1
|
Yang Q, Liu J, Shou Y, Wang Y, Chen S, Shu W, Wen S, Luo H. Computing Metasurface Enabled Quantum Phase Distillation. NANO LETTERS 2025; 25:8407-8413. [PMID: 40326540 DOI: 10.1021/acs.nanolett.5c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Quantum image distillation aims to extract the signal image from a mixture of the signal and noise images that are indistinguishable in terms of spectrum and polarization, a process that is unachievable with classical methods. However, in contrast to the amplitude image, phase distillation is challenging via direct spatial or temporal correlation of photon pairs. Incorporating with the polarization entanglement of photon pairs, it is demonstrated here that the phase signal can be quickly distilled by using an integrated computing metasurface to solve the Poisson equation. The proposed technique remains robust even with noise levels two orders higher than the signal, with potential applications in quantum communication and cryptography. Based on the present scheme, it also enables the measurement of photon wave function and the achievement of noninterferometric quantum-enhanced quantitative phase imaging. Our work involving the integrated-metasurface analogue computing paves the way for advancing efficient and rapid quantum information and image processing.
Collapse
Affiliation(s)
- Qiang Yang
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiawei Liu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yichang Shou
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yan Wang
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shizhen Chen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weixing Shu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shuangchun Wen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hailu Luo
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Zhang F, Bao H, Pu M, Guo Y, Kang T, Li X, He Q, Xu M, Ma X, Luo X. Dispersion-engineered spin photonics based on folded-path metasurfaces. LIGHT, SCIENCE & APPLICATIONS 2025; 14:198. [PMID: 40379638 DOI: 10.1038/s41377-025-01850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Spin photonics revolutionizes photonic technology by enabling precise manipulation of photon spin states, with spin-decoupled metasurfaces emerging as pivotal in complex optical field manipulation. Here, we propose a folded-path metasurface concept that enables independent dispersion and phase control of two opposite spin states, effectively overcoming the limitations of spin photonics in achieving broadband decoupling and higher integration levels. This advanced dispersion engineering is achieved by modifying the equivalent length of a folded path, generated by a virtual reflective surface, in contrast to previous methods that depended on effective refractive index control by altering structural geometries. Our approach unlocks previously unattainable capabilities, such as achieving achromatic focusing and achromatic spin Hall effect using the rotational degree of freedom, and generating spatiotemporal vector optical fields with only a single metasurface. This advancement substantially broadens the potential of metasurface-based spin photonics, extending its applications from the spatial domain to the spatiotemporal domain.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Hanlin Bao
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingbo Pu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
| | - Yinghui Guo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Tongtong Kang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Xiong Li
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong He
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Mingfeng Xu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Chamoli SK, Jin C, Fan Y, Kiani M, Goh H, Huang C, Guo S, Wang Y, Zhu F, Xing G, Li B, Bai T, Alù A, Li W. Nonlocal flat optics for size-selective image processing and denoising. Nat Commun 2025; 16:4473. [PMID: 40368922 PMCID: PMC12078730 DOI: 10.1038/s41467-025-59765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
All-optical image processing based on metasurfaces is a swiftly advancing field of technology, due to its high speed, large integrability and inherently low energy requirements. So far, the proposed devices have been focusing on canonical operations, such as differentiations to perform edge detection across all objects in a complex scene. Yet, undesired background noise and clutter can hinder such operations, requiring target selection with digital post-processing which inherently limits the overall accuracy, efficiency and speed. Here, we introduce an optical solution for real-time size-selective image processing and experimentally demonstrate the concept with a metal-dielectric-metal film performing a spatial band-pass filter in momentum space. We show high-resolution (~0.9 μm) edge detection and real-time dynamic denoising, ideally suited for bio-imaging applications and target recognitions. Our demonstrated k-space filtering metasurface expands the scope of nonlocal flat optics for analog image processing, ushering in opportunities for ultra-compact, cost-effective, and multifunctional image processors.
Collapse
Affiliation(s)
- Sandeep Kumar Chamoli
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunqi Jin
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yandong Fan
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mehdi Kiani
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Heedong Goh
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Chen Huang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Guo
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yuntong Wang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Zhu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Xing
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Bai
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Liu Q, Tian Y, Tian Z, Jia Y, Li G, Ren XF, Gong Q, Gu Y. Quantum CZ gates on a single gradient metasurface. LIGHT, SCIENCE & APPLICATIONS 2025; 14:193. [PMID: 40360462 PMCID: PMC12075864 DOI: 10.1038/s41377-025-01871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
For the requirement of quantum photonic integration in on-chip quantum information, we propose a scheme to realize quantum controlled-Z (CZ) gates through single gradient metasurface. Using its parallel beam-splitting feature, i.e., a series of connected beamsplitters with the same splitting ratio, one metasurface can support a polarization encoding CZ gate or path encoding CZ gate, several independent CZ gates, and cascade CZ gates. Taking advantage that the path of output state is locked by the polarization of input state, path encoding CZ gates can efficiently filter out bit-flip errors coming from beam-splitting processes. These CZ gates also have the potential to detect quantum errors and generate high-dimensional entanglement through multi-degree-of-freedom correlation on metasurfaces. By integrating quantum CZ gates into a single metasurface, our results open an avenue for high-density and multifunctional integration of quantum devices.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Yu Tian
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Zhaohua Tian
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Yali Jia
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Guixin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xi-Feng Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Qihuang Gong
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
- Hefei National Laboratory, Hefei, 230088, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Ying Gu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter & Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China.
- Hefei National Laboratory, Hefei, 230088, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
| |
Collapse
|
5
|
Jiang Y, Zhong R, Zhang HL, Wang Z, Liu YF, Fan RH, Qi DX, Tang WJ, Wang Z, Peng R, Wang M. A Multichannel Metasurface for Multiprotocol Quantum Key Distributions. NANO LETTERS 2025; 25:7442-7449. [PMID: 40273933 DOI: 10.1021/acs.nanolett.5c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Multiprotocol quantum key distribution (mQKD) enables users to flexibly select protocols for secure quantum communication, though achieving mQKD introduces considerable system complexity and resource demands. Here, we report the first realization of mQKD using a metasurface, which generates multiple hybrid states of photonic spin angular momentum (SAM) and orbital angular momentum (OAM) and distributes them to different users. The incident polarization-entangled photon pair interacts with the metasurface, producing four SAM-OAM hybrid states with high fidelity through spin-orbit conversion. Among these hybrid states, two execute the BB84 protocol, while the other two perform the BBM92 protocol, all demonstrating high secret key rates and low quantum bit error rates. This approach provides a robust, compact solution for generating and distributing SAM-OAM hybrid states and stands out for the remarkable capability of a metasurface in secured information processing.
