1
|
Zheng Q, Wu C, Li Y, Wu J, Tang W, Zhu Q, Ren S, Zhang X, Li S, Fu T. Causal relationship between gastroesophageal reflux disease and the risk of chronic suppurative otitis media: a mendelian randomization analysis. SAGE Open Med 2025; 13:20503121251332151. [PMID: 40297790 PMCID: PMC12035063 DOI: 10.1177/20503121251332151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives While existing research has indicated a potential link between gastroesophageal reflux disease (GERD) and chronic suppurative otitis media (CSOM), these findings primarily stem from observational studies, which are inherently limited by confounding variables and methodological biases, thereby reducing their reliability. This research sought to elucidate the causative link between GERD and CSOM. Methods A two-sample bidirectional Mendelian randomization (MR) study was conducted using genetic data to assess the causal relationship between GERD and CSOM. Pooled genetic data for GERD and CSOM were obtained from published genomewide association studies. Independent single nucleotide polymorphisms, rigorously screened as instrumental variables, were used in the analysis. The primary analytical method was inverse variance weighting (IVW), with additional sensitivity analyses performed to assess the robustness and reliability of the results. Results Per MR analysis, genetically predicted GERD positively associated with an increased CSOM risk (IVW: p = 0.001, odds ratio = 2.08, 95% confidence interval: 1.33-3.27). Per reverse MR analysis, genetically predicted CSOM did not associate with an increased GERD risk. Sensitivity analyses did not identify horizontal pleiotropy or heterogeneity. Conclusions For the first time, GERD was identified as a risk factor for CSOM through a bidirectional MR study. This finding provides high-level causal evidence for the prevention and management of CSOM and forms a basis for future clinical and mechanistic studies. Clinicians should consider the potential impact of GERD when treating patients with CSOM, as GERD may be an important risk factor.
Collapse
Affiliation(s)
- Qianyou Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ce Wu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaru Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Wu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenrui Tang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuyang Zhu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaokang Ren
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaowen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shenling Li
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tao Fu
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Schiel V, Eftekharian K, Xia A, Bekale LA, Bhattacharya R, Santa Maria PL. A Selection Protocol to Identify Therapeutics to Target NLRP3-Associated Sensory Hearing Loss. Otol Neurotol 2024; 45:1178-1185. [PMID: 39284007 DOI: 10.1097/mao.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
OBJECTIVE We propose a selection process to identify a small molecule inhibitor to treat NLRP3-associated sensory hearing loss. BACKGROUND The NLRP3 inflammasome is an innate immune sensor and present in monocytes and macrophages. Once the inflammasome is activated, a cleavage cascade is initiated leading to the release of proinflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome has been implicated in many causes of hearing loss, including autoimmune disease, tumors, and chronic suppurative otitis media. Although the target has been identified, there is a lack of available therapeutics to treat NLRP3-associated hearing loss. METHODS We created a target product profile with specific characteristics that are required for a compound to treat sensory hearing loss. We then looked at available small molecule NLRP3 inhibitors at different stages of development and selected compounds that fit that profile best. Those compounds were then tested for cell toxicity in MTT assays to determine the dosage to be used for efficacy testing. We tested efficacy of a known NLRP3 inhibitor, MCC950, in a proof-of-concept screen on reporter monocytes. RESULTS Six compounds were selected that fulfilled our selection criteria for further testing. We found the maximum tolerated dose for each of those compounds that will be used for further efficacy testing. The proof-of-concept efficacy screen on reporter monocytes confirmed that those cells can be used for further efficacy testing. CONCLUSION Our selection process and preliminary results provide a promising concept to develop small molecule NLRP3 inhibitors to treat sensory hearing loss.
