1
|
Sánchez-Álvarez M, Lolo FN, Sailem H, Fulgoni G, Pascual-Vargas P, Agüera L, Catalá-Montoro M, Arias-García M, López JA, Vázquez J, Del Pozo MÁ, Bakal C. PERK-dependent reciprocal crosstalk between ER and non-centrosomal microtubules coordinates ER architecture and cell shape. Cell Rep 2025:115590. [PMID: 40267909 DOI: 10.1016/j.celrep.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/19/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The architecture of the endoplasmic reticulum (ER) is a key determinant of its function. Its dynamics are linked to those of the cytoskeleton, but our understanding of how this coordination occurs and what its functional relevance is, limited. Here, we report that the unfolded protein response (UPRER) transducer EIF2AK3/PERK (eukaryotic translation initiation factor 2-alpha kinase 3/protein kinase R-like endoplasmic reticulum kinase) is essential for acute-stress-induced peripheral redistribution and remodeling of the ER through eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation and translation initiation shutdown. PERK-mediated eIF2α phosphorylation can be bypassed by blocking polysome assembly, depleting microtubule (MT)-anchoring ER proteins such as p180/RRBP1 (ribosome-binding protein 1), or disrupting the MT cytoskeleton. Specific disruption of non-centrosomal MTs, but not centrosome depletion, rescues ER redistribution in PERK-deficient cells. Conversely, PERK deficiency stabilizes non-centrosomal MTs against proteasomal degradation, promoting polarized protrusiveness in epithelial cells and neuroblasts. Thus, PERK coordinates ER architecture and homeostasis with cell morphogenesis by coupling ER remodeling and non-centrosomal MT stability and dynamics.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain.
| | - Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Heba Sailem
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Giulio Fulgoni
- Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain
| | - Patricia Pascual-Vargas
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Lucía Agüera
- Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain
| | - Mauro Catalá-Montoro
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Mar Arias-García
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Juan Antonio López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Chris Bakal
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
2
|
Rodríguez JM, Jorge I, Martinez-Val A, Barrero-Rodríguez R, Magni R, Núñez E, Laguillo A, Devesa CA, López JA, Camafeita E, Vázquez J. iSanXoT: A standalone application for the integrative analysis of mass spectrometry-based quantitative proteomics data. Comput Struct Biotechnol J 2024; 23:452-459. [PMID: 38235360 PMCID: PMC10792623 DOI: 10.1016/j.csbj.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases.
Collapse
Affiliation(s)
- Jose Manuel Rodríguez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Martinez-Val
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Rafael Barrero-Rodríguez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Ricardo Magni
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Estefanía Núñez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea Laguillo
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Cristina A. Devesa
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Juan A. López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Emilio Camafeita
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
3
|
Morales-Martínez M, Andón-García D, Patiño-Santiago KA, Parga-Ortega JM, Hernández-Hernández A, Aquino-Jarquin G, Patino-Lopez G. Identification of potential new T cell activation molecules: a Bioinformatic Approach. Sci Rep 2024; 14:22219. [PMID: 39333573 PMCID: PMC11436975 DOI: 10.1038/s41598-024-73003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
T-cell activation is central for the initiation of T cell mediated adaptive immune response and is the result of the close communication between the Antigen Presenting Cell (APC) and the T lymphocyte. Although T-cell activation is currently well understood, and many intracellular pathways are well characterized, nevertheless new players are constantly identified, and this complements the known protein interactome. In this work we aimed to identify new proteins involved in T cell activation. We reviewed and analyzed results of microarray gene expression datasets reported in the public database GEO-NCBI. Using data from GSE136625, GSE50971, GSE13887, GSE11989 and GSE902 we performed different comparisons using R and other bioinformatic tools including GEO2R and we report here upregulated genes that have no previous reports in immune related functions and with potential participation upon T-cell activation. Our results indicate that RND3, SYT10, IgSF6 and PIN1 are potential new T-cell activation molecules.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - David Andón-García
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | | | | | | | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Mexico City, 06720, Mexico
| | - Genaro Patino-Lopez
- Immunology and Proteomics Laboratory, Children's Hospital of Mexico, Mexico City, 06720, Mexico.