Collapse
Affiliation(s)
- Yue Jiang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Rui Zhong
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Hu-Lin Zhang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Zheng Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Yi-Fei Liu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Ren-Hao Fan
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Dong-Xiang Qi
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Wen-Jie Tang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Ziyu Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Ruwen Peng
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| | - Mu Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, and Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Yu L, Shevtsov S, Singh HJ, Kazansky PG, Caglayan H. Multifunctional Meta-optic Azimuthal Shear Interferometer. NANO LETTERS 2025; 25:7419-7425. [PMID: 40267356 PMCID: PMC12063176 DOI: 10.1021/acs.nanolett.5c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Azimuthal shear interferometry is a versatile tool for analyzing wavefront asymmetries. However, conventional systems are bulky, alignment-sensitive, and prone to nonuniform shear. We present a broadband, compact, and robust meta-optics-based azimuthal shear interferometer in a common-path configuration, reducing the system size to the millimeter scale. Unlike conventional designs, the meta-optic azimuthal shear interferometer utilizes the localized wavefront modulation capabilities of meta-optics to achieve uniform azimuthal shear displacement independent of the radial position, significantly enhancing accuracy and stability. Our approach eliminates the need for bulky optical components and precise multipath alignment, making it more resilient to environmental disturbances. Its multifunctionality is demonstrated through applications in all-optical edge detection, differential interference contrast microscopy, and aberrated wavefront sensing. These results underscore its potential for real-time analog image processing, advanced optical imaging, and optical testing.
Collapse
Affiliation(s)
- Linzhi Yu
- Department
of Physics, Tampere University, 33720 Tampere, Finland
| | - Sergei Shevtsov
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | | | - Peter G. Kazansky
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Humeyra Caglayan
- Department
of Physics, Tampere University, 33720 Tampere, Finland
- Department
of Electrical Engineering and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
7
|
Zhou Y, Zhu X, Li T, Zhou Z, Bi Q, Liu J, Chen J, Fu B, He J, Feng X, Feng X, Liu X, Wang Q, Wang S, Wang Z, Qiu CW, Zhu S. Metasurface-assisted multimodal quantum imaging. Proc Natl Acad Sci U S A 2025; 122:e2500760122. [PMID: 40314979 PMCID: PMC12067218 DOI: 10.1073/pnas.2500760122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/30/2025] [Indexed: 05/03/2025] Open
Abstract
Traditional quantum imaging is featured by remarkable sensitivity and signal-to-noise ratio, but limited by bulkiness and static function (either phase contrast imaging or edge detection). Our report synergizes a polarization-entangled source with a metasurface consisting of various sophisticatedly engineered spatial frequency segments. By tuning polarization, we demonstrate multiple "on"-state quantum imaging modes, enabling flexible switching between phase contrast, edge, and arbitrary superimposed imaging mode. Furthermore, the "off"-state, which characterizes the background noise, enables self-calibration of the system by subtracting this noise in "on"-state modes, resulting in self-enhanced edge detection. Our approach performs phase contrast imaging with a phase difference of π/4 present in the target object, and edge imaging capable of detecting tiny (radius about 2 μm) defects, maintaining high image contrast (phase contrast of 0.726, and enhanced edge contrast of 0.902). Our results provide insights into constructive duet between quantum imaging and metaoptics.
Collapse
Affiliation(s)
- Yifan Zhou
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Xiaoshu Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Tianyue Li
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Zhou Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge117583, Singapore
| | - Qianhui Bi
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Jun Liu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Jian Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge117583, Singapore
- Department of Optoelectronic Information Engineering, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
| | - Boyan Fu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Juanzi He
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Xiaojing Feng
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Xinyang Feng
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Xingyu Liu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Qianjin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Nanjing Nanzhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd.
| | - Shuming Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- Nanjing Nanzhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd.
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing210093, China
| | - Zhenlin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge117583, Singapore
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing210093, China
| |
Collapse
|
8
|
Shan L, Xu C, Pan J, Lu W, Ma X, Liu D, Shi C, Du T, Zhang J, Chen H. A Simple Optical Convolution Strategy Based on Versatile Adjustable Optical Convolution Kernel for All-Optical Convolution Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420534. [PMID: 40269612 DOI: 10.1002/adma.202420534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Convolutional neural network (CNN) is currently one of the most important artificial neural networks. However, traditional CNN hardware architectures suffer from significant increases in energy consumption and processing time as the demand for artificial intelligence tasks grows. Here, a novel optical convolution computing strategy is proposed that leverages a continuously adjustable photoluminescent device (CA-PLD) as the optical convolution kernel, enabling parallel, all-optical convolution computing and greatly simplifying the traditional convolution process. Under ultraviolet illumination, the CA-PLD exhibits visible long-afterglow emission characteristics due to the charge trapping and retention effects. This allows for continuously adjustable light weights, facilitating arbitrary convolution operations. Building on this, parallel and efficient multiply-accumulate operations have been successfully demonstrated using CA-PLD arrays with different weight combinations. Moreover, space-transformable CA-PLD units enable applications in dilated convolution. In a semantic segmentation task with 20 categories, the CA-PLD units achieve higher Intersection over Union (IoU) values and accuracy. Therefore, the weight-adjustable and spatial transformable CA-PLD proposed in this work holds promise for future applications in intelligent optical computing systems and optical implementations of non-von Neumann architectures.