Collapse
Affiliation(s)
- Viktoria Schiel
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | | | | | | | | | | |
Collapse
|
3
|
Schiel V, Bhattacharya R, Gupta A, Eftekharian K, Xia A, Santa Maria PL. Targeting the NLRP3 inflammasome in cochlear macrophages protects against hearing loss in chronic suppurative otitis media. J Neuroinflammation 2024; 21:223. [PMID: 39277762 PMCID: PMC11402200 DOI: 10.1186/s12974-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024] Open
Abstract
The activation of the NLRP3 inflammasome has been linked to several inflammatory and autoinflammatory diseases. Despite cases of potential hearing improvement in immune-mediated diseases, direct evidence of the efficacy of targeting this mechanism in the inner ear is still lacking. Previously, we discovered that macrophages are associated with Sensorineural Hearing loss (SNHL) in Chronic Suppurative Otitis Media (CSOM), the leading cause of this permanent hearing loss in the developing world and incurring costs of $4 to $11 billion dollars in the United States. However, the underlying mechanism remained unknown. Here, we investigate how macrophages drive permanent hearing loss in CSOM. We first confirmed the occurrence of NLRP3 inflammasome activation in cochlear macrophages in CSOM. We then revealed that Outer Hair Cells (OHCs) were protected in CSOM by macrophage depletion and subsequently confirmed the same protection in the NLRP3 knockout condition. Furthermore, we showed that therapeutic inhibition of NLRP3 inflammasome activation and downstream inhibition of IL-1β protects OHCs in CSOM. Collectively, our data demonstrates that the main driver for hearing loss in CSOM is NLRP3 inflammasome activation in cochlear macrophages and this is therapeutically targetable, leading the way for the development of interventions to prevent the leading cause of permanent hearing loss and a costly disease in the developed world.
Collapse
Affiliation(s)
- Viktoria Schiel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Ritwija Bhattacharya
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Ankur Gupta
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Kourosh Eftekharian
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.
| | - Peter L Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
4
|
Gupta A, Schiel V, Bhattacharya R, Eftekharian K, Xia A, Santa Maria PL. Chemokine Receptor CCR2 Is Protective toward Outer Hair Cells in Chronic Suppurative Otitis Media. Immunohorizons 2024; 8:688-694. [PMID: 39264736 PMCID: PMC11447675 DOI: 10.4049/immunohorizons.2400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic suppurative otitis media (CSOM) is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. Previously, we discovered that outer hair cell (OHC) loss occurred in the basal turn of the cochlea and that macrophages are the major immune cells associated with OHC loss in CSOM. Macrophage-associated cytokines are upregulated. Specifically, CCL-2, an important member of the MCP family, is elevated over time following middle ear infection. CCR2 is a common receptor of the MCP family and the unique receptor of CCL2. CCR2 knockout mice (CCR2-/-) have been used extensively in studies of monocyte activation in neurodegenerative diseases. In the present study, we investigated the effect of CCR2 deletion on the cochlear immune response and OHC survival in CSOM. The OHC survival rate was 84 ± 12.5% in the basal turn of CCR2+/+ CSOM cochleae, compared with was 63 ± 19.9% in the basal turn of CCR2-/- CSOM cochleae (p ≤ 0.05). Macrophage numbers were significantly reduced in CCR2-/- CSOM cochleae compared with CCR2+/+ CSOM cochleae (p ≤ 0.001). In addition, CCL7 was upregulated, whereas IL-33 was downregulated, in CCR2-/- CSOM cochleae. Finally, the permeability of the blood-labyrinth barrier in the stria vascularis remained unchanged in CCR2-/- CSOM compared with CCR2+/+ CSOM. Taken together, the data suggest that CCR2 plays a protective role through cochlear macrophages in the CSOM cochlea.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
- Chronic Disease
- Cochlea/metabolism
- Cochlea/pathology
- Cochlea/immunology
- Disease Models, Animal
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Otitis Media, Suppurative/immunology
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
Collapse
Affiliation(s)
- Ankur Gupta
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Viktoria Schiel
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Ritwija Bhattacharya
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Kourosh Eftekharian
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Anping Xia
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| | - Peter L. Santa Maria
- Department of Otolaryngology – Head and Neck Surgery, School of Medicine, Stanford University, Palo Alto, CA
| |
Collapse
|
5
|
Luo Z, Wang R, Deng X, Chen T, Ma X, Zhang Y, Gao C, Wu A. Janus mesoporous organosilica/platinum nanomotors for active treatment of suppurative otitis media. NANOSCALE 2024; 16:3006-3010. [PMID: 38226693 DOI: 10.1039/d3nr05666j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We report a Janus mesoporous organosilica/platinum (MOS/Pt) nanomotor for active targeted treatment of suppurative otitis media, as a new type of multi-functional ear drop. The efficient propulsion of MOS/Pt nanomotors in hydrogen peroxide ear-cleaning drops significantly improves their binding efficiency with Staphylococcus aureus and enhances their antibacterial efficacy.
