1
|
Wang Z, Ma D, Liu J, Xu S, Qiu F, Hu L, Liu Y, Ke C, Ruan C. 4D printing polymeric biomaterials for adaptive tissue regeneration. Bioact Mater 2025; 48:370-399. [PMID: 40083775 PMCID: PMC11904411 DOI: 10.1016/j.bioactmat.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025] Open
Abstract
4D printing polymeric biomaterials can change their morphology or performance in response to stimuli from the external environment, compensating for the shortcomings of traditional 3D-printed static structures. This paper provides a systematic overview of 4D printing polymeric biomaterials for tissue regeneration and provides an in-depth discussion of the principles of these materials, including various smart properties, unique deformation mechanisms under stimulation conditions, and so on. A series of typical polymeric biomaterials and their composites are introduced from structural design and preparation methods, and their applications in tissue regeneration are discussed. Finally, the development prospect of 4D printing polymeric biomaterials is envisioned, aiming to provide innovative ideas and new perspectives for their more efficient and convenient application in tissue regeneration.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Duo Ma
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Liqiu Hu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Chen Y, Liu Y, Yu R, Zhao Y, Lu J, Chen G, Zheng Y, Ye C. Dynamically Switchable 3D Shape-Morphing and Rotation from Liquid Crystal Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40420566 DOI: 10.1021/acsami.5c08979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Polymer-based soft actuators capable of responsive shape morphing hold great potential for developing untethered soft robotics with dexterous motion under complex surroundings. To realize this potential, achieving fast, dynamically tunable shape morphing that can generate sufficient mechanical force is essential. Here, soft actuators composed of liquid crystal elastomer (LCE) bilayer film are constructed via direct ink writing (DIW), which exhibit rapid and sequential 3D-to-3D́ morphological reconfiguration within seconds under temperature stimulus. The dynamic shape morphing is facilitated by the bidirectional bending of the LCE film, which possesses anisotropic mesogen orientation and distinct phase transition temperatures. By balancing the two LCE layers in terms of differential contraction, layer sequence, and two-dimensional (2D) geometry, its bending directions, amplitude, and sequence can be programmed, thus enabling diverse three-dimensional (3D) shape reconfigurations, such as biomimetic "orchid" blooming and "palm" gesture switching. Beyond shape morphing, the LCE actuator is capable of converting shape morphing into rotational kinetic energy in different directions. As a prototype, it generates sufficient torque to drive the rotation of an LCE rotor, exhibiting switchable clockwise, "self-oscillating", and anticlockwise motions. With the merits of dynamic shape morphing and mechanical energy harvesting, the LCE actuator presents a promising platform for advancing soft robotics with adaptive and diverse locomotion for performing tasks in complex environments.
Collapse
Affiliation(s)
- Yang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yuxiang Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Juntong Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Pudong, Shanghai 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
3
|
Agrawal D, Dong G, Cai S. Enhancing Thermo-Mechanical Properties of Liquid Crystal Elastomers through Chain Entanglements. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30094-30102. [PMID: 40329598 PMCID: PMC12100585 DOI: 10.1021/acsami.5c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
In this study, we present an approach to enhance the thermo-mechanical performance of liquid crystal elastomers (LCEs) by inducing chain entanglements through mechanical kneading. This process creates a network of highly entangled polymer chains, significantly improving the mechanical properties of LCEs, over a wide range of strain rates and temperatures. Mechanical kneading also improves the actuation performance, resulting in higher actuation stresses, greater contraction, and increased tolerance to self-rupture at elevated temperatures. Chain entanglements can also serve as a crucial enabler for the fabrication of monodomain LCEs. Using entanglements as the initial cross-linking step provides sufficient elasticity to LCEs, enabling the synthesis of aligned LCEs. This work demonstrates the benefits of chain entanglements, offering a pathway for the design and fabrication of high-performance LCE-based actuators for advanced applications.
Collapse
Affiliation(s)
- Devyansh Agrawal
- Department
of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California92093, United States
| | - Gaoweiang Dong
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California92093, United States
| | - Shengqiang Cai
- Department
of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California92093, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California92093, United States
| |
Collapse
|
4
|
Ma S, Xue P, Valenzuela C, Liu Y, Chen Y, Feng Y, Bi R, Yang X, Yang Y, Sun C, Xu X, Wang L. 4D-Printed Adaptive and Programmable Shape-Morphing Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505018. [PMID: 40376888 DOI: 10.1002/adma.202505018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/26/2025] [Indexed: 05/18/2025]
Abstract
Shape-morphing batteries that can reconfigure their shape to adapt to different tasks are highly desirable for emerging soft electronics in diverse fields. However, it is a challenging task to develop advanced shape-morphing batteries with on-demand programmability and adaptive responsiveness. Here, 4D-printed programmable shape-morphing batteries by sequentially direct-ink-writing of shape-programmable liquid crystal elastomers (LCEs) and in-situ covalent crosslinked flexible zinc-ion microbatteries, where tough covalent bonding is built at the interface, are reported. The resulting shape-morphing batteries exhibit controllable, reversible, and programmable shape-morphing by controlling sophisticated molecular alignment of LCEs, which enables them to adaptively alter configurations to accommodate different functionalities. Importantly, diverse origami batteries with excellent spatiotemporal controllability are demonstrated by precisely designing active hinges to achieve adaptive transformations from folded to deployed configurations. The programmable shape-morphing mechanisms of the batteries are revealed by finite element analyses. As a proof-of-concept illustration, adaptive shape-morphing battery systems capable of interactive communication and controllable sensing are developed through the incorporation of an elaborate all-MXene-printed near-field-communication antenna, which can adaptively tune its deployment configuration according to variations in environmental humidity or dust content. This work brings new insights for the development of next-generation shape-morphing power sources, human-machine interactive electronics, and swarm intelligence.
Collapse
Affiliation(s)
- Shaoshuai Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Pan Xue
- Xi'an Rare Metal Materials Institute Co. Ltd, Xi'an, 710018, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yufan Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ran Bi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinnuo Yang
- Beijing Royal School, Beijing, 102299, China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - CaiXia Sun
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, China
| |
Collapse
|
5
|
Wang F, Bi R, Chen Y, Yang Y, Liu Y, Yang L, Shen Y, Wang L, Feng W. 4D printing of carbon-fiber-reinforced liquid crystal elastomers for self-deployable solar panels. MATERIALS HORIZONS 2025. [PMID: 40326301 DOI: 10.1039/d5mh00363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Deployable structures that can be switched from a folded state to a predetermined or desired configuration are of paramount significance for diverse technological applications, which require the development of advanced smart actuation materials with high mechanical strength and programmable shape-morphing ability. Herein, we present a short-carbon-fiber-reinforced liquid crystal elastomer (SCF-LCE) fabricated via 4D printing, which not only demonstrates enhanced tensile strength (13.5 MPa) and high actuation strain (27%) but also exhibits adaptive photoresponsive actuation. During the printing process, mesogens and SCF are oriented along the nozzle's moving direction by the extrusion shear force, enabling the formation of monodomain matrix materials. Importantly, the incorporation of passive layers onto the SCF-LCE enables programmable deformations and self-deployable structures. As a proof-of-the-concept, the SCF-LCE bilayer actuator is integrated with solar panels for a demonstration of self-adaptive solar panel unfolding system. The combination of enhanced mechanical properties and large driving strain in this short-fiber reinforced LCE is an accessible and influential approach to designing and fabricating LCE composites that may find potential applications in space deployable structures, soft robotics, artificial muscles, and beyond.
Collapse
Affiliation(s)
- Faxin Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Ran Bi
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Le Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Yongtao Shen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
- Binhai Industrial Research Institute, Tianjin University, Tianjin 300452, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
6
|
Brown NC, Mueller J. Hybrid Formative-Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417609. [PMID: 40289762 DOI: 10.1002/adma.202417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Material extrusion additive manufacturing (AM) provides extensive design flexibility and exceptional material versatility, enabling the fabrication of complex, multifunctional objects ranging from embedded electronics to soft robotics and vascularized tissues. The bottom-up creation of these objects typically requires discretization into layers and voxels. However, the voxel size, determined by the nozzle diameter, limits extrusion rate, creating a conflict between resolution and speed. To address these inherent scalability challenges, the study proposes a hybrid formative-additive manufacturing technology that combines the respective strengths of each method-speed and quality with complexity and flexibility. The approach involves 3D-printing complex geometries, multimaterial features, and bounding walls of bulky, lower-resolution volumes, which are rapidly filled via casting or molding. By precisely controlling the materials' rheological properties-while maintaining similar solidified properties and high interfacial strength-several typical AM flaws, such as bulging and internal voids, are eliminated, achieving exponentially faster production speeds for objects with varying feature sizes.