| |
Collapse
|
4
|
Lozano-Prieto M, Camafeita E, Jorge I, Laguillo-Gómez A, Barrero-Rodríguez R, Devesa CA, Pertusa C, Calvo E, Sánchez-Madrid F, Vázquez J, Martin-Cofreces NB. In-gel protein digestion using acidic methanol produces a highly selective methylation of glutamic acid residues. J Proteomics 2024; 304:105229. [PMID: 38880355 DOI: 10.1016/j.jprot.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Mass-tolerant open search methods allow the high-throughput analysis of modified peptides by mass spectrometry. These techniques have paved the way to unbiased analysis of post-translational modifications in biological contexts, as well as of chemical modifications produced during the manipulation of protein samples. In this work, we have analyzed in-depth a wide variety of samples of different biological origin, including cells, extracellular vesicles, secretomes, centrosomes and tissue preparations, using Comet-ReCom, a recently improved version of the open search engine Comet-PTM. Our results demonstrate that glutamic acid residues undergo intensive methyl esterification when protein digestion is performed using in-gel techniques, but not using gel-free approaches. This effect was highly specific to Glu and was not found for other methylable residues such as Asp.
Collapse
Affiliation(s)
- Marta Lozano-Prieto
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea Laguillo-Gómez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rafael Barrero-Rodríguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Cristina A Devesa
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain.
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Noa B Martin-Cofreces
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Videomicroscopy Unit, Instituto de Investigación Sanitaria La Princesa (IIs-Princes), Madrid, Spain.
| |
Collapse
|
5
|
Gómez-Morón Á, Tsukalov I, Scagnetti C, Pertusa C, Lozano-Prieto M, Martínez-Fleta P, Requena S, Martín P, Alfranca A, Martin-Gayo E, Martin-Cofreces NB. Cytosolic protein translation regulates cell asymmetry and function in early TCR activation of human CD8 + T lymphocytes. Front Immunol 2024; 15:1411957. [PMID: 39114656 PMCID: PMC11303187 DOI: 10.3389/fimmu.2024.1411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Ilya Tsukalov
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Martín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Regulatory Molecules of Inflammatory Processes, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Aranzazu Alfranca
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Noa B Martin-Cofreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
7
|
Khajavi L, Nguyen XH, Queriault C, Chabod M, Barateau L, Dauvilliers Y, Zytnicki M, Liblau R. The transcriptomics profiling of blood CD4 and CD8 T-cells in narcolepsy type I. Front Immunol 2023; 14:1249405. [PMID: 38077397 PMCID: PMC10702585 DOI: 10.3389/fimmu.2023.1249405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Background Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.
Collapse
Affiliation(s)
- Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Healthcare System and College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | - Clémence Queriault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Marianne Chabod
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University Montpellier, Montpellier, France
| | - Matthias Zytnicki
- Applied Mathematics and Informatics Unit of Toulouse (MIAT), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), L'Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Paul-Sabatier de Toulouse (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
8
|
Laguillo-Gómez A, Calvo E, Martín-Cófreces N, Lozano-Prieto M, Sánchez-Madrid F, Vázquez J. ReCom: A semi-supervised approach to ultra-tolerant database search for improved identification of modified peptides. J Proteomics 2023; 287:104968. [PMID: 37463622 DOI: 10.1016/j.jprot.2023.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Open-search methods allow unbiased, high-throughput identification of post-translational modifications in proteins at an unprecedented scale. The performance of current open-search algorithms is diminished by experimental errors in the determination of the precursor peptide mass. In this work we propose a semi-supervised open search approach, called ReCom, that minimizes this effect by taking advantage of a priori known information from a reference database, such as Unimod or a database provided by the user. We present a proof-of-concept study using Comet-ReCom, an improved version of Comet-PTM. Comet-ReCom increased identification performance of Comet-PTM by 68%. This increased performance of Comet-ReCom to score the MS/MS spectrum comes in parallel with a significantly better assignation of the monoisotopic peak of the precursor peptide in the MS spectrum, even in cases of peptide coelution. Our data demonstrate that open searches using ultra-tolerant mass windows can benefit from using a semi-supervised approach that takes advantage from previous knowledge on the nature of protein modifications. SIGNIFICANCE: The present study introduces a novel approach to ultra-tolerant database search, which employs prior knowledge of post-translational modifications (PTMs) to improve identification of modified peptides. This method addresses the limitations related to experimental errors and precursor mass assignation of previous open-search methods. Thus, it enables the study of the biological significance of a wider variety of PTMs, including unknown or unexpected modifications that may have gone unnoticed using non-supervised search methods.