Collapse
Affiliation(s)
- Zhizhou Luo
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Ruonan Wang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Xiaoxia Deng
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yujie Zhang
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Changyong Gao
- Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials at Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Science, Beijing, 100049, China
| |
Collapse
|
6
|
Yang S, Wu Y, Cheng X, Zhang LW, Yu Y, Wang Y, Wang Y. Harnessing astaxanthin-loaded diselenium cross-linked apotransferrin nanoparticles for the treatment of secretory otitis media. J Control Release 2024; 365:398-411. [PMID: 38007194 DOI: 10.1016/j.jconrel.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Secretory otitis media (SOM) is a clinical condition characterized by the accumulation of fluids and oxidative stress in the middle ear, leading to hearing impairment and infection complications. One potential solution for mitigating oxidative stress associated with SOM is the use of antioxidants such as astaxanthin. However, its effectiveness is limited due to its poor bioavailability and rapid oxidation. Herein, we developed a novel diselenium-crosslinked apotransferrin enriched with astaxanthin (AST@dSe-AFT) nanoparticles to augment the transport of astaxanthin across biological membranes, resulting in increased bioavailability and reduced oxidative stress in SOM. Our research demonstrated that AST@dSe-AFT efficiently accumulated in the middle ear, allowing for controlled delivery of astaxanthin in response to reactive oxygen species and reducing oxidative stress. Additionally, AST@dSe-AFT stimulated macrophages to polarize towards M2 phenotype and neutrophils to polarize towards N2 phenotype, thereby facilitating an anti-inflammatory response and tissue restoration. Importantly, AST@dSe-AFT exhibited no toxicity or adverse effects, suggesting its potential for safety and future clinical translation. Our findings suggested that AST@dSe-AFT represents a promising approach for the treatment of secretory otitis media and other oxidative stress-related disorders.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yafeng Yu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, China.
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Kurabi A, Dewan K, Kerschner JE, Leichtle A, Li JD, Santa Maria PL, Preciado D. PANEL 3: Otitis media animal models, cell culture, tissue regeneration & pathophysiology. Int J Pediatr Otorhinolaryngol 2024; 176:111814. [PMID: 38101097 DOI: 10.1016/j.ijporl.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE To review and summarize recently published key articles on the topics of animal models, cell culture studies, tissue biomedical engineering and regeneration, and new models in relation to otitis media (OM). DATA SOURCE Electronic databases: PubMed, National Library of Medicine, Ovid Medline. REVIEW METHODS Key topics were assigned to the panel participants for identification and detailed evaluation. The PubMed reviews were focused on the period from June 2019 to June 2023, in any of the objective subject(s) or keywords listed above, noting the relevant references relating to these advances with a global overview and noting areas of recommendation(s). The final manuscript was prepared with input from all panel members. CONCLUSIONS In conclusion, ex vivo and in vivo OM research models have seen great advancements in the past 4 years. From the usage of novel genetic and molecular tools to the refinement of in vivo inducible and spontaneous mouse models, to the introduction of a wide array of reliable middle ear epithelium (MEE) cell culture systems, the next five years are likely to experience exponential growth in OM pathophysiology discoveries. Moreover, advances in these systems will predictably facilitate rapid means for novel molecular therapeutic studies.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Peter Luke Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, USA
| | - Diego Preciado
- Children's National Hospital, Division of Pediatric Otolaryngology, Washington, DC, USA
| |
Collapse
|
8
|
Delaney DS, Liew LJ, Lye J, Atlas MD, Wong EYM. Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear. Front Pharmacol 2023; 14:1207141. [PMID: 37927600 PMCID: PMC10620978 DOI: 10.3389/fphar.2023.1207141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.