Collapse
Affiliation(s)
- Nathan C Brown
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
7
|
Li D, Sun Y, Li X, Li X, Zhu Z, Sun B, Nong S, Wu J, Pan T, Li W, Zhang S, Li M. 3D Printing of Near-Ambient Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation. ACS NANO 2025; 19:7075-7087. [PMID: 39948496 DOI: 10.1021/acsnano.4c15521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers with near-ambient temperature-responsiveness (NAT-LCEs) have been extensively studied for building biocompatible, low-power consumption devices and robotics. However, conventional manufacturing methods face limitations in programmability (e.g., molding) or low nematic order (e.g., DIW printing). Here, a hybrid cooling strategy is proposed for programmable three-dimensional (3D) printing of NAT-LCEs with enhanced nematic order, intricate shape forming, and morphing capability. By integrating a low-temperature nozzle and a cooling platform into a 3D printer, the resulting temperature field synergistically facilitates mesogen alignment during extrusion and disruption-free ultraviolet (UV) cross-linking. This method achieves a nematic order 3000% higher than NAT-LCEs fabricated using traditional room temperature 3D printing. Enabled by shifting of transition temperature during hybrid cooling printing, printed sheets spontaneously turn into 3D structures after release from the platform, exhibiting bidirectional deformation with heating and cooling. By adjusting the nozzle and plate temperatures, NAT-LCEs with graded properties can be fabricated for intricate shape morphing. A wristband system with enhanced heart rate monitoring is also developed based on 3D-printed NAT-LCE. Our method facilitates developments in soft robotics, biomedical devices, and wearable electronics.
Collapse
Affiliation(s)
- Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xingjian Li
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Bai C, Kang J, Wang YQ. Kirigami-Inspired Light-Responsive Conical Spiral Actuators with Large Contraction Ratio Using Liquid Crystal Elastomer Fiber. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39997606 DOI: 10.1021/acsami.4c20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Liquid crystal elastomers (LCEs) are among the key smart materials driving soft robotics and LCE fibers have garnered significant attention for their rapid response characteristics. A convenient and fast method for programming orientations of liquid crystal molecules is a focal issue in LCE applications. Inspired by the Kirigami technique, here, we propose a novel method for fabricating LCE fibers based on customizable cutting paths and secondary photo-cross-linking. While most existing LCE actuators exhibit contraction ratios of around 30 to 40%, our conical spiral actuator, fabricated from LCE-carbon nanotube (CNT) fiber using the proposed method, demonstrates a significantly higher contraction ratio, reaching up to 80%. The contraction ratio can be controlled by adjusting the cutting path parameters and we elucidate the mechanism linking liquid crystal orientation to the distribution of contraction ratio. Additionally, the conical spiral deformation of the actuator can be manipulated with light radiation, enabling versatile functionalities such as catching, twisting, and gripping. We hope that the novel LCE fiber fabrication method presented provides new insights for programming and preparing LCE fibers, offering a valuable reference for the application of smart soft materials.
Collapse
Affiliation(s)
- Cunping Bai
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jingtian Kang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yan Qing Wang
- Key Laboratory of Structural Dynamics of Liaoning Province, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Yang H, Yin X, Zhang C, Chen B, Sun P, Xu Y. Weaving liquid crystal elastomer fiber actuators for multifunctional soft robotics. SCIENCE ADVANCES 2025; 11:eads3058. [PMID: 39970208 PMCID: PMC11837987 DOI: 10.1126/sciadv.ads3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Inspired by the remarkable adaptability observed in biological organisms, multifunctional soft robotics have emerged as promising systems capable of navigating complex environments. In this study, we present a strategy for weaving fiber soft actuators to overcome the existing limitations in deformation capabilities and complex manufacturing processes. This strategy combines traditional rope artistry with the advanced responsive characteristics of electro-driven liquid crystal elastomer (LCE) fibers, facilitating the efficient creation of multifunctional soft actuators. Leveraging this strategy, we have developed four distinct types of soft actuators: the double twisting weaving actuator (DTWA), the circular four-strand weaving actuator (CFWA), the orthogonal weaving actuator (OWA), and the diagonal weaving actuator (DWA). These weaving fiber soft actuators can be readily assembled in various soft robots, granting multiple functionalities, including surface shape programmability, biomimetic blood pumping inspired by the cardiac muscle, and versatile locomotion modes such as crawling and swimming. Our proposed strategy offers unprecedented opportunities for multifunctional soft robots in performing complex tasks.
Collapse
Affiliation(s)
- Huxiao Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaofeng Yin
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Zhang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Baihong Chen
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Peng Sun
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Huanjiang Laboratory, Zhuji, Zhejiang 311800, China
| |
Collapse
|
10
|
Jing H, Dan J, Wei H, Guo T, Xu Z, Jiang Y, Liu Y. Sign-Switchable Poisson's Ratio Design for Bimodal Strain-to-Electrical Signal Transducing Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413774. [PMID: 39641220 DOI: 10.1002/adma.202413774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film. The phase-change gel featuring thermally-regulated Young's modulus enables the hybrid material to switch between negative and positive Poisson's ratios. After integrating with a pre-stretched silver nanowires film, the obtained stretchable device performs bimodal strain-to-electrical signal transducing (Bi-SET) functions, in which the SSPR-dominated strain-resistance response switches between strain-dependent and strain-insensitive behaviors. As a proof of concept, a mode-switchable grasping system is constructed using a Bi-SET device-based controller, enabling the adaptation of grasping behaviors to various target objects.
Collapse
Affiliation(s)
- Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Junyan Dan
- School of Software, Shandong University, Jinan, Shandong, 250101, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Tongkun Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Zhijun Xu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ying Jiang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Taipa, Macau, 999078, China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Feng W, He Q, Zhang L. Embedded Physical Intelligence in Liquid Crystalline Polymer Actuators and Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312313. [PMID: 38375751 PMCID: PMC11733722 DOI: 10.1002/adma.202312313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Indexed: 02/21/2024]
Abstract
Responsive materials possess the inherent capacity to autonomously sense and respond to various external stimuli, demonstrating physical intelligence. Among the diverse array of responsive materials, liquid crystalline polymers (LCPs) stand out for their remarkable reversible stimuli-responsive shape-morphing properties and their potential for creating soft robots. While numerous reviews have extensively detailed the progress in developing LCP-based actuators and robots, there exists a need for comprehensive summaries that elucidate the underlying principles governing actuation and how physical intelligence is embedded within these systems. This review provides a comprehensive overview of recent advancements in developing actuators and robots endowed with physical intelligence using LCPs. This review is structured around the stimulus conditions and categorizes the studies involving responsive LCPs based on the fundamental control and stimulation logic and approach. Specifically, three main categories are examined: systems that respond to changing stimuli, those operating under constant stimuli, and those equip with learning and logic control capabilities. Furthermore, the persisting challenges that need to be addressed are outlined and discuss the future avenues of research in this dynamic field.