Collapse
Affiliation(s)
- Liuting Shan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
- School of Physics and Electronic Technology, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Chenhui Xu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Jianyong Pan
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, P. R. China
| | - Wenjie Lu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Xiao Ma
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Di Liu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Chunyan Shi
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Tingting Du
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Jiaqi Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, P. R. China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| |
Collapse
|
9
|
Ahmed H, Ansari MA, Yan R, Chen X. Customizing Multicolored Orbital Angular Momentum Combs. NANO LETTERS 2025; 25:5366-5374. [PMID: 40125722 PMCID: PMC11969648 DOI: 10.1021/acs.nanolett.5c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Current orbital angular momentum (OAM) combs generating technology is hindered by bulky optical systems, limited control, and lack of multicolored information, impeding system integration and practical applications. We present a metasurface approach to realizing multicolored OAM comb engineering along the light propagation direction. The OAM combs are measured based on the intensity of bright spots in the generated intensity patterns that correspond to the weights of the OAM modes. Three OAM combs with different colors are generated at different observation planes. The positioning of transition points along the azimuthal direction is the key to shaping the OAM distribution of the generated beams. OAM combs with customized mode spacings and broad OAM spectra are obtained. Our approach provides a compact platform to realize OAM combs with multidimensional information in the domains of the OAM spectra, frequency, and space, which can significantly enhance the information capacity for potential applications in optical communications.
Collapse
Affiliation(s)
- Hammad Ahmed
- Institute
of Photonics and Quantum Sciences, School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Muhammad Afnan Ansari
- Institute
of Photonics and Quantum Sciences, School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Rong Yan
- Institute
of Photonics and Quantum Sciences, School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
- MIIT
Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing 100081, China
| | - Xianzhong Chen
- Institute
of Photonics and Quantum Sciences, School of Engineering and Physical
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
10
|
Zhou C, Wang Y, Huang L. All-optical analog differential operation and information processing empowered by meta-devices. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:1021-1044. [PMID: 40290294 PMCID: PMC12019956 DOI: 10.1515/nanoph-2024-0540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/13/2024] [Indexed: 04/30/2025]
Abstract
The burgeoning demand for high-performance computing, robust data processing, and rapid growth of big data necessitates the emergence of novel optical devices to efficiently execute demanding computational processes. The field of meta-devices, such as metamaterial or metasurface, has experienced unprecedented growth over the past two decades. By manipulating the amplitude, phase, polarization, and dispersion of light wavefronts in spatial, spectral, and temporal domains, viable solutions for the implementation of all-optical analog computation and information processing have been provided. In this review, we summarize the latest developments and emerging trends of computational meta-devices as innovative platforms for spatial optical analog differentiators and information processing. Based on the general concepts of spatial Fourier transform and Green's function, we analyze the physical mechanisms of meta-devices in the application of amplitude differentiation, phase differentiation, and temporal differentiation and summarize their applications in image edge detection, image edge enhancement, and beam shaping. Finally, we explore the current challenges and potential solutions in optical analog differentiators and provide perspectives on future research directions and possible developments.
Collapse
Affiliation(s)
- Chen Zhou
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| | - Lingling Huang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, MIIT Key Laboratory of Photonics Information Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- National Key Laboratory on Near-surface Detection, Beijing, 100072, China
| |
Collapse
|
11
|
Liu L, Hao Q, Yao C, Xing H, Cheng Y. Optical edge detection with adjustable resolution using the planar liquid crystal Alvarez lens. OPTICS LETTERS 2025; 50:2374-2377. [PMID: 40167724 DOI: 10.1364/ol.557550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
In this Letter, we propose an optical edge detection method with adjustable resolution using a planar liquid crystal Alvarez lens (LCAL). A planar liquid crystal Alvarez lens was fabricated by laser direct writing. When the focal length of the liquid crystal Alvarez lens changes and linearly polarized light (LP) passes through the liquid crystal Alvarez lens, the angle between the emitted left-handed circularly polarized light and right-handed circularly polarized light can be controlled, enabling adjustable resolution edge detection. The lens can adjust an edge width from 32.5 μm to 73.7 μm without requiring any rotation or axial displacement. Moreover, it can accomplish comprehensive edge detection across a broadband spectral range. This edge detection method could offer a potential application value for compact optical devices such as high-contrast microscopes and smart cameras.
Collapse
|
12
|
Qiu X, Zhang J, Fan Y, Zhou J, Chen L, Tsai DP. Metasurface enabled high-order differentiator. Nat Commun 2025; 16:2437. [PMID: 40069144 PMCID: PMC11897169 DOI: 10.1038/s41467-025-57715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Metasurface-enabled optical analog differentiation has garnered significant attention due to its inherent capacity of parallel operation, compactness, and low power consumption. Most previous works focused on the first- and second-order operations, while several significant works have also achieved higher-order differentiation in both real space and k-space. However, how to construct the desired optical transfer function in a practical system to realize scalable and multi-order-parallel high-order differentiation of images in real space, and particularly how to leverage it to tackle practical problems, have not been fully explored. Here, drawing on the basic mathematical feature of the Fourier transform, we theoretically propose universal phase-gradient functions of the Pancharatnam-Berry-phase-based meta-device for performing arbitrary order differentiation. The fifth-order optical differentiations for both intensity and phase images are realized in the experiment. More importantly, by exploring this elaborately designed spatial differentiator, we construct another scheme for optical super-resolution and achieve the estimation of the distance between two incoherent point sources within 0.015 of the Rayleigh distance, which thereby provides a potential toolkit for optical alignment in high-precision semiconductor nano-fabrication. Our findings hold promise for image processing, microscopy imaging, and optical super-resolution imaging.
Collapse
Affiliation(s)
- Xiaodong Qiu
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jingcheng Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yubin Fan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Junxiao Zhou
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lixiang Chen
- Department of Physics, Xiamen University, Xiamen, China.
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
13
|
Zhou Y, Li L, Zhang J, Cheng J, Liu X, Gao Y, Geng Z, Li L, Zhou J, Chen MK. Meta-Device for Field-of-View Tunability via Adaptive Optical Spatial Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412794. [PMID: 39806861 PMCID: PMC11884584 DOI: 10.1002/advs.202412794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Optical edge detection is a crucial optical analog computing method in fundamental artificial intelligence, machine vision, and image recognition, owing to its advantages of parallel processing, high computing speed, and low energy consumption. Field-of-view-tunable edge detection is particularly significant for detecting a broader range of objects, enhancing both practicality and flexibility. In this work, a novel approach-adaptive optical spatial differentiation is proposed for field-of-view-tunable edge detection. This method improves the ability to acquire spatial information and facilitates edge detection over a wider angular range. The adaptive optical spatial differentiation meta-device relies on two core components: the spatial differentiation dielectric metasurface and the adaptive liquid prism. The meta-device is shown to function as a highly efficient (≈85%) isotropic spatial differentiator, operating across the entire visible spectrum (400 to 700 nm) within a wide-angle object space, expanding up to 4.5 times the original field of view. The proposed scheme presents new opportunities for efficient, flexible, high-capacity integrated data processing and imaging devices. And simultaneously provides a novel optical analog computing architecture for the next generation of wide field-of-view phase contrast microscopy.