Collapse
Affiliation(s)
- Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Lawrence J. Liew
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
9
|
Schiel V, Xia A, Santa Maria PL. Influence of CX3CR1 Deletion on Cochlear Hair Cell Survival and Macrophage Expression in Chronic Suppurative Otitis Media. Otol Neurotol 2023; 44:605-610. [PMID: 37315234 PMCID: PMC10275455 DOI: 10.1097/mao.0000000000003884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Our objective was to determine whether the receptor CX3CR1 is necessary for the recruitment of macrophages to the cochlea in chronic suppurative otitis media (CSOM) and if its deletion can prevent hair cell loss in CSOM. BACKGROUND CSOM is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. It is characterized by a chronically discharging infected middle ear. We have previously demonstrated that CSOM causes macrophage associated sensory hearing loss. The receptor CX3CR1 is expressed on macrophages, which have been shown to be increased at the time point of outer hair cell (OHC) loss in CSOM. METHODS In this report, we examine the influence of CX3CR1 deletion (CX3CR1-/-) in a validated model of Pseudomonas aeruginosa (PA) CSOM. RESULTS The data show no difference in OHC loss between the CX3CR1-/- CSOM group and CX3CR1+/+ CSOM group (p = 0.28). We observed partial OHC loss in the cochlear basal turn, no OHC loss in the middle and apical turns in both CX3CR1-/- and CX3CR1+/+ CSOM mice at 14 days after bacterial inoculation. No inner hair cell (IHC) loss was found in all cochlear turns in all groups. We also counted F4/80 labeled macrophages in the spiral ganglion, spiral ligament, stria vascularis and spiral limbus of the basal, middle, and apical turn in cryosections. We did not find a significant difference in the total number of cochlear macrophages between CX3CR1-/- mice and CX3CR1+/+ mice (p = 0.97). CONCLUSION The data did not support a role for CX3CR1 macrophage associated HC loss in CSOM.
Collapse
Affiliation(s)
- Viktoria Schiel
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | | | | |
Collapse
|
10
|
Dhingra S, Vir D, Bakshi J, Rishi P. Mapping of audiometric analysis with microbiological findings in patients with chronic suppurative otitis media (CSOM): a neglected clinical manifestation. Crit Rev Clin Lab Sci 2023; 60:212-232. [PMID: 36604829 DOI: 10.1080/10408363.2022.2158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Otitis media (OM) is an umbrella term for a number of conditions associated with middle ear inflammation. Chronic suppurative otitis media (CSOM), a type of OM, is characterized by long-term middle ear infection with perforated ear drum and otorrhea. The most common outcome associated with it is acquired hearing impairment in infected individuals which ultimately affects their cognitive and scholastic developments. Clinically, CSOM is thought to be a sequel of re-occurring episodes of Acute otitis media (AOM). Pseudomonas aeruginosa and Staphylococcus aureus are found to be the predominant pathogenic isolates in these patients. However, with the emergence of antibiotic resistance amongst these pathogens, the adequate evaluation and treatment of this condition has become more problematic. The disease has also been recognized as one of the neglected tropical clinical manifestations with high prevalence in school-age children, especially in poor or underprivileged countries. Moreover, untreated cases have further worsened the situation by contributing to various life-threatening complications. Thus, effective treatment and surgical strategies, as well as strengthening of hearing care algorithms along with the discovery of novel animal models for advanced clinical research, can jointly help to fight this disease. In this regard, mapping of the audiological analysis with microbiological findings in CSOM patients may help elucidate the frequency that favors growth of specific pathogens. Knowledge about this potential correlation can then support timely detection of the infection, which is perceived as one of the emerging approaches for its management. In addition to these strategies, creating a true sense of awareness among people can also help mitigate this pathological condition by facilitating early identification, prevention, and treatment. This review discusses the incidence, pathogenesis, investigations, complications, and available treatment modalities associated with CSOM.