Collapse
Affiliation(s)
- Andrea Laguillo-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain.
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain.
| | - Noa Martín-Cófreces
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain.
| | - Marta Lozano-Prieto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain.
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain.
| |
Collapse
|
9
|
Gómez-Morón Á, Requena S, Pertusa C, Lozano-Prieto M, Calzada-Fraile D, Scagnetti C, Sánchez-García I, Calero-García AA, Izquierdo M, Martín-Cófreces NB. End-binding protein 1 regulates the metabolic fate of CD4 + T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network. Front Immunol 2023; 14:1197289. [PMID: 37520527 PMCID: PMC10374013 DOI: 10.3389/fimmu.2023.1197289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Immunology, Oftalmology and Otorrinolaryngology Dept., School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
| | - Inés Sánchez-García
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | | | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noa B Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
10
|
Rojas‐Gómez A, Dosil SG, Chichón FJ, Fernández‐Gallego N, Ferrarini A, Calvo E, Calzada‐Fraile D, Requena S, Otón J, Serrano A, Tarifa R, Arroyo M, Sorrentino A, Pereiro E, Vázquez J, Valpuesta JM, Sánchez‐Madrid F, Martín‐Cófreces NB. Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics. J Extracell Vesicles 2023; 12:e12333. [PMID: 37328936 PMCID: PMC10276179 DOI: 10.1002/jev2.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.
Collapse
Affiliation(s)
- Amelia Rojas‐Gómez
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Sara G. Dosil
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Francisco J. Chichón
- Cryoelectron Microscopy UnitCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Nieves Fernández‐Gallego
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Alessia Ferrarini
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Enrique Calvo
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Diego Calzada‐Fraile
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Silvia Requena
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Joaquin Otón
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- ALBA Synchrotron Light SourceBarcelonaSpain
| | - Alvaro Serrano
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Rocio Tarifa
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Montserrat Arroyo
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
| | | | | | - Jesus Vázquez
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - José M. Valpuesta
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Noa B. Martín‐Cófreces
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
11
|
Lima TI, Laurila PP, Wohlwend M, Morel JD, Goeminne LJE, Li H, Romani M, Li X, Oh CM, Park D, Rodríguez-López S, Ivanisevic J, Gallart-Ayala H, Crisol B, Delort F, Batonnet-Pichon S, Silveira LR, Sankabattula Pavani Veera Venkata L, Padala AK, Jain S, Auwerx J. Inhibiting de novo ceramide synthesis restores mitochondrial and protein homeostasis in muscle aging. Sci Transl Med 2023; 15:eade6509. [PMID: 37196064 DOI: 10.1126/scitranslmed.ade6509] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.
Collapse
Affiliation(s)
- Tanes I Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean David Morel
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dohyun Park
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florence Delort
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Sabrina Batonnet-Pichon
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | | | - Anil K Padala
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Lee D, Gimple RC, Wu X, Prager BC, Qiu Z, Wu Q, Daggubati V, Mariappan A, Gopalakrishnan J, Sarkisian MR, Raleigh DR, Rich JN. Superenhancer activation of KLHDC8A drives glioma ciliation and hedgehog signaling. J Clin Invest 2023; 133:e163592. [PMID: 36394953 PMCID: PMC9843063 DOI: 10.1172/jci163592] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene. Targeting KLHDC8A decreased GSC proliferation and self-renewal, induced apoptosis, and impaired in vivo tumor growth. Transcription factor control circuitry analyses revealed that the master transcriptional regulator SOX2 stimulated KLHDC8A expression. Mechanistically, KLHDC8A bound chaperonin-containing TCP1 (CCT) to promote the assembly of primary cilia to activate hedgehog signaling. KLHDC8A expression correlated with Aurora B/C Kinase inhibitor activity, which induced primary cilia and hedgehog signaling. Combinatorial targeting of Aurora B/C kinase and hedgehog displayed augmented benefit against GSC proliferation. Collectively, superenhancer-based discovery revealed KLHDC8A as what we believe to be a novel molecular target of cancer stem cells that promotes ciliogenesis to activate the hedgehog pathway, offering insights into therapeutic vulnerabilities for glioblastoma treatment.