Collapse
Affiliation(s)
- Wei Feng
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Qiguang He
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
12
|
Parhi R, Garg A. Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems. Curr Pharm Des 2025; 31:1180-1204. [PMID: 39702931 DOI: 10.2174/0113816128341715241216060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time. Currently, the use of smart materials in 4D printing is being explored extensively across various fields, including automotive, wearable electronics, soft robotics, food, mechatronics, textiles, biomedicine, and pharmaceuticals. A particular focus is on designing and fabricating smart drug delivery systems (DDS). This review discusses the evolution of 3D printing into 4D printing, highlighting the differences between the two. It covers the history and fundamentals of 4D printing, the integration of machine learning in 4D printing, and the types of materials used, such as stimuli-responsive materials (SRMs), hydrogels, liquid crystal elastomers, and active composites. Moreover, it presents various 4D printing techniques. Additionally, the review highlights several smart DDS that have been fabricated using 4D printing techniques. These include tablets, capsules, grippers, scaffolds, robots, hydrogels, microneedles, stents, bandages, dressings, and other devices aimed at esophageal retention, gastro-retention, and intravesical DDS. Lastly, it elucidates the current limitations and future directions of 4D printing.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
13
|
Hu M, Wang L, Wei Z, Xiao R, Qian J. Fracture and fatigue characteristics of monodomain and polydomain liquid crystal elastomers. SOFT MATTER 2024; 21:113-121. [PMID: 39629641 DOI: 10.1039/d4sm01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Liquid crystal elastomers (LCEs), a class of elastomers combining liquid crystals with a polymer network, have garnered significant interest for applications in the field of soft robotics. However, the fracture and fatigue characteristics of LCEs remain poorly understood. This study presents a comprehensive investigation into the fracture and fatigue characteristics of LCEs, focusing on polydomain and monodomain variants subjected to different loading directions. The fracture energy (also called toughness) and fatigue threshold of polydomain and monodomain LCEs were quantitatively measured and compared with selected elastomers. Our experimental results demonstrate that polydomain LCEs exhibit superior fracture energy and fatigue threshold compared to monodomain LCEs. Within the monodomain category, LCEs subjected to parallel loading exhibit larger fracture energy than those under vertical loading, while their fatigue thresholds remain comparable. These findings enhance our understanding of the deformation and failure characteristics of LCEs, which are crucial for their applications in various fields.
Collapse
Affiliation(s)
- Minyu Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Liqian Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Zhuxuan Wei
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Jin Qian
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
14
|
McCracken JM, Bauman GE, Williams G, Santos M, Smith L, MacCurdy R, White TJ. Cuboidal Deformation of Multimaterial Composites Prepared by 3-D Printing of Liquid Crystalline Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69851-69857. [PMID: 39630564 DOI: 10.1021/acsami.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Multimaterial 3-D printing (3DP) of isotropic (IsoE) and liquid crystalline elastomers (LCE) yields spatially programmed elements that undergo a cuboidal shape transformation upon heating. The thermomechanical deformation of 3DP elements is determined by the geometry and extent of the isotropic and anisotropic regions. The synthesis and experimental characterization of the 3DP elements are complemented by finite element analysis (FEA). Calculations emphasize that the cuboidal deformation of the myriad 3DP elements is a manifestation of local stress gradients imparted by local control of the material composition and anisotropy. Varying the rectilinear spatial distribution of the multimaterial elastomer composites produces complex, multistable states that provide insights into how stress gradients drive multimaterial elastomer actuation. The thermomechanical stimuli response of the multimaterial elements is explored as a tactile element.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Grant E Bauman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Graham Williams
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Misael Santos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lawrence Smith
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert MacCurdy
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Abbasoglu T, Skarsetz O, Fanlo P, Grignard B, Detrembleur C, Walther A, Sardon H. Spatio-Selective Reconfiguration of Mechanical Metamaterials Through the Use of Dynamic Covalent Chemistries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407746. [PMID: 39439214 PMCID: PMC11615789 DOI: 10.1002/advs.202407746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Mechanical metamaterials achieve unprecedented mechanical properties through their periodically interconnected unit cell structure. However, their geometrical design and resulting mechanical properties are typically fixed during fabrication. Despite efforts to implement covalent adaptable networks (CANs) into metamaterials for permanent shape reconfigurability, emphasis is given to global rather than local shape reconfiguration. Furthermore, the change of effective material properties like Poisson's ratio remains to be explored. In this work, a non-isocyanate polyurethane elastomeric CAN, which can be thermally reconfigured, is introduced into a metamaterial architecture. Structural reconfiguration allows for the local and global reprogramming of the Poisson's ratio with change of unit cell angle from 60° to 90° for the auxetic and 120° to 90° for the honeycomb metamaterial. The respective Poisson's ratio changes from -1.4 up to -0.4 for the auxetic and from +0.7 to +0.2 for the honeycomb metamaterial. Carbon nanotubes are deposited on the metamaterials to enable global and spatial electrothermal heating for on-demand reshaping with a heterogeneous Poisson's ratio ranging from -2 to ≈0 for a single auxetic or +0.6 to ≈0 for a single honeycomb metamaterial. Finite element simulations reveal how permanent geometrical reconfiguration results from locally and globally relaxed heated patterns.
Collapse
Affiliation(s)
- Tansu Abbasoglu
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Oliver Skarsetz
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Paula Fanlo
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- FRITCO2T PlatformUniversity of LiègeSart‐Tilman B6aLiège4000Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)CESAM Research UnitDepartment of ChemistryUniversity of LiègeLiège4000Belgium
- WEL Research InstituteWavre1300Belgium
| | - Andreas Walther
- Life‐Like Materials and SystemsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHUJoxe Mari Korta CenterAvda. Tolosa 72Donostia‐San Sebastián20018Spain
| |
Collapse
|
16
|
Chung C, Jiang H, Yu K. Mesogen Organizations in Nematic Liquid Crystal Elastomers Under Different Deformation Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402305. [PMID: 39155423 DOI: 10.1002/smll.202402305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape-changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter. Three types of material deformation are analyzed: uniaxial tension, simple shear, and bi-axial tension, which are all commonly encountered in practical designs of LCEs. By integrating customized loading fixtures into the FTIR tester, mesogen organizations are examined across varying magnitudes of strain levels for each deformation mode. Their relationships with macroscopic stress responses are revealed and compared with predictions from existing theories. Furthermore, this study reveals unique features of mesogen organizations that have not been previously reported, such as simultaneous evolutions of the mesogen order parameter and nematic director in simple shear and bi-axial loading conditions. Overall, the findings presented in this study offer significant new insights for future rational designs, modeling, and applications of LCE materials.
Collapse
Affiliation(s)
- Christopher Chung
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| |
Collapse
|
17
|
Jiang H, Chung C, Dunn ML, Yu K. 4D printing of liquid crystal elastomer composites with continuous fiber reinforcement. Nat Commun 2024; 15:8491. [PMID: 39353959 PMCID: PMC11445243 DOI: 10.1038/s41467-024-52716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Multifunctional composites have been continuously developed for a myriad of applications with remarkable adaptability to external stimuli and dynamic responsiveness. This study introduces a 4D printing method for liquid crystal elastomer (LCE) composites with continuous fibers and unveils their multifunctional actuation and exciting mechanical responses. During the printing process, the relative motion between the continuous fiber and LCE resin generates shear force to align mesogens and enable the monodomain state of the matrix materials. The printed composite lamina exhibits reversible folding deformations that are programmable by controlling printing parameters. With the incorporation of fiber reinforcement, the LCE composites not only demonstrate high actuation forces but also improved energy absorption and protection capabilities. Diverse shape-changing configurations of 4D composite structures can be achieved by tuning the printing pathway. Moreover, the incorporation of conductive fibers into the LCE matrix enables electrically induced shape morphing in the printed composites. Overall, this cost-effective 4D printing method is poised to serve as an accessible and influential approach when designing diverse applications of LCE composites, particularly in the realms of soft robotics, wearable electronics, artificial muscles, and beyond.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Christopher Chung
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Martin L Dunn
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA.
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA.
| |
Collapse
|
18
|
Oh S, Lee S, Kim SW, Kim CY, Jeong EY, Lee J, Kwon DA, Jeong JW. Softening implantable bioelectronics: Material designs, applications, and future directions. Biosens Bioelectron 2024; 258:116328. [PMID: 38692223 DOI: 10.1016/j.bios.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.