Collapse
Affiliation(s)
- Shefali Dhingra
- Department of Microbiology, BMS Block I, South Campus, Panjab University, Chandigarh, India
| | - Dharam Vir
- Division of Speech and Hearing, Department of Otolarynology & Head & Neck Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jaimanti Bakshi
- Division of Speech and Hearing, Department of Otolarynology & Head & Neck Surgery, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, BMS Block I, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
11
|
Kaufman AC, Bacacao BS, Berkay B, Sharma D, Mishra A, O’Toole GA, Saunders JE, Xia A, Bekale LA, Maria PLS. Povidone-Iodine Fails to Eradicate Chronic Suppurative Otitis Media and Demonstrates Ototoxic Risk in Mice. Otol Neurotol 2022; 43:e1121-e1128. [PMID: 36240734 PMCID: PMC10244885 DOI: 10.1097/mao.0000000000003726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HYPOTHESIS Commercially available povidone-iodine solution can eliminate biofilms and persister cells rapidly in in vivo achievable concentrations without inducing ototoxicity. BACKGROUND Chronic suppurative otitis media (CSOM) is a substantial global problem. Current treatment options often induce a temporary remission without leading to a permanent cessation of symptoms secondary to the treatments' inability to eliminate persister cells. Povidone-iodine has been shown to be able to clear biofilm and planktonic cells in in vitro assays, but there are reports of ototoxic effects limiting its clinical utility. METHODS Bacterial and biofilm growth with quantification by spectrophotomer, murine auditory brainstem response (ABR), and distortion product otoacoustic emissions, immunohistochemistry, in vivo povidone-iodine treatment of murine CSOM, persister cell assay. RESULTS Commercially available 10% povidone-iodine solution is able to completely eradicate multiple clinical strains of Pseudomonas aeruginosa and Staphylococcus aureus in vitro with 10 minutes of exposure. Mice that have received a transtympanic injection of 1% povidone-iodine solution did not have significantly different auditory brainstem response or distortion product otoacoustic emission results compared with the control. Mice that received a povidone-iodine scrub or 10% povidone-iodine solution had significantly worsened hearing (25- and 13-dB increase in threshold, respectively; p < 0.05). In vivo CSOM infection recurred in all mice after the completion of treatment with 10% povidone-iodine solution, and there was no improvement in the bacterial load after treatment, indicating in vivo failure of therapy. CONCLUSION Povidone-iodine solution is effective at eliminating biofilm and persister cells in vitro at in vivo achievable concentrations but fails in vivo most likely because of kinetics of distribution in vivo. Even if drug distribution could be improved, the therapeutic window is likely to be too small given that the diluted solution does not have ototoxic potential, whereas while the scrub variant, which contains detergents, and the undiluted solution are ototoxic after a single treatment.
Collapse
Affiliation(s)
- Adam C. Kaufman
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Brian S. Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Betul Berkay
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Devesh Sharma
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Anupam Mishra
- Department of Otorhinolaryngology, Head and Neck Surgery, King George’s Medical University, Lucknow, India
| | - George A. O’Toole
- Department of Microbiology and Immunology, Dartmouth University, Hanover, New Hampshire
| | - James E. Saunders
- Department of Microbiology and Immunology, Dartmouth University, Hanover, New Hampshire
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Laurent A. Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| | - Peter L. Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Palo Alto, California
| |
Collapse
|
12
|
Dong Y, Wang L, Zhang Z, Ji F, Chan TKF, Yang H, Chan CPL, Yang Z, Chen Z, Chang WT, Chan JYK, Sung JJY, Zhang L. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. SCIENCE ADVANCES 2022; 8:eabq8573. [PMID: 36206344 PMCID: PMC9544342 DOI: 10.1126/sciadv.abq8573] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling Fe2O3 helical micromachine (HMM) with peroxidase-mimicking activity. Different from the ideal corkscrew motion, the Fe2O3 HMM applies a wobbling motion in the tube, inducing stronger mechanical force and fluid convections, which not only damages the biofilm occlusion into debris quickly but also enhances the catalytic generation and diffusion of reactive oxygen species (ROS) for killing bacteria cells. Moreover, the treatment procedure, which integrated the delivery, actuation, and retrieval of Fe2O3 HMM, was validated in the T-tube implanted in a human cadaver ex vivo. It enables the visual operation with ease and is gentle to the tympanic membrane and ossicles, which is promising in the clinical application.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Catherine P. L. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Tsz Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Jason Y. K. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| |