Collapse
Affiliation(s)
- Yin Zhou
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Lin Li
- School of Electronics and Information EngineeringSichuan UniversityChengdu610065China
| | - Junhao Zhang
- School of Electronics and Information EngineeringSichuan UniversityChengdu610065China
| | - Jialuo Cheng
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Xiaoyuan Liu
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongKowloonHong Kong999077China
| | - Yunhui Gao
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Zihan Geng
- Institute of Data and InformationTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518071China
| | - Lei Li
- School of Electronics and Information EngineeringSichuan UniversityChengdu610065China
| | - Junxiao Zhou
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
| | - Mu Ku Chen
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong999077China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongKowloonHong Kong999077China
- Centre for Biosystems, Neuroscience, and NanotechnologyCity University of Hong KongKowloonHong Kong999077China
| |
Collapse
|
14
|
Zhou J, Li A, Lei M, Hu J, Chen G, Burns Z, Tian F, Chen X, Lo YH, Tsai DP, Liu Z. Advanced Quantitative Phase Microscopy Achieved with Spatial Multiplexing and a Metasurface. NANO LETTERS 2025; 25:2034-2040. [PMID: 39838821 DOI: 10.1021/acs.nanolett.4c06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Quantitative optical phase information provides an alternative method to observe biomedical properties, where conventional phase imaging fails. Phase retrieval typically requires multiple intensity measurements and iterative computations to ensure uniqueness and robustness against detection noise. To increase the measurement speed, we propose a single-shot quantitative phase imaging method with metasurface optics that can be conveniently integrated into conventional imaging systems with minimal modification. The improvement of the measurement speed is simultaneously made possible by combining deep learning with the transport-of-intensity equation. As a proof-of-concept, we demonstrate phase retrieval on both calibrated phase objects and biological specimens by using an imaging system integrated with our metasurface. When combined with the matched neural network, the system yields result with errors as low as 5% and increased space-bandwidth-product. A multitude of commercial applications can benefit from the compactness and rapid implementation of our proposed method.
Collapse
Affiliation(s)
- Junxiao Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ang Li
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ming Lei
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Guanghao Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fanglin Tian
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xinyu Chen
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Guo K, Xiao S, Liu T. Dynamically switchable edge-detection and bright-field imaging based on a phase-change nonlocal metasurface. OPTICS EXPRESS 2025; 33:3134-3144. [PMID: 39876444 DOI: 10.1364/oe.547820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/15/2024] [Indexed: 01/30/2025]
Abstract
Optical metasurfaces offer significant advantages in enhancing the speed, efficiency, and miniaturization of imaging systems. However, most existing metasurfaces are limited to static functionalities and lack reconfigurability, which is a key feature for practical applications in dynamic environments. In this work, we demonstrate a reconfigurable optical metasurface capable of switching between two distinct imaging functions (edge detection and bright-field imaging) within the visible spectrum. This reconfigurability is achieved by tuning the phase transition of antimony sulfide (Sb2S3), which controls the angular dependence of the magnetic dipole resonance. The phase transition of Sb2S3 from the amorphous phase to the crystalline phase enables different optical transfer functions, achieving high-performance imaging with a numerical aperture of 0.42, isotropic second-order differentiation, and high-resolution imaging, respectively. This approach allows for functional switching on a single surface, opening up possibilities for applications in medical imaging, optical sensing, and microscopy.
Collapse
|
16
|
Davoodi F. Active Physics-Informed Deep Learning: Surrogate Modeling for Nonplanar Wavefront Excitation of Topological Nanophotonic Devices. NANO LETTERS 2025; 25:768-775. [PMID: 39754588 DOI: 10.1021/acs.nanolett.4c05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Topological plasmonics combines principles of topology and plasmonics to provide new methods for controlling light, analogous to topological edge states in photonics. However, designing such topological states remains challenging due to the complexity of the high-dimensional design space. We present a novel method that uses supervised, physics-informed deep learning and surrogate modeling to design topological devices for desired wavelengths. By embedding physical constraints in the neural network's training, our model efficiently explores the design space, significantly reducing simulation time. Additionally, we use nonplanar wavefront excitations to probe topologically protected plasmonic modes, making the design and training process nonlinear. Using this approach, we design a topological device with unidirectional edge modes in a ring resonator at specific operational frequencies. Our method reduces computational cost and time while maintaining high accuracy, highlighting the potential of combining machine learning and advanced techniques for photonic device innovation.
Collapse
Affiliation(s)
- Fatemeh Davoodi
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 11-19, Kiel 24098, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Christian Albrechts University, Olshausenstraße 75, Kiel 24118, Germany
| |
Collapse
|
17
|
Kim H, Jung J, Shin J. Bidirectional Vectorial Holography Using Bi-Layer Metasurfaces and Its Application to Optical Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406717. [PMID: 39268796 DOI: 10.1002/adma.202406717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The field of optical systems with asymmetric responses has grown significantly due to their various potential applications. Janus metasurfaces are noteworthy for their ability to control light asymmetrically at the pixel level within thin films. However, previous demonstrations are restricted to the partial control of asymmetric transmission for a limited set of input polarizations, focusing primarily on scalar functionalities. Here, optical bi-layer metasurfaces that achieve a fully generalized form of asymmetric transmission for any input polarization are presented. The designs owe much to the theoretical model of asymmetric transmission in reciprocal systems, which elucidates the relationship between front- and back-side Jones matrices in general cases. This model reveals a fundamental correlation between the polarization-direction channels of opposing sides. To circumvent this constraint, partitioning the transmission space is utilized to realize four distinct vector functionalities within the target volume. As a proof of concept, polarization-direction-multiplexed Janus vectorial holograms generating four vectorial holographic images are experimentally demonstrated. When integrated with computational vector polarizer arrays, this approach enables optical encryption with a high level of obscurity. The proposed mathematical framework and novel material systems for generalized asymmetric transmission may pave the way for applications such as optical computation, sensing, and imaging.