Collapse
Affiliation(s)
- Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Woo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Wang J, Wen Y, Pan D, Lin S, Chinnappan A, He Q, Liu C, Huang Z, Cai S, Ramakrishna S, Shin S. High Thermal Conductive Liquid Crystal Elastomer Nanofibers. NANO LETTERS 2024; 24:9990-9997. [PMID: 39101516 DOI: 10.1021/acs.nanolett.4c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Liquid crystal elastomers (LCEs), consisting of polymer networks and liquid crystal mesogens, show a reversible phase change under thermal stimuli. However, the kinetic performance is limited by the inherently low thermal conductivity of the polymers. Transforming amorphous bulk into a fiber enhances thermal conductivity through the alignment of polymer chains. Challenges are present due to their rigid networks, while cross-links are crucial for deformation. Here, we employ hydrodynamic alignment to orient the LCE domains assisted by controlled in situ cross-linking and to remarkably reduce the diameter to submicrons. We report that the intrinsic thermal conductivity of LCE fibers at room temperature reaches 1.44 ± 0.32 W/m-K with the sub-100 nm diameter close to the upper limit determined in the quasi-1D regime. Combining the outstanding thermal conductivity and thin diameters, we anticipate these fibers to exhibit a rapid response and high force output in thermomechanical systems. The fabrication method is expected to apply to other cross-linked polymers.
Collapse
Affiliation(s)
- Jingxuan Wang
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yue Wen
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Duo Pan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Shulang Lin
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Amutha Chinnappan
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Qiguang He
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education; National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhiwei Huang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Sunmi Shin
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
20
|
Wan X, Xiao Z, Tian Y, Chen M, Liu F, Wang D, Liu Y, Bartolo PJDS, Yan C, Shi Y, Zhao RR, Qi HJ, Zhou K. Recent Advances in 4D Printing of Advanced Materials and Structures for Functional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312263. [PMID: 38439193 DOI: 10.1002/adma.202312263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Indexed: 03/06/2024]
Abstract
4D printing has attracted tremendous worldwide attention during the past decade. This technology enables the shape, property, or functionality of printed structures to change with time in response to diverse external stimuli, making the original static structures alive. The revolutionary 4D-printing technology offers remarkable benefits in controlling geometric and functional reconfiguration, thereby showcasing immense potential across diverse fields, including biomedical engineering, electronics, robotics, and photonics. Here, a comprehensive review of the latest achievements in 4D printing using various types of materials and different additive manufacturing techniques is presented. The state-of-the-art strategies implemented in harnessing various 4D-printed structures are highlighted, which involve materials design, stimuli, functionalities, and applications. The machine learning approach explored for 4D printing is also discussed. Finally, the perspectives on the current challenges and future trends toward further development in 4D printing are summarized.
Collapse
Affiliation(s)
- Xue Wan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongmin Xiao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujia Tian
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Feng Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dong Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hang Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Zhang Y, Zhou X, Liu L, Wang S, Zhang Y, Wu M, Lu Z, Ming Z, Tao J, Xiong J. Highly-Aligned All-Fiber Actuator with Asymmetric Photothermal-Humidity Response and Autonomous Perceptivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404696. [PMID: 38923035 DOI: 10.1002/adma.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Soft robots adapt to complex environments for autonomous locomotion, manipulation, and perception are attractive for robot-environment interactions. Strategies to reconcile environment-triggered actuation and self-powered sensing responses to different stimuli remain challenging. By tuning the in situ vapor phase solvent exchange effect in continuous electrospinning, an asymmetric highly-aligned all-fiber membrane (HAFM) with a hierarchical "grape-like" nanosphere-assembled microfiber structure (specific surface area of 13.6 m2 g-1) and excellent mechanical toughness (tensile stress of 5.5 MPa, and fracture toughness of 798 KJ m-3) is developed, which shows efficient asymmetric actuation to both photothermal and humidity stimuli. The HAFM consists of a metal-organic framework (MOF)-enhanced moisture-responsive layer and an MXene-improved photothermal-responsive layer, which achieves substantial actuation with a bending curvature up to ≈7.23 cm-1 and a fast response of 0.60 cm-1 s-1. By tailoring the fiber alignment and bi-layer thickness ratio, different types of micromanipulators, automatic walking robots, and plant robots with programmable structures are demonstrated, which are realized for self-powered information perception of material type, object moisture, and temperature by integrating the autonomous triboelectric effect induced by photothermal-moisture actuation. This work presents fiber materials with programable hierarchical asymmetries and inspires a common strategy for self-powered organism-interface robots to interact with complex environments.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinran Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Luyun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mengjie Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zeren Lu
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zechang Ming
- College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Textile, Garment and Design, Changshu Institute of Technology, Suzhou, 215500, China
| | - Jiaqing Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Technology, and College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Chen M, Hou Y, An R, Qi HJ, Zhou K. 4D Printing of Reprogrammable Liquid Crystal Elastomers with Synergistic Photochromism and Photoactuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303969. [PMID: 37432879 DOI: 10.1002/adma.202303969] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanbei Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ran An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Zang T, Fu S, Cheng J, Zhang C, Lu X, Hu J, Xia H, Zhao Y. 4D Printing of Shape-Morphing Liquid Crystal Elastomers. CHEM & BIO ENGINEERING 2024; 1:488-515. [PMID: 39974607 PMCID: PMC11835177 DOI: 10.1021/cbe.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 02/21/2025]
Abstract
In nature, biological systems can sense environmental changes and alter their performance parameters in real time to adapt to environmental changes. Inspired by these, scientists have developed a range of novel shape-morphing materials. Shape-morphing materials are a kind of "intelligent" materials that exhibit responses to external stimuli in a predetermined way and then display a preset function. Liquid crystal elastomer (LCE) is a typical representative example of shape-morphing materials. The emergence of 4D printing technology can effectively simplify the preparation process of shape-morphing LCEs, by changing the printing material compositions and printing conditions, enabling precise control and macroscopic design of the shape-morphing modes. At the same time, the layer-by-layer stacking method can also endow the shape-morphing LCEs with complex, hierarchical orientation structures, which gives researchers a great degree of design freedom. 4D printing has greatly expanded the application scope of shape-morphing LCEs as soft intelligent materials. This review systematically reports the recent progress of 3D/4D printing of shape-morphing LCEs, discusses various 4D printing technologies, synthesis methods and actuation modes of 3D/4D printed LCEs, and summarizes the opportunities and challenges of 3D/4D printing technologies in preparing shape-morphing LCEs.
Collapse
Affiliation(s)
- Tongzhi Zang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Shuang Fu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Junpeng Cheng
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Chun Zhang
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Jianshe Hu
- Center
for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Hesheng Xia
- State
Key Laboratory of Polymer Materials Engineering, Polymer Research
Institute, Sichuan University, Chengdu 610065, China
| | - Yue Zhao
- Département
de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
24
|
Skarsetz O, Mathes R, Schmidt RS, Simon M, Slesarenko V, Walther A. Hard- and Soft-Coded Strain Stiffening in Metamaterials via Out-of-Plane Buckling Using Highly Entangled Active Hydrogel Elements. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38511-38519. [PMID: 38980155 DOI: 10.1021/acsami.4c06610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Metamaterials show elaborate mechanical behavior such as strain stiffening, which stems from their unit cell design. However, the stiffening response is typically programmed in the design step and cannot be adapted postmanufacturing. Here, we show hydrogel metamaterials with highly programmable strain-stiffening responses by exploiting the out-of-plane buckling of integrated pH-switchable hydrogel actuators. The stiffening upon reaching a certain extension stems from the initially buckled active hydrogel beams. At low strain, the beams do not contribute to the mechanical response under tension until they straighten with a resulting step-function increase in stiffness. In the hydrogel actuator design, the acrylic acid concentration hard-codes the configuration of the metamaterial and range of possible stiffening onsets, while the pH soft-codes the exact stiffening onset point after fabrication. The utilization of out-of-plane buckling to realize subsequent stiffening without the need to deform the passive structure extends the application of hydrogel actuators in mechanical metamaterials. Our concept of out-of-plane buckled active elements that stiffen only under tension enables strain-stiffening metamaterials with high programmability before and after fabrication.