Collapse
|
13
|
Xia A, Thai A, Cao Z, Chen X, Chen J, Bacacao B, Bekale LA, Schiel V, Bollyky PL, Maria PLS. Chronic suppurative otitis media causes macrophage-associated sensorineural hearing loss. J Neuroinflammation 2022; 19:224. [PMID: 36096817 PMCID: PMC9465898 DOI: 10.1186/s12974-022-02585-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic suppurative otitis media (CSOM) is the most common cause of permanent hearing loss in children in the developing world. A large component of the permanent hearing loss is sensory in nature and our understanding of the mechanism of this has so far been limited to post-mortem human specimens or acute infection models that are not representative of human CSOM. In this report, we assess cochlear injury in a validated Pseudomonas aeruginosa (PA) CSOM mouse model. Methods We generated persisters (PCs) and inoculated them into the mouse middle ear cavity. We tracked infection with IVIS and detected PA using RT-PCR. We assessed cochlear damage and innate immunity by Immunohistochemistry. Finally, we evaluated cytokines with multiplex assay and quantitative real-time PCR. Results We observed outer hair cell (OHC) loss predominantly in the basal turn of the cochlear at 14 days after bacterial inoculation. Macrophages, not neutrophils are the major immune cells in the cochlea in CSOM displaying increased numbers and a distribution correlated with the observed cochlear injury. The progression of the morphological changes suggests a transition from monocytes into tissue macrophages following infection. We also show that PA do not enter the cochlea and live bacteria are required for cochlear injury. We characterized cytokine activity in the CSOM cochlea. Conclusions Taken together, this data shows a critical role for macrophages in CSOM-mediated sensorineural hearing loss (SNHL). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02585-w.
Collapse
|
14
|
Cao Z, Chen X, Chen J, Xia A, Bacacao B, Tran J, Sharma D, Bekale LA, Santa Maria PL. Gold nanocluster adjuvant enables the eradication of persister cells by antibiotics and abolishes the emergence of resistance. NANOSCALE 2022; 14:10016-10032. [PMID: 35796201 PMCID: PMC9578678 DOI: 10.1039/d2nr01003h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Persister cells are responsible for relapses of infections common in cystic fibrosis and chronic suppurative otitis media (CSOM). Yet, there are no Food and Drug Administration (FDA) approved antibiotics to eradicate persister cells. Frustratingly, the global preclinical bacterial pipeline does not contain antibacterial agents targeting persister cells. Therefore, we report a nontraditional antimicrobial chemotherapy strategy based on gold nanoclusters adjuvant to eradicate persister cells by existing antibiotics belonging to that different class. Compared to killing with antibiotics alone, combining antibiotics and AuNC@CPP sterilizes persister cells and biofilms. Enhanced killing of up to 4 orders of magnitude in a validated mouse model of CSOM with Pseudomonas aeruginosa infection was observed when combining antibiotics and AuNC@CPP, informing a potential approach to improve the treatment of CSOM. We established that the mechanism of action of AuNC@CPP is due to disruption of the proton gradient and membrane hyperpolarization. The method presented here could compensate for the lack of new antibiotics to combat persister cells. This method could also benefit the current effort to slow resistance development because AuNC@CPP abolished the emergence of drug-resistant strains induced by antibiotics.
Collapse
Affiliation(s)
- Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Xiaohua Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Brian Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Jessica Tran
- The Protein and Nucleic Acid Biotechnology Facility, Beckman Center Stanford University, 279 Campus Drive, West Stanford, CA 94305, USA
| | - Devesh Sharma
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| |
Collapse
|
15
|