Collapse
Affiliation(s)
- Hyeonhee Kim
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonkyo Jung
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jonghwa Shin
- Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Chen W, Zhu D, Liu SJ, Zhang YH, Zhu L, Li CY, Ge SJ, Chen P, Zhang WL, Yuan XC, Lu YQ. Fast selective edge-enhanced imaging with topological chiral lamellar superstructures. Natl Sci Rev 2024; 11:nwae247. [PMID: 39440264 PMCID: PMC11493092 DOI: 10.1093/nsr/nwae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 10/25/2024] Open
Abstract
Edge detection is a fundamental operation for feature extraction in image processing. The all-optical method has aroused growing interest owing to its ultra-fast speed, low energy consumption and parallel computation. However, current optical edge detection methods are generally limited to static devices and fixed functionality. Herein, we propose a fast-switchable scheme based on a ferroelectric liquid crystal topological structure. The self-assembled chiral lamellar superstructure, directed by the azimuthally variant photo-alignment agent, can be dynamically controlled by the polarity of the external electric field and respectively generates the vector beams with nearly orthogonal polarization distribution. Even after thousands of cycles, the horizontal and vertical edges of the object are selectively enhanced with an ultra-fast switching time of ∼57 μs. Broadband edge-enhanced imaging is efficiently demonstrated. This work extends the ingenious building of topological heliconical superstructures and offers an important glimpse into their potential in the emerging frontiers of optical computing for artificial intelligence.
Collapse
Affiliation(s)
- Wen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dong Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Si-Jia Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi-Heng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lin Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chao-Yi Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shi-Jun Ge
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wan-Long Zhang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiao-Cong Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Deng J, Duan J, Fu R, Geng Y, Lu H, Gao F, Yan B. Full-space metasurfaces for independent manipulation of transmission and reflection. OPTICS LETTERS 2024; 49:4934-4937. [PMID: 39208001 DOI: 10.1364/ol.528633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
In recent years, beam manipulation using metasurfaces has evolved from being limited to either a transmission or reflection space to encompassing a full space. However, existing methods still inevitably require complex systems and are unable to achieve continuous and arbitrary phase manipulation. Here, one type of a bilayer metasurface is proposed to simultaneously manipulate reflection and transmission phases continuously and independently, which also makes the optical system more compact without requiring any analyzers and enhances the degree of freedom for full-space beam manipulation. As a proof-of-concept demonstration, one device is designed to show different holograms in transmission and reflection spaces. Additionally, the Dammann grating designed in the reflection hologram increases the information capacity. The proposed method may pave the way toward achieving a variety of applications such as multi-channel beam manipulation and multifunctional optical devices.
Collapse
|
20
|
Zhou J, Tian F, Hu J, Shi ZL, Godinez VG, Tsai DP, Liu Z. Eagle-Eye Inspired Meta-Device for Phase Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402751. [PMID: 38816897 DOI: 10.1002/adma.202402751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The dual-focus vision observed in eagles' eyes is an intriguing phenomenon captivates scientists since a long time. Inspired by this natural occurrence, the authors' research introduces a novel bifocal meta-device incorporating a polarized camera capable of simultaneously capturing images for two different polarizations with slightly different focal distances. This innovative approach facilitates the concurrent acquisition of underfocused and overfocused images in a single snapshot, enabling the effective extraction of quantitative phase information from the object using the transport of intensity equation. Experimental demonstrations showcase the application of quantitative phase imaging to artificial objects and human embryonic kidney cells, particularly emphasizing the meta-device's relevance in dynamic scenarios such as laser-induced ablation in human embryonic kidney cells. Moreover, it provides a solution for the quantification during the dynamic process at the cellular level. Notably, the proposed eagle-eye inspired meta-device for phase imaging (EIMPI), due to its simplicity and compact nature, holds promise for significant applications in fields such as endoscopy and headsets, where a lightweight and compact setup is essential.
Collapse
Affiliation(s)
- Junxiao Zhou
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fanglin Tian
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jie Hu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhixia Linda Shi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Veronica Gomez Godinez
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
He Y, Jiang T, Yang Z, Liu T, Fang F, Wang X. Quarter-wave Pancharatnam-Berry phase gradient liquid crystal-enabled dual-polarization optical edge detection. OPTICS LETTERS 2024; 49:4070-4073. [PMID: 39090861 DOI: 10.1364/ol.525230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Here, we present a novel, to the best of our knowledge, optical edge detection scheme that can be operated in both linear and circular polarization modes, leveraging an optical spatial differentiator constructed by quarter-wave Pancharatnam-Berry (P-B) phase gradient element. After explaining the theoretical mechanism, we utilize a quarter-wave P-B phase liquid crystal polarization grating to validate the dual-polarization optical edge detection capability. We demonstrate that the orientation of linear polarization and the spin of circular polarization dictate the transition between edge and bright-field images. Besides, the linear and circular polarization modes exhibit broadband and monochromatic responsive properties, respectively. This mechanism, dependent on wavelength and polarization, holds promise for applications in color image processing, chiral sensing imaging, and polarization-entangled quantum imaging.
Collapse
|
22
|
Wan S, Qu K, Shi Y, Li Z, Wang Z, Dai C, Tang J, Li Z. Multidimensional Encryption by Chip-Integrated Metasurfaces. ACS NANO 2024; 18:18693-18700. [PMID: 38958405 DOI: 10.1021/acsnano.4c05724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Facing the challenge of information security in the current era of information technology, optical encryption based on metasurfaces presents a promising solution to this issue. However, most metasurface-based encryption techniques rely on limited decoding keys and struggle to achieve multidimensional complex encryption. It hinders the progress of optical storage capacity and puts encryption security at a disclosing risk. Here, we propose and experimentally demonstrate a multidimensional encryption system based on chip-integrated metasurfaces that successfully incorporates the simultaneous manipulation of three-dimensional optical parameters, including wavelength, direction, and polarization. Hence, up to eight-channel augmented reality (AR) holograms are concealed by near- and far-field fused encryption, which can only be extracted by correctly providing the three-dimensional decoding keys and then vividly exhibit to the authorizer with low crosstalk, high definition, and no zero-order speckle noise. We envision that the miniature chip-integrated metasurface strategy for multidimensional encryption functionalities promises a feasible route toward the encryption capacity and information security enhancement of the anticounterfeiting performance and optically cryptographic storage.