Collapse
Affiliation(s)
- Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Robin Mathes
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ricarda Sophia Schmidt
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Moritz Simon
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Viacheslav Slesarenko
- Cluster of Excellence livMatS @ FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg im Breisgau, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
25
|
Zhang X, Wei J, Qin L, Yu Y. Liquid crystal polymer actuators with complex and multiple actuations. J Mater Chem B 2024; 12:6757-6773. [PMID: 38916076 DOI: 10.1039/d4tb01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Deformable liquid crystal polymers (LCPs), which exhibit both entropic elasticity of polymer networks and anisotropic properties originating from ordered mesogens, have gained more and more interest for use as biomedical soft actuators. Especially, LCP actuators with controllable mesogen alignment, sophisticated geometry and reprogrammability are a rising star on the horizon of soft actuators, since they enable complex and multiple actuations. This review focuses on two topics: (1) the regulation of mesogen alignment and geometry of LCP actuators for complex actuations; (2) newly designed reprogrammable LCP materials for multiple actuations. First, basic actuation mechanisms are briefly introduced. Then, LCP actuators with complex actuations are demonstrated. Special attention is devoted to the improvement of fabrication methods, which profoundly influence the available complexity of the mesogen alignment and geometry. Subsequently, reprogrammable LCP actuators featuring dynamic networks or shape memory effects are discussed, with an emphasis on their multiple actuations. Finally, perspectives on the current challenges and potential development trends toward more intelligent LCP actuators are discussed, which may shed light on future investigations in this field.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Jia Wei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Lang Qin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | - Yanlei Yu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Yue L, Ambergen EPJ, Lugger SJD, Peeketi AR, Annabattula RK, Schenning APHJ, Debije MG. Vacuum Thermoforming of Optically Switchable Liquid Crystalline Elastomer Spherical Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402559. [PMID: 38627932 DOI: 10.1002/adma.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing. The hemispheres display remarkable properties, actuating with strains around 20% and transitioning from opaque and scattering to highly translucent upon heating: both the physical and optical effects are fully reversible. Simulations reveal the LCE experiences biaxial strains during processing, the magnitude varying as a function of location on the hemisphere: the resulting alignment describing the hemisphere actuation well. The thermoplastic LCE hemispheres may be combined to form complete spheres by simply heating the joint. The hemisphere can also be physically deformed into a ball which can then unfold back into the hemisphere again. By doping the hemispheres with photoswitches, fluorescent or photothermal dyes, devices are formed for light collection and redistribution, addressable water containers that may pour at will, and light-responsive surfing devices. This is the first example of an LCE amenable to high-volume industrial vacuum thermoforming which may lead to intricate 3D-shaped actuators with new functional properties.
Collapse
Affiliation(s)
- Lansong Yue
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Erik P J Ambergen
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Sean J D Lugger
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Akhil Reddy Peeketi
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
- Stimuli-Responsive Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ratna Kumar Annabattula
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
- Stimuli-Responsive Systems Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Albert P H J Schenning
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| | - Michael G Debije
- Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
- Interactive Polymer Materials (IPM), Eindhoven University of Technology (TU/e), Groene Loper 3, Eindhoven, 5612 AE, The Netherlands
| |
Collapse
|
27
|
Long G, Deng Y, Zhao W, Zhou G, Broer DJ, Feringa BL, Chen J. Photoresponsive Biomimetic Functions by Light-Driven Molecular Motors in Three Dimensionally Printed Liquid Crystal Elastomers. J Am Chem Soc 2024; 146:13894-13902. [PMID: 38728606 PMCID: PMC11117400 DOI: 10.1021/jacs.4c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Despite the fascinating developments in design and synthesis of artificial molecular machines operating at the nanoscales, translating molecular motion along multiple length scales and inducing mechanical motion of a three-dimensional macroscopic entity remains an important challenge. The key to addressing this amplification of motion relies on the effective organization of molecular machines in a well-defined environment. By taking advantage of long-range orientational order and hierarchical structures of liquid crystals and unidirectional rotation of light-driven molecular motors, we report here photoresponsive biomimetic functions of liquid crystal elastomers (LCEs) by the repetitive unidirectional rotation of molecular motors using 3D printing. Molecular motors were built in the main chain of liquid crystals oligomers to serve as photoactuators. The oligomers were then used as the ink, and liquid crystal elastomers with different morphologies were printed. The obtained LCEs are able to conduct multiple types of motions including bending, helical coiling, closing of petals, and flipping of wings of a butterfly upon UV illumination, which paves the way for future design of responsive materials with enhanced complex actuating functions.
Collapse
Affiliation(s)
- Guiying Long
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Yanping Deng
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wei Zhao
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Guofu Zhou
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
| | - Dirk J. Broer
- SCNU-TUE
Joint lab of Device Integrated Responsive Materials (DIRM), Guangdong
Provincial Key Laboratory of Optical Information Materials and Technology
& Institute of Electronic Paper Displays, South China Academy
of Advanced Optoelectronics, South China
Normal University, Guangzhou 510006, China
- Stimuli-responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jiawen Chen
- SCNU-UG
International Joint Laboratory of Molecular Science and Displays,
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
28
|
Qu H, Gao C, Liu K, Fu H, Liu Z, Kouwer PHJ, Han Z, Ruan C. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun 2024; 15:2930. [PMID: 38575640 PMCID: PMC10994943 DOI: 10.1038/s41467-024-47360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Gradient matters with hierarchical structures endow the natural world with excellent integrity and diversity. Currently, direct ink writing 3D printing is attracting tremendous interest, and has been used to explore the fabrication of 1D and 2D hierarchical structures by adjusting the diameter, spacing, and angle between filaments. However, it is difficult to generate complex 3D gradient matters owing to the inherent limitations of existing methods in terms of available gradient dimension, gradient resolution, and shape fidelity. Here, we report a filament diameter-adjustable 3D printing strategy that enables conventional extrusion 3D printers to produce 1D, 2D, and 3D gradient matters with tunable heterogeneous structures by continuously varying the volume of deposited ink on the printing trajectory. In detail, we develop diameter-programmable filaments by customizing the printing velocity and height. To achieve high shape fidelity, we specially add supporting layers at needed locations. Finally, we showcase multi-disciplinary applications of our strategy in creating horizontal, radial, and axial gradient structures, letter-embedded structures, metastructures, tissue-mimicking scaffolds, flexible electronics, and time-driven devices. By showing the potential of this strategy, we anticipate that it could be easily extended to a variety of filament-based additive manufacturing technologies and facilitate the development of functionally graded structures.
Collapse
Affiliation(s)
- Huawei Qu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Chongjian Gao
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongya Fu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Zhenyu Han
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Feng X, Wang L, Xue Z, Xie C, Han J, Pei Y, Zhang Z, Guo W, Lu B. Melt electrowriting enabled 3D liquid crystal elastomer structures for cross-scale actuators and temperature field sensors. SCIENCE ADVANCES 2024; 10:eadk3854. [PMID: 38446880 PMCID: PMC10917348 DOI: 10.1126/sciadv.adk3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Liquid crystal elastomers (LCEs) have garnered attention for their remarkable reversible strains under various stimuli. Early studies on LCEs mainly focused on basic dimensional changes in macrostructures or quasi-three-dimensional (3D) microstructures. However, fabricating complex 3D microstructures and cross-scale LCE-based structures has remained challenging. In this study, we report a compatible method named melt electrowriting (MEW) to fabricate LCE-based microfiber actuators and various 3D actuators on the micrometer to centimeter scales. By controlling printing parameters, these actuators were fabricated with high resolutions (4.5 to 60 μm), actuation strains (10 to 55%), and a maximum work density of 160 J/kg. In addition, through the integration of a deep learning-based model, we demonstrated the application of LCE materials in temperature field sensing. Large-scale, real-time, LCE grid-based spatial temperature field sensors have been designed, exhibiting a low response time of less than 42 ms and a high precision of 94.79%.
Collapse
Affiliation(s)
- Xueming Feng
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Li Wang
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| | - Zhengjie Xue
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chao Xie
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jie Han
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Yuechen Pei
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhaofa Zhang
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wenhua Guo
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| | - Bingheng Lu
- The State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China
- National Innovation Institute of Additive Manufacturing, No. 997, Shanglinyuan 8th Road, Gaoxin District, Xi’an 710300, China
| |
Collapse
|
30
|
Ustunel S, Pandya H, Prévôt ME, Pegorin G, Shiralipour F, Paul R, Clements RJ, Khabaz F, Hegmann E. A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers. Macromol Rapid Commun 2024:e2300717. [PMID: 38445752 DOI: 10.1002/marc.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/07/2024]
Abstract
This work presents a rheological study of a biocompatible and biodegradable liquid crystal elastomer (LCE) ink for three dimensional (3D) printing. These materials have shown that their structural variations have an effect on morphology, mechanical properties, alignment, and their impact on cell response. Within the last decade LCEs are extensively studied as potential printing materials for soft robotics applications, due to the actuation properties that are produced when liquid crystal (LC) moieties are induced through external stimuli. This report utilizes experiments and coarse-grained molecular dynamics to study the macroscopic rheology of LCEs in nonlinear shear flow. Results from the shear flow simulations are in line with the outcomes of these experimental investigations. This work believes the insights from these results can be used to design and print new material with desirable properties necessary for targeted applications.