Collapse
Affiliation(s)
- Derrick Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Ryan C. Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xujia Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Briana C. Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Vikas Daggubati
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matthew R. Sarkisian
- Department of Neuroscience, McKnight Brain Institute and
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida, USA
| | - David R. Raleigh
- Department of Radiation Oncology and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Jeremy N. Rich
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Polverino F, Mirra D, Yang CX, Esposito R, Spaziano G, Rojas-Quintero J, Sgambato M, Piegari E, Cozzolino A, Cione E, Gallelli L, Capuozzo A, Santoriello C, Berrino L, de- Torres JP, Hackett TL, Polverino M, D’Agostino B. Similar programmed death ligand 1 (PD-L1) expression profile in patients with mild COPD and lung cancer. Sci Rep 2022; 12:22402. [PMID: 36575294 PMCID: PMC9792927 DOI: 10.1038/s41598-022-26650-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Programmed Death Ligand 1 (PD-L1) is crucial in regulating the immunological tolerance in non-small cell lung cancer (NSCLC). Alveolar macrophage (AM)-derived PD-L1 binds to its receptor, PD-1, on surveilling lymphocytes, leading to lymphocyte exhaustion. Increased PD-L1 expression is associated with cigarette smoke (CS)-exposure. However, the PD-L1 role in CS-associated lung diseases associated with NSCLC, such as chronic obstructive pulmonary disease (COPD), is still unclear. In two different cohorts of ever smokers with COPD or NSCLC, and ever and never smoker controls, we evaluated PD-L1 expression: (1) via cutting-edge digital spatial proteomic and transcriptomic profiling (Geomx) of formalin-fixed paraffin-embedded (FFPE) lung tissue sections (n = 19); and (2) via triple immunofluorescence staining of bronchoalveolar lavage (BAL) AMs (n = 83). PD-L1 mRNA expression was also quantified in BAL AMs exposed to CS extract. PD-L1 expression was increased in the bronchiolar wall, parenchyma, and vascular wall from mild-moderate (GOLD 1-2) COPD patients compared to severe-very severe (GOLD 3-4) COPD patients and controls. Within all the COPD patients, PD-L1 protein expression was associated with upregulation of genes involved in tumor progression and downregulation of oncosuppressive genes, and strongly directly correlated with the FEV1% predicted, indicating higher PD-L1 expression in the milder vs. more severe COPD stages. In bronchioles, PD-L1 levels were strongly directly correlated with the number of functionally active AMs. In BAL, we confirmed that AMs from patients with both GOLD 1-2 COPD and NSCLC had the highest and similar, PD-L1 expression levels versus all the other groups, independently from active cigarette smoking. Intriguingly, AMs from patients with more severe COPD had reduced AM PD-L1 expression compared to patients with mild COPD. Acute CS extract stimulation increased PD-L1 mRNA expression only in never-and not in ever-smoker AMs. Lungs from patients with mild COPD and NSCLC are characterized by a similar strong PD-L1 expression signature in bronchioles and functionally active AMs compared to patients with severe COPD and controls. Active smoking does not affect PD-L1 levels. These observations represent a new resource in understanding the innate immune mechanisms underlying the link between COPD and lung cancer onset and progression and pave the way to future studies focused on the mechanisms by which CS promotes tumorigenesis and COPD.