Collapse
Affiliation(s)
- Shuai Wan
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Kening Qu
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Yangyang Shi
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhe Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Jiao Tang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| |
Collapse
|
23
|
Tang P, Kim Y, Badloe T, Xiao L, Yang Y, Kim M, Rho J, Li G. Polarization-independent edge detection based on the spin-orbit interaction of light. OPTICS EXPRESS 2024; 32:17560-17570. [PMID: 38858937 DOI: 10.1364/oe.521661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 06/12/2024]
Abstract
In previous edge detection schemes based on the spin-orbit interaction of light, the direction and intensity of the edge-enhanced images are influenced by the incident polarization state. In this study, we develop an edge detection strategy that is insensitive to changes in both the incident polarization and the incident angle. The output intensity and transfer function remain entirely impervious to changes in incident polarization, being explicitly formulated as functions of the incident angle, specifically in terms of cot 2θ i and cotθ i , respectively. This behavior is attributed to the opposing nature of the polarization components E~r H-H and E~r V-V in the x-direction after undergoing mapping through the Glan polarizer, while the sum of polarization components E~r H-V and E~r V-H in the y-direction can be simplified to terms independent of incident polarization. Furthermore, we propose a metasurface design to achieve the required optical properties in order to realize the derived edge detection scheme.
Collapse
|
24
|
Ahmed H, Ansari MA, Paterson L, Li J, Chen X. Metasurface for Engineering Superimposed Ince-Gaussian Beams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312853. [PMID: 38353164 DOI: 10.1002/adma.202312853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Ince-Gaussian beams (IGBs) are the third complete family of exact and orthogonal solutions of the paraxial wave equation and have been applied in many fields ranging from particle trapping to quantum optics. IGBs play a very important role in optics as they represent the exact and continuous transition modes connecting Laguerre-Gaussian and Hermite-Gaussian beams. The method currently in use suffers from the high cost, complexity, and large volume of the optical system. The superposition of IGBs can generate complicated structured beams with multiple phase and polarization singularities. A metasurface approach is proposed to realizing various superpositions of IGBs without relying on a complicated optical setup. By superimposing IGBs with even and odd modes, multiple phase, and polarization singularities are observed in the resultant beams. The phase and polarization singularities are modulated by setting the initial phase in the design and controlling the incident linear polarization. The compactness of the developed metasurface devices and the unique properties of the generated beams have the potential to impact many practical applications such as particle manipulation, orbital angular momentum spectrum manipulation, and optical communications.
Collapse
Affiliation(s)
- Hammad Ahmed
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Muhammad Afnan Ansari
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jia Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xianzhong Chen
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
25
|
Wu C, Tang Y, Shi J, Li C, He W, Xu G, Wu J, Wang X. Ultra-high order mode-assisted optical differentiator for edge detection with high tunability. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:824-829. [PMID: 38856568 DOI: 10.1364/josaa.520871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 06/11/2024]
Abstract
An optical spatial differentiator based on the photonic spin Hall effect (PSHE) with high tunability is presented. By utilizing the characteristics of ultra-high order modes in the symmetrical metal cladding waveguide, the Fresnel reflection coefficient spectrum exhibits a narrow peak width and low trough at the resonant incident angles, resulting in high sensitivity to changes in the incident angle-induced spatial shift caused by the PSHE (the highest ∂(|r s/r p|)/∂ θ value can reach 107). After polarization transformation and extinction, the output field demonstrates differential operation with respect to the input field. When applied to edge detection, our differentiator can achieve tunable resolution edge images by adjusting the incident angle. Our proposed edge detection scheme has potential applications for cellular and molecular imaging through two-dimensional extension via the target rotation.
Collapse
|
26
|
Liang C, Wang J, Huang T, Dai Q, Li Z, Yu S, Li G, Zheng G. Structural-color meta-nanoprinting embedding multi-domain spatial light field information. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1665-1675. [PMID: 39678179 PMCID: PMC11636407 DOI: 10.1515/nanoph-2024-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 12/17/2024]
Abstract
Recently, multifunctional metasurface has showcased its powerful functionality to integrate nanoprinting and holography, and display ultracompact meta-images in near- and far-field simultaneously. Herein, we propose a tri-channel metasurface which can further extend the meta-imaging ranges, with three independent images located at the interface, Fresnel and Fourier domains, respectively. Specifically, a structural-color nanoprinting image is decoded right at the interface of the metasurface, enabled by varying the dimensions of nanostructures; a Fresnel holographic image and another Fourier holographic image are present at the Fresnel and Fourier (far-field) domains, respectively, enabled by geometric phase. The spectral and phase manipulation capabilities of nanostructures have been maximized, and the spatial multiplexing capabilities for diffraction in metasurfaces have also been fully exploited. By leveraging the design freedom enabled through the tuning of the geometric size and orientation of nanostructures, as well as optimizing the diffraction spatial light wave transformation, the encoding of multiple images on the single-celled metasurface is achieved. More interestingly, due to the spatial separation of images across different channels, crosstalk is virtually eliminated, effectively enhancing imaging quality. The proposed metasurface offers several advantages, including a compact design, easiness of fabrication, minimal crosstalk, and high storage density. Consequently, it holds promising applications in image display, data storage, information encryption, anti-counterfeiting, and various other fields.
Collapse
Affiliation(s)
- Congling Liang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Jiahao Wang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Tian Huang
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Qi Dai
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Suzhou Institute of Wuhan University, Suzhou, 215123, China
| | - Zile Li
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Shaohua Yu
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Gongfa Li
- Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Guoxing Zheng
- Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
27
|
Deng ZL, Hu MX, Qiu S, Wu X, Overvig A, Li X, Alù A. Poincaré sphere trajectory encoding metasurfaces based on generalized Malus' law. Nat Commun 2024; 15:2380. [PMID: 38493161 PMCID: PMC10944530 DOI: 10.1038/s41467-024-46758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
As a fundamental property of light, polarization serves as an excellent information encoding carrier, playing significant roles in many optical applications, including liquid crystal displays, polarization imaging, optical computation and encryption. However, conventional polarization information encoding schemes based on Malus' law usually consider 1D polarization projections on a linear basis, implying that their encoding flexibility is largely limited. Here, we propose a Poincaré sphere (PS) trajectory encoding approach with metasurfaces that leverages a generalized form of Malus' law governing universal 2D projections between arbitrary elliptical polarization pairs spanning the entire PS. Arbitrary polarization encodings are realized by engineering PS trajectories governed by either arbitrary analytic functions or aligned modulation grids of interest, leading to versatile polarization image transformation functionalities, including histogram stretching, thresholding and image encryption within non-orthogonal PS loci. Our work significantly expands the encoding dimensionality of polarization information, unveiling new opportunities for metasurfaces in polarization optics for both quantum and classical regimes.