Collapse
Affiliation(s)
- Senay Ustunel
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Harsh Pandya
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Gisele Pegorin
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
| | - Faeze Shiralipour
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Rajib Paul
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
| | - Robert J Clements
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Biomedical Sciences Program, Kent State University, Kent State University, Kent, OH, 44240, USA
- Brain Health Research Institute, Kent State University, Kent State University, Kent, OH, 44240, USA
| | - Fardin Khabaz
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, 44325, USA
| | - Elda Hegmann
- Materials Science Graduate Program, Kent State University, Kent, OH, 44240, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44240, USA
- Department of Biological Sciences, Kent State University, Kent State University, Kent, OH, 44240, USA
- Biomedical Sciences Program, Kent State University, Kent State University, Kent, OH, 44240, USA
- Brain Health Research Institute, Kent State University, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
31
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Yang R, Wang Y, Yao H, Li Y, Chen L, Zhao Y, Wang YZ. Dynamic Shape Change of Liquid Crystal Polymer Based on An Order-Order Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202314859. [PMID: 38224179 DOI: 10.1002/anie.202314859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Liquid crystal actuators conventionally undergo shape changes across an order-disorder phase transition between liquid crystal (LC) and isotropic phases. In this study, we introduce an innovative Liquid Crystal Polymer (LCP) actuator harnessing an order-order LC phase transition mechanism. The LCP film is easily stretchable within the LC phase, facilitated by the π-π stacking of phenyl groups serving as robust physical crosslinking points, and thereby transforms to a stable monodomain structure. The resultant monodomain LCP actuator shows a distinctive reversible dynamic shape change, exhibiting extension followed by contraction along the LC director on cooling. The extension is propelled by the reversible smectic C to smectic A phase transition, and the contraction is attributed to the re-entry to the smectic C phase from smectic A phase. Thermal annealing temperature determines this peculiar dynamic shape change, which occurs during both heating and cooling processes. This pivotal attribute finds manifestation in gripper and flower-shaped actuators, adeptly executing grabbing and releasing as well as blooming and closure motions within a single thermal stimulation. In essence, our study introduces an innovative approach to the realm of LCP actuators, ushering in a new avenue for the design and fabrication of versatile and dynamically responsive LCP actuators.
Collapse
Affiliation(s)
- Rong Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yahui Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Hongjing Yao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yanqing Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Li Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec, J1 K 2R1, Canada
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
33
|
Johann KS, Wolf A, Bonten C. Mechanical Properties of 3D-Printed Liquid Crystalline Polymers with Low and High Melting Temperatures. MATERIALS (BASEL, SWITZERLAND) 2023; 17:152. [PMID: 38204005 PMCID: PMC10779961 DOI: 10.3390/ma17010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Additive manufacturing allows for the production of complex components using various types of materials such as plastics, metals and ceramics without the need for molding tools. In the field of high-performance polymers, semi-crystalline polymers such as polyetheretherketone (PEEK) or amorphous polymers such as polyetherimide (PEI) are already successfully applied. Contrary to semi-crystalline and amorphous polymers, thermotropic liquid crystalline polymers (LCPs) do not change into an isotropic liquid during melting. Instead, they possess anisotropic properties in their liquid phase. Within the scope of this work, this special group of polymers was investigated with regard to its suitability for processing by means of fused filament fabrication. Using an LCP with a low melting temperature of around 280 °C is compared to processing an LCP that exhibits a high melting temperature around 330 °C. In doing so, it was revealed that the achievable mechanical properties strongly depend on the process parameters such as the direction of deposition, printing temperature, printing speed and layer height. At a layer height of 0.10 mm, a Young's modulus of 27.3 GPa was achieved. Moreover, by employing an annealing step after the printing process, the tensile strength could be increased up to 406 MPa at a layer height of 0.15 mm. Regarding the general suitability for FFF as well as the achieved uniaxial mechanical properties, the LCP with a low melting temperature was advantageous compared to the LCP with a high melting temperature.
Collapse
Affiliation(s)
- Kai S. Johann
- Institut für Kunststofftechnik, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
34
|
McDougall L, Herman J, Huntley E, Leguizamon S, Cook A, White T, Kaehr B, Roach DJ. Free-Form Liquid Crystal Elastomers via Embedded 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58897-58904. [PMID: 38084015 PMCID: PMC10739595 DOI: 10.1021/acsami.3c14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of active materials that can generate rapid, reversible mechanical actuation in response to external stimuli. Fabrication methods for LCEs have remained a topic of intense research interest in recent years. One promising approach, termed 4D printing, combines the advantages of 3D printing with responsive materials, such as LCEs, to generate smart structures that not only possess user-defined static shapes but also can change their shape over time. To date, 4D-printed LCE structures have been limited to flat objects, restricting shape complexity and associated actuation for smart structure applications. In this work, we report the development of embedded 4D printing to extrude hydrophobic LCE ink into an aqueous, thixotropic gel matrix to produce free-standing, free-form 3D architectures without sacrificing the mechanical actuation properties. The ability to 4D print complex, free-standing 3D LCE architectures opens new avenues for the design and development of functional and responsive systems, such as reconfigurable metamaterials, soft robotics, or biomedical devices.
Collapse
Affiliation(s)
- Luke McDougall
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Jeremy Herman
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
- Department
of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80309, United States
| | - Emily Huntley
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Samuel Leguizamon
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Adam Cook
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Timothy White
- Department
of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80309, United States
| | - Bryan Kaehr
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Devin J. Roach
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
- School
of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
35
|
Saeed MH, Choi MY, Kim K, Lee JH, Kim K, Kim D, Kim SU, Kim H, Ahn SK, Lan R, Na JH. Electrostatically Powered Multimode Liquid Crystalline Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56285-56292. [PMID: 37991738 DOI: 10.1021/acsami.3c13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Hyeong Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keumbee Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Kim
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Suk-Kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
36
|
Sun Y, Wang L, Zhu Z, Li X, Sun H, Zhao Y, Peng C, Liu J, Zhang S, Li M. A 3D-Printed Ferromagnetic Liquid Crystal Elastomer with Programmed Dual-Anisotropy and Multi-Responsiveness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302824. [PMID: 37437184 DOI: 10.1002/adma.202302824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Liquid crystal elastomers (LCE) and magnetic soft materials are promising active materials in many emerging fields, such as soft robotics. Despite the high demand for developing active materials that combine the advantages of LCE and magnetic actuation, the lack of independent programming of the LCE nematic order and magnetization in a single material still hinders the desired multi-responsiveness. In this study, a ferromagnetic LCE (magLCE) ink with nematic order and magnetization is developed that can be independently programmed to be anisotropic, referred to as "dual anisotropy", via a customized 3D-printing platform. The magLCE ink is fabricated by dispersing ferromagnetic microparticles in the LCE matrix, and a 3D-printing platform is created by integrating a magnet with 3-DoF motion into an extrusion-based 3D printer. In addition to magnetic fields, magLCEs can also be actuated by heating sources (either environmental heating or photo-heating of the embedded ferromagnetic microparticles) with a high energy density and tunable actuation temperature. A programmed magLCE strip robot is demonstrated with enhanced adaptability to complex environments (different terrains, magnetic fields, and temperatures) using a multi-actuation strategy. The magLCE also has potential applications in mechanical memory, as demonstrated by the multistable mechanical metastructure array with remote writability and stable memory.