Collapse
Affiliation(s)
- F. Polverino
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - D. Mirra
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - C. X. Yang
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | - R. Esposito
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - G. Spaziano
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. Rojas-Quintero
- grid.39382.330000 0001 2160 926XPulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - M. Sgambato
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Piegari
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - A. Cozzolino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - E. Cione
- grid.7778.f0000 0004 1937 0319University of Calabria, Rende, Italy
| | - L. Gallelli
- grid.411489.10000 0001 2168 2547University of Catanzaro, Catanzaro, Italy
| | | | | | - L. Berrino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - J. P. de- Torres
- grid.410356.50000 0004 1936 8331Queen’s University, Hamilton, Canada
| | - T. L. Hackett
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, Canada
| | | | - B. D’Agostino
- grid.9841.40000 0001 2200 8888University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
14
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. SCIENCE ADVANCES 2022; 8:eabm7322. [PMID: 35294231 PMCID: PMC8926342 DOI: 10.1126/sciadv.abm7322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a β-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.
Collapse
Affiliation(s)
- Raquel Roldán-Montero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan M. Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Isabel Cerro-Pardo
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
| | - Jorge Oller
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sebastian M. Maller
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | | | - Nerea Mendez-Barbero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Maria Mittelbrunn
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis M. Blanco-Colio
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428AGE Buenos Aires, Argentina
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| | - Jose L. Martin-Ventura
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| |
Collapse
|
16
|
Cassioli C, Baldari CT. Lymphocyte Polarization During Immune Synapse Assembly: Centrosomal Actin Joins the Game. Front Immunol 2022; 13:830835. [PMID: 35222415 PMCID: PMC8873515 DOI: 10.3389/fimmu.2022.830835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions among immune cells are essential for the development of adaptive immune responses. The immunological synapse (IS) provides a specialized platform for integration of signals and intercellular communication between T lymphocytes and antigen presenting cells (APCs). In the T cell the reorganization of surface molecules at the synaptic interface is initiated by T cell receptor binding to a cognate peptide-major histocompatibility complex on the APC surface and is accompanied by a polarized remodelling of the cytoskeleton and centrosome reorientation to a subsynaptic position. Although there is a general agreement on polarizing signals and mechanisms driving centrosome reorientation during IS assembly, the primary events that prepare for centrosome repositioning remain largely unexplored. It has been recently shown that in resting lymphocytes a local polymerization of filamentous actin (F-actin) at the centrosome contributes to anchoring this organelle to the nucleus. During early stages of IS formation centrosomal F-actin undergoes depletion, allowing for centrosome detachment from the nucleus and its polarization towards the synaptic membrane. We recently demonstrated that in CD4+ T cells the reduction in centrosomal F-actin relies on the activity of a centrosome-associated proteasome and implicated the ciliopathy-related Bardet-Biedl syndrome 1 protein in the dynein-dependent recruitment of the proteasome 19S regulatory subunit to the centrosome. In this short review we will feature our recent findings that collectively provide a new function for BBS proteins and the proteasome in actin dynamics, centrosome polarization and T cell activation.
Collapse
|
17
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
18
|
T cell activation and effector function in the human Jurkat T cell model. Methods Cell Biol 2022. [PMID: 37516527 DOI: 10.1016/bs.mcb.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to understand T cell function, it is necessary to completely decipher the molecular dynamics underlying T cell activation and effector function. In vitro easy-to-handle cellular models are valuable tools to study intracellular molecular mechanisms in live cells. The CD4 T cell line Jurkat (JK) has been widely employed to investigate intracellular signaling leading to T cell activation in response to T cell receptor (TCR) triggering. Here, we describe diverse, complementary protocols to evaluate the TCR- and costimulation-mediated T cell activation, as well as the immunological synapse assembly and cytokine production occurring as a consequence of successful early activation events. This in vitro model is extremely useful to address molecular mechanisms operating during T cell activation and effector function acting in diverse pathophysiological scenarios.