Collapse
Affiliation(s)
- Zi-Lan Deng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Meng-Xia Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | | | | | - Adam Overvig
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
28
|
Tanuwijaya RS, Liang H, Xi J, Wong WC, Yung TK, Tam WY, Li J. Metasurface for programmable quantum algorithms with classical and quantum light. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:927-936. [PMID: 39634372 PMCID: PMC11614333 DOI: 10.1515/nanoph-2023-0844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/09/2024] [Indexed: 12/07/2024]
Abstract
Metasurfaces have recently opened up applications in the quantum regime, including quantum tomography and the generation of quantum entangled states. With their capability to store a vast amount of information by utilizing the various geometric degrees of freedom of nanostructures, metasurfaces are expected to be useful for processing quantum information. Here, we propose and experimentally demonstrate a programmable metasurface capable of performing quantum algorithms using both classical and quantum light with single photons. Our approach encodes multiple programmable quantum algorithms and operations, such as Grover's search algorithm and the quantum Fourier transform, onto the same metalens array on a metasurface. A spatial light modulator selectively excites different sets of metalenses to carry out the quantum algorithms, while the interference patterns captured by a single-photon camera are used to extract information about the output state at the selected output directions. Our programmable quantum metasurface approach holds promising potential as a cost-effective means of miniaturizing components for quantum computing and information processing.
Collapse
Affiliation(s)
- Randy Stefan Tanuwijaya
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Hong Liang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jiawei Xi
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wai Chun Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Tsz Kit Yung
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wing Yim Tam
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Jensen Li
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
29
|
Li S, Lin HC, Hsu CW. Fast Multichannel Inverse Design through Augmented Partial Factorization. ACS PHOTONICS 2024; 11:378-384. [PMID: 38405390 PMCID: PMC10885196 DOI: 10.1021/acsphotonics.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 02/27/2024]
Abstract
Computer-automated design and discovery have led to high-performance nanophotonic devices with diverse functionalities. However, massively multichannel systems such as metasurfaces controlling many incident angles and photonic-circuit components coupling many waveguide modes still present a challenge. Conventional methods require Min forward simulations and Min adjoint simulations-2Min simulations in total-to compute the objective function and its gradient for a design involving the response to Min input channels. Here, we develop a formalism that uses the recently proposed augmented partial factorization method to obtain both the objective function and its gradient for a massively multichannel system in a single or a few simulations, achieving over 2 orders of magnitude speedup and reduced memory usage. We use this method to inverse design a metasurface beam splitter that separates the incident light to the target diffraction orders for all incident angles of interest, a key component of the dot projector for 3D sensing. This formalism enables efficient inverse design for a wide range of multichannel optical systems.
Collapse
Affiliation(s)
- Shiyu Li
- Ming Hsieh Department of Electrical
and Computer Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Ho-Chun Lin
- Ming Hsieh Department of Electrical
and Computer Engineering, University of
Southern California, Los Angeles, California 90089, United States
| | - Chia Wei Hsu
- Ming Hsieh Department of Electrical
and Computer Engineering, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Liu J, Yang Q, Shou Y, Chen S, Shu W, Chen G, Wen S, Luo H. Metasurface-Assisted Quantum Nonlocal Weak-Measurement Microscopy. PHYSICAL REVIEW LETTERS 2024; 132:043601. [PMID: 38335360 DOI: 10.1103/physrevlett.132.043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
In standard quantum weak measurements, preselection and postselection of quantum states are implemented in the same photon. Here we go beyond this restrictive setting and demonstrate that the preselection and postselection can be performed in two different photons, if the two photons are polarization entangled. The Pancharatnam-Berry phase metasurface is incorporated in the weak measurement system to perform weak coupling between probe wave function and spin observable. By introducing nonlocal weak measurement into the microscopy imaging system, it allows us to remotely switch different microscopy imaging modes of pure-phase objects, including bright-field, differential, and phase reconstruction. Furthermore, we demonstrate that the nonlocal weak-measurement scheme can prevent almost all environmental noise photons from detection and thus achieves a higher image contrast than the standard scheme at a low photon level. Our results provide the possibility to develop a quantum nonlocal weak-measurement microscope for label-free imaging of transparent biological samples.
Collapse
Affiliation(s)
- Jiawei Liu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qiang Yang
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yichang Shou
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Shizhen Chen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Weixing Shu
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Geng Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
| | - Shuangchun Wen
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Hailu Luo
- Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
31
|
Yao J, Tang S, Wang X, Lü C, Jiang Y. Manipulation of path state based on spatiotemporal dielectric metasurface. APPLIED OPTICS 2024; 63:604-610. [PMID: 38294370 DOI: 10.1364/ao.507878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024]
Abstract
In this work, a spatiotemporal metasurface is proposed to manipulate the path of photons flexibly. The spatial modulation is induced by the rectangle silicon units aligned on silica in a manner with a phase gradient only for y-polarized photons, and the temporal modulation is contributed by the pumps of constructing Kerr dynamic gratings. By quantizing designed metasurfaces, the analytical solutions of output photon states can be derived correspondingly. Reversal design could be implemented by tailoring the profile of higher harmonics to infer the intensity of pumps, size of meta-atoms, and initial state. The path-polarization entanglement and correlations of output photons are realized, and then a CNOT gate is obtained by utilizing the deflection of the photon path. This work provides a scheme to deal with the spatiotemporal metasurfaces and expands the applications of metasurfaces in the quantum realm.