Collapse
Affiliation(s)
- Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing, 100190, P. R. China
| | - Zhengqing Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xingxiang Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yong Zhao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenhui Peng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology of China, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mujun Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
37
|
Qiu W, He X, Fang Z, Wang Y, Dong K, Zhang G, Xu X, Ge Q, Xiong Y. Shape-Tunable 4D Printing of LCEs via Cooling Rate Modulation: Stimulus-Free Locking of Actuated State at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47509-47519. [PMID: 37769329 DOI: 10.1021/acsami.3c10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Liquid crystal elastomers (LCEs) have garnered considerable attention in the field of four-dimensional (4D) printing due to their large, reversible, and anisotropic shape-morphing capabilities. By utilizing direct ink writing, intricate LCE structures with programmable shape morphing can be achieved. However, the maintenance of the actuated state for LCEs requires continuous and substantial external stimuli, presenting challenges for practical applications, particularly under ambient conditions. This study reports a straightforward and effective physical approach to lock the actuated state of LCEs through rapid cooling while preserving their reversible performance. Rapid cooling significantly reduces the mobility of the lightly cross-linked network in LCEs, resulting in a notably slow recovery of mesogen alignment. As a result, the locked LCE structures retain their actuated state even at room temperature. Moreover, we demonstrate the ability to achieve tunable shapes between the original and actuated states by modulating the cooling rate, i.e., varying the temperature and type of cooling medium. The proposed method opens up new possibilities to achieve stable and tunable shape locking of soft devices for engineering applications.
Collapse
Affiliation(s)
- Wanglin Qiu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiangnan He
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zeming Fang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaohui Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Ke Dong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guoquan Zhang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xuguang Xu
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
38
|
Sun J, Liao W, Yang Z. Additive Manufacturing of Liquid Crystal Elastomer Actuators Based on Knitting Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302706. [PMID: 37278691 DOI: 10.1002/adma.202302706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.
Collapse
Affiliation(s)
- Jiahao Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongqiang Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
39
|
Zhang Y, Yin M, Xu B. Elastocapillary rolling transfer weaves soft materials to spatial structures. SCIENCE ADVANCES 2023; 9:eadh9232. [PMID: 37611102 PMCID: PMC10446489 DOI: 10.1126/sciadv.adh9232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Spatial structures of soft materials have attracted great attention because of emerging applications in wearable electronics, biomedical devices, and soft robotics, but there are no facile technologies available to assemble the soft materials into spatial structures. Here, we report a mechanical transfer route enabled by the rotational motion of curved substrates relative to the soft materials on liquid surface. This transfer can weave soft materials into a broad variety of spatial structures with controllable global weaving chirality and orders and could also produce local ear-like folds with programmable numbers and distributions. We further prove that multiple pieces of soft materials in different forms including wire, ribbon, and large-area film can be woven onto curved substrates with various three-dimensional geometry shapes. Application demonstrations on the woven freestanding spatial structures with on-demand weaving patterns and orders have been conducted to show the temperature-driven multimodal actuating functionalities for programmable robotic postures.
Collapse
Affiliation(s)
| | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
40
|
Wang Q, Tian X, Zhang D, Zhou Y, Yan W, Li D. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites. Nat Commun 2023; 14:3869. [PMID: 37391425 DOI: 10.1038/s41467-023-39566-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Owing to their high deformation ability, 4D printed structures have various applications in origami structures, soft robotics and deployable mechanisms. As a material with programmable molecular chain orientation, liquid crystal elastomer is expected to produce the freestanding, bearable and deformable three-dimensional structure. However, majority of the existing 4D printing methods for liquid crystal elastomers can only fabricate planar structures, which limits their deformation designability and bearing capacity. Here we propose a direct ink writing based 4D printing method for freestanding continuous fiber reinforced composites. Continuous fibers can support freestanding structures during the printing process and improve the mechanical property and deformation ability of 4D printed structures. In this paper, the integration of 4D printed structures with fully impregnated composite interfaces, programmable deformation ability and high bearing capacity are realized by adjusting the off-center distribution of the fibers, and the printed liquid crystal composite can carry a load of up to 2805 times its own weight and achieve a bending deformation curvature of 0.33 mm-1 at 150 °C. This research is expected to open new avenues for creating soft robotics, mechanical metamaterials and artificial muscles.
Collapse
Affiliation(s)
- Qingrui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xiaoyong Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Daokang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yanli Zhou
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wanquan Yan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
41
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
42
|
Li S, Song Z, Fan Y, Wei D, Liu Y. Four-Dimensional Printing of Temperature-Responsive Liquid Crystal Elastomers with Programmable Shape-Changing Behavior. Biomimetics (Basel) 2023; 8:biomimetics8020196. [PMID: 37218782 DOI: 10.3390/biomimetics8020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Liquid crystal elastomers (LCEs) are polymer networks that exhibit anisotropic liquid crystalline properties while maintaining the properties of elastomers, presenting reversible high-speed and large-scale actuation in response to external stimuli. Herein, we formulated a non-toxic, low-temperature liquid crystal (LC) ink for temperature-controlled direct ink writing 3D printing. The rheological properties of the LC ink were verified under different temperatures given the phase transition temperature of 63 °C measured by the DSC test. Afterwards, the effects of printing speed, printing temperature, and actuation temperature on the actuation strain of printed LCEs structures were investigated within adjustable ranges. In addition, it was demonstrated that the printing direction can modulate the LCEs to exhibit different actuation behaviors. Finally, by sequentially conforming structures and programming the printing parameters, it showed the deformation behavior of a variety of complex structures. By integrating with 4D printing and digital device architectures, this unique reversible deformation property will help LCEs presented here apply to mechanical actuators, smart surfaces, micro-robots, etc.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Zhengyi Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| |
Collapse
|
43
|
Park S, Oh Y, Moon J, Chung H. Recent Trends in Continuum Modeling of Liquid Crystal Networks: A Mini-Review. Polymers (Basel) 2023; 15:polym15081904. [PMID: 37112051 PMCID: PMC10142630 DOI: 10.3390/polym15081904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This work aims to provide a comprehensive review of the continuum models of the phase behaviors of liquid crystal networks (LCNs), novel materials with various engineering applications thanks to their unique composition of polymer and liquid crystal. Two distinct behaviors are primarily considered: soft elasticity and spontaneous deformation found in the material. First, we revisit these characteristic phase behaviors, followed by an introduction of various constitutive models with diverse techniques and fidelities in describing the phase behaviors. We also present finite element models that predict these behaviors, emphasizing the importance of such models in predicting the material's behavior. By disseminating various models essential to understanding the underlying physics of the behavior, we hope to help researchers and engineers harness the material's full potential. Finally, we discuss future research directions necessary to advance our understanding of LCNs further and enable more sophisticated and precise control of their properties. Overall, this review provides a comprehensive understanding of the state-of-the-art techniques and models used to analyze the behavior of LCNs and their potential for various engineering applications.
Collapse
Affiliation(s)
- Sanghyeon Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Youngtaek Oh
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeseung Moon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hayoung Chung
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
44
|
Wang Y, He Q, Wang Z, Zhang S, Li C, Wang Z, Park YL, Cai S. Liquid Crystal Elastomer Based Dexterous Artificial Motor Unit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211283. [PMID: 36806211 DOI: 10.1002/adma.202211283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Indexed: 05/17/2023]
Abstract
Despite the great advancement in designing diverse soft robots, they are not yet as dexterous as animals in many aspects. One challenge is that they still lack the compact design of an artificial motor unit with a great comprehensive performance that can be conveniently fabricated, although many recently developed artificial muscles have shown excellent properties in one or two aspects. Herein, an artificial motor unit is developed based on gold-coated ultrathin liquid crystal elastomer (LCE) film. Subject to a voltage, Joule heating generated by the gold film increases the temperature of the LCE film underneath and causes it to contract. Due to the small thermal inertial and electrically controlling method of the ultrathin LCE structure, its cyclic actuation speed is fast and controllable. It is shown that under electrical stimulation, the actuation strain of the LCE-based motor unit reaches 45%, the strain rate reaches 750%/s, and the output power density is as high as 1360 W kg-1 . It is further demonstrated that the LCE-based motor unit behaves like an actuator, a brake, or a nonlinear spring on demand, analogous to most animal muscles. Finally, as a proof-of-concept, multiple highly dexterous artificial neuromuscular systems are demonstrated using the LCE-based motor unit.
