSTRS2-S. The HADS-A and HADS-D both showed strong correlation with the sleep subdomain of CDIP58. Psychometric and principal component analysis on 149/201 participants did not reveal factor loadings consistent with the a priori somatic groupings. However mean scores were higher for somatic items. Conclusion A good score on the CDIP58, a commonly used tool, does not indicate mild disease severity or minimal mood symptoms. Minimal motor symptoms, similarly, also does not imply a positive QoL. Clinicians should be mindful on ideal methods for performing a holistic assessment of CD patients. This likely warrants a combination of motor, QoL and mood assessment tools.
Collapse
Affiliation(s)
- Shameer Rafee
- Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
- Corresponding author at: Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland.
| | - Mahmood Al-Hinai
- Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland
| | - Gillian Douglas
- Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland
| | - Ihedinachi Ndukwe
- Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent’s University Hospital, Merrion Road, Dublin, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Chin PW, Augustine GJ. The cerebellum and anxiety. Front Cell Neurosci 2023; 17:1130505. [PMID: 36909285 PMCID: PMC9992220 DOI: 10.3389/fncel.2023.1130505] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Although the cerebellum is traditionally known for its role in motor functions, recent evidence points toward the additional involvement of the cerebellum in an array of non-motor functions. One such non-motor function is anxiety behavior: a series of recent studies now implicate the cerebellum in anxiety. Here, we review evidence regarding the possible role of the cerebellum in anxiety-ranging from clinical studies to experimental manipulation of neural activity-that collectively points toward a role for the cerebellum, and possibly a specific topographical locus within the cerebellum, as one of the orchestrators of anxiety responses.
Collapse
Affiliation(s)
- Pei Wern Chin
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Rafee S, Al-Hinai M, Hutchinson M. Adult-Onset Idiopathic Cervical Dystonia. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/10005730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adult-onset idiopathic focal dystonia is the most common type of primary dystonia, and adult-onset idiopathic cervical dystonia (AOICD) is its most prevalent phenotype. AOICD is an autosomal-dominant disorder with markedly reduced penetrance; clinical expression is dependent on age, sex, and environmental exposure. Motor symptoms at presentation are poorly recognised by non-specialists, leading to long delays in diagnosis. Certain features of history and examination can help diagnose cervical dystonia. There is a relatively high prevalence of anxiety and/or depression, which adversely affects health-related quality of life. Recent studies indicate that patients with AOICD also have disordered social cognition, particularly affecting emotional sensory processing. AOICD can be treated reasonably effectively with botulinum toxin injections, given at 3-month intervals. Oral antidystonic medications are often trialled initially, but are largely ineffective. Comprehensive modern management of patients with AOICD requires recognition of presence of mood disorders, and actively treating the endogenous mood disorder with antidepressant therapy. Botulinum toxin injections alone, no matter how expertly given, will not provide optimal therapy and improved health-related quality of life without an holistic approach to patient management. Increasing evidence indicates that AOICD is a neurophysiological network disorder of GABAergic inhibition, causing a syndrome of dystonia, mood disturbance, and social cognitive dysfunction, with the superior colliculus playing a central role.
Collapse
Affiliation(s)
- Shameer Rafee
- Department of Neurology, St Vincent’s University Hospital, Dublin, Republic of Ireland
| | - Mahmood Al-Hinai
- Department of Neurology, St Vincent’s University Hospital, Dublin, Republic of Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent’s University Hospital, Dublin, Republic of Ireland
| |
Collapse
|
15
|
Salazar Leon LE, Sillitoe RV. Potential Interactions Between Cerebellar Dysfunction and Sleep Disturbances in Dystonia. DYSTONIA 2022; 1. [PMID: 37065094 PMCID: PMC10099477 DOI: 10.3389/dyst.2022.10691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Dystonia is the third most common movement disorder. It causes debilitating twisting postures that are accompanied by repetitive and sometimes intermittent co- or over-contractions of agonist and antagonist muscles. Historically diagnosed as a basal ganglia disorder, dystonia is increasingly considered a network disorder involving various brain regions including the cerebellum. In certain etiologies of dystonia, aberrant motor activity is generated in the cerebellum and the abnormal signals then propagate through a “dystonia circuit” that includes the thalamus, basal ganglia, and cerebral cortex. Importantly, it has been reported that non-motor defects can accompany the motor symptoms; while their severity is not always correlated, it is hypothesized that common pathways may nevertheless be disrupted. In particular, circadian dysfunction and disordered sleep are common non-motor patient complaints in dystonia. Given recent evidence suggesting that the cerebellum contains a circadian oscillator, displays sleep-stage-specific neuronal activity, and sends robust long-range projections to several subcortical regions involved in circadian rhythm regulation, disordered sleep in dystonia may result from cerebellum-mediated dysfunction of the dystonia circuit. Here, we review the evidence linking dystonia, cerebellar network dysfunction, and cerebellar involvement in sleep. Together, these ideas may form the basis for the development of improved pharmacological and surgical interventions that could take advantage of cerebellar circuitry to restore normal motor function as well as non-motor (sleep) behaviors in dystonia.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA
- Address correspondence to: Dr. Roy V. Sillitoe, Tel: 832-824-8913, Fax: 832-825-1251,
| |
Collapse
|
16
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
17
|
Schwitalla JC, Pakusch J, Mücher B, Brückner A, Depke DA, Fenzl T, De Zeeuw CI, Kros L, Hoebeek FE, Mark MD. Controlling absence seizures from the cerebellar nuclei via activation of the G q signaling pathway. Cell Mol Life Sci 2022; 79:197. [PMID: 35305155 PMCID: PMC8934336 DOI: 10.1007/s00018-022-04221-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.
Collapse
Affiliation(s)
| | - Johanna Pakusch
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Alexander Brückner
- Institute of Physiology I, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Dominic Alexej Depke
- European Institute of Molecular Imaging, University of Münster, 48149, Münster, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, TUM School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA, Amsterdam, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, 3015 AA, Rotterdam, The Netherlands
| | - Freek E Hoebeek
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
18
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
19
|
Rafee S, Hutchinson M. Stress and Dystonia. Mov Disord 2021; 36:1794. [PMID: 34196413 DOI: 10.1002/mds.28708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shameer Rafee
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|