Collapse
|
19
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
20
|
Post-translational modifications and stabilization of microtubules regulate transport of viral factors during infections. Biochem Soc Trans 2021; 49:1735-1748. [PMID: 34436545 DOI: 10.1042/bst20210017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Tubulin post-translational modifications (PTMs) constitute a source of diversity for microtubule (MT) functions, in addition to the different isotypes of α and β-tubulin acting as building blocks of MTs. Also, MT-associated proteins (MAPs) confer different characteristics to MTs. The combination of all these factors regulates the stability of these structures that act as rails to transport organelles within the cell, facilitating the association of motor complexes. All these functions are involved in crucial cellular processes in most cell types, ranging from spindle formation in mitosis to the defense against incoming cellular threats during phagocytosis mediated by immune cells. The regulation of MT dynamics through tubulin PTMs has evolved to depend on many different factors that act in a complex orchestrated manner. These tightly regulated processes are particularly relevant during the induction of effective immune responses against pathogens. Viruses have proved not only to hijack MTs and MAPs in order to favor an efficient infection, but also to induce certain PTMs that improve their cellular spread and lead to secondary consequences of viral processes. In this review, we offer a perspective on relevant MT-related elements exploited by viruses.
Collapse
|
21
|
Cassioli C, Onnis A, Finetti F, Capitani N, Brunetti J, Compeer EB, Niederlova V, Stepanek O, Dustin ML, Baldari CT. The Bardet-Biedl syndrome complex component BBS1 controls T cell polarity during immune synapse assembly. J Cell Sci 2021; 134:jcs258462. [PMID: 34423835 PMCID: PMC7613584 DOI: 10.1242/jcs.258462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Veronika Niederlova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
22
|
Martin-Cofreces NB, Valpuesta JM, Sánchez-Madrid F. T cell asymmetry and metabolic crosstalk can fine-tune immunological synapses. Trends Immunol 2021; 42:649-653. [PMID: 34226146 DOI: 10.1016/j.it.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
T cell asymmetry upon specific cell-cell interactions during mammalian immunological synapse (IS) contacts requires mammalian target of rapamycin complex (mTORC) activation and chaperones, such as the eukaryotic chaperonin containing TCP1 (CCT) for protein synthesis and folding. This mechanism can control cytoskeleton dynamics, and regulate mitochondrial fate, respiration, and metabolic rates, ultimately underlying cell reprogramming events that are relevant for CD4+ T cell functional outcomes.
Collapse
Affiliation(s)
- Noa Beatriz Martin-Cofreces
- Immunology Service, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, 28029, Spain; Centro de Investigación Básica en Red Cardiovascular, CIBERCV, Madrid, 28029, Spain.
| | - Jose Maria Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, 28029, Spain; Centro de Investigación Básica en Red Cardiovascular, CIBERCV, Madrid, 28029, Spain.
| |
Collapse
|
23
|
Martín-Cófreces NB, Valpuesta JM, Sánchez-Madrid F. Folding for the Immune Synapse: CCT Chaperonin and the Cytoskeleton. Front Cell Dev Biol 2021; 9:658460. [PMID: 33912568 PMCID: PMC8075050 DOI: 10.3389/fcell.2021.658460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lymphocytes rearrange their shape, membrane receptors and organelles during cognate contacts with antigen-presenting cells (APCs). Activation of T cells by APCs through pMHC-TCR/CD3 interaction (peptide-major histocompatibility complex-T cell receptor/CD3 complexes) involves different steps that lead to the reorganization of the cytoskeleton and organelles and, eventually, activation of nuclear factors allowing transcription and ultimately, replication and cell division. Both the positioning of the lymphocyte centrosome in close proximity to the APC and the nucleation of a dense microtubule network beneath the plasma membrane from the centrosome support the T cell's intracellular polarity. Signaling from the TCR is facilitated by this traffic, which constitutes an important pathway for regulation of T cell activation. The coordinated enrichment upon T cell stimulation of the chaperonin CCT (chaperonin-containing tailless complex polypeptide 1; also termed TRiC) and tubulins at the centrosome area support polarized tubulin polymerization and T cell activation. The proteasome is also enriched in the centrosome of activated T cells, providing a mechanism to balance local protein synthesis and degradation. CCT assists the folding of proteins coming from de novo synthesis, therefore favoring mRNA translation. The functional role of this chaperonin in regulating cytoskeletal composition and dynamics at the immune synapse is discussed.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|