Lin H, Jia Y, Kong X, Wang S, Liu X, Liu Y, Deng Y. In Vivo Evaluation of Cefuroxime Axetil-Loaded Bioadhesive Nanoparticles to Treat Haemophilus influenzae-Induced Otitis Media. Front Bioeng Biotechnol 2022; 10:884797. [PMID: 35573224 PMCID: PMC9099258 DOI: 10.3389/fbioe.2022.884797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Otitis media (OM) is a common disease in children. One of the most common pathogens causing OM is non-typeable Haemophilus influenzae (NTHi). NTHi in the middle ear can be successfully eradicated by a regimen of oral antibiotics sustained for 7–10 days (e.g., cefuroxime axetil 250 mg/day for patients aged 3 months to 2 years and 500 mg/day for patients ages ≥2 years). However, lack of compliance is relevant to treatment failure or early relapse. In order to overcome these challenges, we have developed antibiotics-loaded bioadhesive nanoparticles (BNPs) that can adhere to the epidermis of the middle ear after local administration and significantly prolong the release time of antibiotics in the middle ear. Compared with oral administration of CA, local delivery of free antibiotic cefuroxime axetil (CA), and CA loaded non-bioadhesive nanoparticles (CA/NNPs), BNPs loaded with cefuroxime axetil (CA/BNPs) showed significantly longer retention time in the middle ear, resulting in continuous release of the drug and higher therapeutic efficacy against OM with only a single dosage. CA concentrations were maintained above the minimum inhibitory concentration (MIC) for NTHi throughout 7 days’ treatment. NTHi OM in a mouse model was successfully eradicated without causing tissue toxicity. CA/BNPs minimize systemic drug exposure through local administration, as demonstrated by undetectable levels in the blood.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- *Correspondence: Yang Liu, ; Yang Deng,
| | - Yang Deng
- *Correspondence: Yang Liu, ; Yang Deng,
| |
Collapse
|
16
|
Thai A, Aaron KA, Kaufman AC, Santa Maria PL. Long-Term Health Utilization and Outcomes in Chronic Suppurative Otitis Media. Otolaryngol Head Neck Surg 2021; 167:341-349. [PMID: 34637356 DOI: 10.1177/01945998211050626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To report health utilization patterns and outcomes of medical and surgical management in patients with chronic suppurative otitis media (CSOM). STUDY DESIGN Retrospective cohort. SETTING Academic otology clinic. METHODS This study included 175 patients with CSOM with a first clinic visit at our institution between March 2011 and November 2016. All patients displayed a diagnosis of CSOM by International Classification of Diseases code, had at least 1 episode of active CSOM (defined as perforation with otorrhea), and had a documented history of chronic ear infections. The mean age was 49.5 ± 1.5 years, 53% were female, and mean follow-up time was 3.5 ± 0.3 years. RESULTS Patients had an average of 9.5 ± 0.5 otology visits, 4.7 ± 0.4 prescriptions, and 1.7 ± 0.1 surgeries, with estimated per patient cost ranging from $3927 to $20,776. Under medical management, 69% of patients displayed recurrence of disease, with a median time to recurrence of 4 months. For tympanoplasty and tympanomastoidectomy, median time to recurrence was similar at 5 and 7 years, respectively (P = .73). At the most recent visit, the prevalence of all patients with CSOM displaying moderate or worse sensorineural hearing loss (SNHL) was 41%. CONCLUSIONS CSOM represents a major public health issue with high health care utilization and associated costs. Surgery is superior to medical therapy for achieving short- to medium-term inactive disease. Patients with CSOM display a high SNHL burden.
Collapse
Affiliation(s)
- Anthony Thai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ksenia A Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Adam C Kaufman
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Peter L Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 2021; 19:786-797. [PMID: 34183822 DOI: 10.1038/s41579-021-00585-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.
Collapse
|
18
|
Treatment with a neutrophil elastase inhibitor and ofloxacin reduces P. aeruginosa burden in a mouse model of chronic suppurative otitis media. NPJ Biofilms Microbiomes 2021; 7:31. [PMID: 33824337 PMCID: PMC8024339 DOI: 10.1038/s41522-021-00200-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic suppurative otitis media (CSOM) is a widespread, debilitating problem with poorly understood immunology. Here, we assess the host response to middle ear infection over the course of a month post-infection in a mouse model of CSOM and in human subjects with the disease. Using multiparameter flow cytometry and a binomial generalized linear machine learning model, we identified Ly6G, a surface marker of mature neutrophils, as the most informative factor of host response driving disease in the CSOM mouse model. Consistent with this, neutrophils were the most abundant cell type in infected mice and Ly6G expression tracked with the course of infection. Moreover, neutrophil-specific immunomodulatory treatment using the neutrophil elastase inhibitor GW 311616A significantly reduces bacterial burden relative to ofloxacin-only treated animals in this model. The levels of dsDNA in middle ear effusion samples are elevated in both humans and mice with CSOM and decreased during treatment, suggesting that dsDNA may serve as a molecular biomarker of treatment response. Together these data strongly implicate neutrophils in the ineffective immune response to P. aeruginosa infection in CSOM and suggest that immunomodulatory strategies may benefit drug-tolerant infections for chronic biofilm-mediated disease.
Collapse
|