Collapse
Affiliation(s)
- Yang Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiguang He
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shengjia Zhang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yong-Lae Park
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shengqiang Cai
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
45
|
Najiya N, Popov N, Jampani VSR, Lagerwall JPF. Continuous Flow Microfluidic Production of Arbitrarily Long Tubular Liquid Crystal Elastomer Peristaltic Pump Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204693. [PMID: 36494179 DOI: 10.1002/smll.202204693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
While liquid crystal elastomers (LCEs) are ideal materials for soft-robotic actuators, filling the role of muscle and shape-defining material simultaneously, it is non-trivial to give them ground state shapes beyond simple sheets or fibers. Here tubular LCE actuators scalable to arbitrary length are produced using a continuous three-phase coaxial flow microfluidic process. By pumping an oligomeric precursor solution between inner and outer aqueous phases in a cylindrically symmetric nested capillary set-up, and by reducing the interfacial tension to negligible values using surfactants adapted to each phase, the tubular liquid flow is stabilized over distances more than 200 times the diameter or 2000 times the thickness. In situ photocrosslinking of the middle phase turns it into an LCE network that is flow-aligned by the shear gradient over the phase. The reversible actuation of the tubes upon heating yields a reduction of the interior space, pumping out enclosed fluid, and the relaxation upon cooling leads to the fluid being sucked back in. By moving a local heat source along the tube, it acts as a peristaltic pump. It is proposed that the tubes could, pending functionalization for light-triggered actuation, function as active synthetic vasculature in biological contexts.
Collapse
Affiliation(s)
- Najiya Najiya
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Nikolay Popov
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| | - Venkata Subba Rao Jampani
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Jan P F Lagerwall
- Department of Physics and Materials Science, University of Luxembourg, 162a avenue de la faiencerie, Luxembourg city, 1511, Luxembourg
| |
Collapse
|
46
|
Liao W, Yang Z. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. MATERIALS HORIZONS 2023; 10:576-584. [PMID: 36468657 DOI: 10.1039/d2mh01001a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft pneumatic actuators (SPAs) rely on anisotropic mechanical properties to generate specific motions after inflation. To achieve mechanical anisotropy, additional stiff materials or heterogeneous structures are typically introduced in isotropic base materials. However, the inherent limitations of these strategies may lead to potential interfacial problems or inefficient material usage. Herein, we develop a new strategy for fabricating SPAs based on an aligned liquid crystal elastomer (LCE) by a modified 3D printing technology. A rotating substrate enables the one-step fabrication of tubular LCE-SPAs with designed alignments in three dimensions. The alignment can be precisely programmed through printing, resulting in intrinsic mechanical anisotropy of the LCE. With a specially designed alignment, LCE-SPAs can achieve basic motions-contraction, elongation, bending, and twisting-and accomplish diverse tasks, e.g., grabbing objects and mixing water. This study provides a new perspective for the design and fabrication of SPAs.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
3D printing of thermosets with diverse rheological and functional applicabilities. Nat Commun 2023; 14:245. [PMID: 36646723 PMCID: PMC9842742 DOI: 10.1038/s41467-023-35929-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Thermosets such as silicone are ubiquitous. However, existing manufacturing of thermosets involves either a prolonged manufacturing cycle (e.g., reaction injection molding), low geometric complexity (e.g., casting), or limited processable materials (e.g., frontal polymerization). Here, we report an in situ dual heating (ISDH) strategy for the rapid 3D printing of thermosets with complex structures and diverse rheological properties by incorporating direct ink writing (DIW) technique and a heating-accelerated in situ gelation mechanism. Enabled by an integrated Joule heater at the printhead, extruded thermosetting inks can quickly cure in situ, allowing for DIW of various thermosets with viscosities spanning five orders of magnitude, printed height over 100 mm, and high resolution of 50 μm. We further demonstrate DIW of a set of heterogenous thermosets using multiple functional materials and present a hybrid printing of a multilayer soft electronic circuit. Our ISDH strategy paves the way for fast manufacturing of thermosets for various emerging fields.
Collapse
|
48
|
Liang H, Zhang S, Liu Y, Yang Y, Zhang Y, Wu Y, Xu H, Wei Y, Ji Y. Merging the Interfaces of Different Shape-Shifting Polymers Using Hybrid Exchange Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2202462. [PMID: 36325655 DOI: 10.1002/adma.202202462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sophisticated shape-shifting structures and integration of advanced functions often call for different-chemistry-based polymers (such as epoxy and polyurethane) in a unified system. However, permanent cross-links pose crucial obstacles to be seamless. Here, merging interfaces via hybrid exchange reactions among different dynamic covalent bonds (including ester, urethane, thiourethane, boronic-ester, and oxime-ester linkages) is proposed, breaking the long-lasting restriction that these widely used bonds only undergo self-exchange reactions. Model compound studies are conducted to verify that hybrid exchange reactions occur. As demonstrations, different liquid crystal elastomers are tenaciously joined into coherent assemblies, with the desired biomimetic structures (e.g., flying fish containing stiff and flexible parts) and rare deformation modes (e.g., flower blooming upon both heating and cooling). Besides connecting polymers, hybrid exchange reactions also facilitate the creation of new materials through cross-fusion of different polymers. In addition to the polymers used in this work, hybrid exchange reactions can be adapted to other polymers based on similar mechanisms and beyond. Besides shape-shifting-related areas (e.g., soft robots, flexible electronics, and biomedical devices), it may also foster innovation in other fields involving general polymers, as well as promote deeper understanding of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Kim IH, Choi S, Lee J, Jung J, Yeo J, Kim JT, Ryu S, Ahn SK, Kang J, Poulin P, Kim SO. Human-muscle-inspired single fibre actuator with reversible percolation. NATURE NANOTECHNOLOGY 2022; 17:1198-1205. [PMID: 36302962 PMCID: PMC9646516 DOI: 10.1038/s41565-022-01220-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 05/19/2023]
Abstract
Artificial muscles are indispensable components for next-generation robotics capable of mimicking sophisticated movements of living systems. However, an optimal combination of actuation parameters, including strain, stress, energy density and high mechanical strength, is required for their practical applications. Here we report mammalian-skeletal-muscle-inspired single fibres and bundles with large and strong contractive actuation. The use of exfoliated graphene fillers within a uniaxial liquid crystalline matrix enables photothermal actuation with large work capacity and rapid response. Moreover, the reversible percolation of graphene fillers induced by the thermodynamic conformational transition of mesoscale structures can be in situ monitored by electrical switching. Such a dynamic percolation behaviour effectively strengthens the mechanical properties of the actuator fibres, particularly in the contracted actuation state, enabling mammalian-muscle-like reliable reversible actuation. Taking advantage of a mechanically compliant fibre structure, smart actuators are readily integrated into strong bundles as well as high-power soft robotics with light-driven remote control.
Collapse
Affiliation(s)
- In Ho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jieun Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jiyoung Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinwook Yeo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Tae Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, Republic of Korea
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Philippe Poulin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Materials Creation, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Peng X, Wu S, Sun X, Yue L, Montgomery SM, Demoly F, Zhou K, Zhao RR, Qi HJ. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204890. [PMID: 35962737 DOI: 10.1002/adma.202204890] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Liquid crystal elastomers (LCE) are appealing candidates among active materials for 4D printing, due to their reversible, programmable and rapid actuation capabilities. Recent progress has been made on direct ink writing (DIW) or Digital Light Processing (DLP) to print LCEs with certain actuation. However, it remains a challenge to achieve complicated structures, such as spatial lattices with large actuation, due to the limitation of printing LCEs on the build platform or the previous layer. Herein, a novel method to 4D print freestanding LCEs on-the-fly by using laser-assisted DIW with an actuation strain up to -40% is proposed. This process is further hybridized with the DLP method for optional structural or removable supports to create active 3D architectures in a one-step additive process. Various objects, including hybrid active lattices, active tensegrity, an actuator with tunable stability, and 3D spatial LCE lattices, can be additively fabricated. The combination of DIW-printed functionally freestanding LCEs with the DLP-printed supporting structures thus provides new design freedom and fabrication capability for applications including soft robotics, smart structures, active metamaterials, and smart wearable devices.
Collapse
Affiliation(s)
- Xirui Peng
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Univ. Bourgogne Franche-Comté, UTBM, Belfort, 90010, France
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Renewable Bioproduct Institute, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|