Collapse
|
32
|
Wang S, Li L, Wen S, Liang R, Liu Y, Zhao F, Yang Y. Metalens for Accelerated Optoelectronic Edge Detection under Ambient Illumination. NANO LETTERS 2024; 24:356-361. [PMID: 38109180 DOI: 10.1021/acs.nanolett.3c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Analog systems may allow image processing, such as edge detection, with low computational power. However, most demonstrated analog systems, based on either conventional 4-f imaging systems or nanophotonic structures, rely on coherent laser sources for illumination, which significantly restricts their use in routine imaging tasks with ambient, incoherent illumination. Here, we demonstrated a metalens-assisted imaging system that can allow optoelectronic edge detection under ambient illumination conditions. The metalens was designed to generate polarization-dependent optical transfer functions (OTFs), resulting in a synthetic OTF with an isotropic high-pass frequency response after digital subtraction. We integrated the polarization-multiplexed metalens with a polarization camera and experimentally demonstrated single-shot edge detection of indoor and outdoor scenes, including a flying airplane, under ambient sunlight illumination. The proposed system showcased the potential of using polarization multiplexing for the construction of complex optical convolution kernels toward accelerated machine vision tasks such as object detection and classification under ambient illumination.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 26600, China
| | - Liu Li
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shun Wen
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Ruiqi Liang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yaxi Liu
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Feng Zhao
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yuanmu Yang
- State Key Laboratory for Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Chen H, Gui L, Guo J, Xu K. Efficient dual-wavelength metasurface for second-order differential edge detection in the ultraviolet. APPLIED OPTICS 2023; 62:8552-8557. [PMID: 38037968 DOI: 10.1364/ao.499446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Metasurfaces for edge detection through spatial analog calculations have attracted much attention due to advantages such as a flexible design and small footprint. Up until now, most studies have focused on single-wavelength operation in the near-infrared or visible regions, while little work has been done in the ultraviolet band. It is of significance to explore metasurfaces for edge detection in the ultraviolet band for their great potential in high-resolution imaging and lithography. Here, we propose a dual-wavelength H f O 2 metasurface for edge detection working at 273 nm and 293 nm, with 25% and 72% efficiency, respectively, controlled by the linear polarization of the incident light. The efficient dual-wavelength second-order differential calculation in the ultraviolet band of the metasurface has been confirmed by 1D signal and 2D image processing. It may find applications in the fields of computer vision and bioimaging.
Collapse
|
34
|
Ge S, Li X, Liu Z, Zhao J, Wang W, Li S, Zhang W. Polarization-multiplexed metasurface enabled tri-functional imaging. OPTICS LETTERS 2023; 48:5683-5686. [PMID: 37910733 DOI: 10.1364/ol.502632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Diffraction-limited focusing imaging, edge-enhanced imaging, and long depth of focus imaging offer crucial technical capabilities for applications such as biological microscopy and surface topography detection. To conveniently and quickly realize the microscopy imaging of different functions, the multifunctional integrated system of microscopy imaging has become an increasingly important research direction. However, conventional microscopes necessitate bulky optical components to switch between these functionalities, suffering from the system's complexity and unstability. Hence, solving the problem of integrating multiple functions within an optical system is a pressing need. In this work, we present an approach using a polarization-multiplexed tri-functional metasurface, capable of realizing the aforementioned imaging functions simply by changing the polarization state of the input and output light, enhancing the system structure's compactness and flexibility. This work offers a new avenue for multifunctional imaging, with potential applications in biomedicine and microscopy imaging.
Collapse
|
35
|
Li Q, Yang H, Wang Y, Shou Y, Liu S, Luo H. Surface topography detection based on an optical differential metasurface. OPTICS LETTERS 2023; 48:4801-4804. [PMID: 37707906 DOI: 10.1364/ol.497090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Surface topography detection can extract critical characteristics from objects, playing an important role in target identification and precision measurement. Here, an optical method with the advantages of low power consumption, high speed, and simple devices is proposed to realize the surface topography detection of low-contrast phase objects. By constructing reflected light paths, a metasurface can perform spatial differential operation via receiving the light directly reflected from a target. Therefore, our scheme is experimentally demonstrated as having remarkable universality, which can be used not only for opaque objects, but also for transparent pure phase objects. It provides a new, to the best of our knowledge, application for optical differential metasurfaces in precise detection of microscale surface topography.
Collapse
|
36
|
Sharma M, Tal M, McDonnell C, Ellenbogen T. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. SCIENCE ADVANCES 2023; 9:eadh2353. [PMID: 37585536 PMCID: PMC10431712 DOI: 10.1126/sciadv.adh2353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Nonlocal effects on metasurfaces play an important role to achieve high-Q spectral selectivity, beneficial for development of multifunctional, multispectral integrated optics. In addition, they enhance the optical interaction and promote a variety of nonlinear effects, including frequency conversion and stimulated scattering. Active tuning of nonlocal nonlinearity is highly desirable for sensing and signal processing but was hardly explored until now. Here, we show drastic electric and all-optical tunability of nonlocal second-harmonic generation (SHG) from nonlinear metasurface, functionalized with a twisted nematic liquid-crystal (LC) layer. The addition of LC results in the emergence of strong nonlocal SHG, due to a surface lattice resonance of the system. We demonstrate a notable enhancement of SHG on resonance, more than 25 dB electrical switching amplitude, and all-optically induced phase transition imprinted on SHG. Our results on dynamic nonlocal effects introduce a very promising route for active nonlinear optical metadevices at the nanoscale.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Mai Tal
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Cormac McDonnell
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| | - Tal Ellenbogen
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Tel-Aviv 6779801, Israel
- Center for Light-Matter Interaction, Tel-Aviv University, Tel-Aviv 6779801, Israel
| |
Collapse
|
37
|
Ji W, Chang J, Xu HX, Gao JR, Gröblacher S, Urbach HP, Adam AJL. Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. LIGHT, SCIENCE & APPLICATIONS 2023; 12:169. [PMID: 37419910 PMCID: PMC10328958 DOI: 10.1038/s41377-023-01218-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm, such as Finite Difference Time Domain, combined with manual parameter optimization. However, such methods are time-consuming, and it is difficult to keep the practical meta-atom spectrum being consistent with the ideal one. In addition, since the periodic boundary condition is used in the meta-atom design process, while the aperiodic condition is used in the array simulation, the coupling between neighboring meta-atoms leads to inevitable inaccuracy. In this review, representative intelligent methods for metasurface design are introduced and discussed, including machine learning, physics-information neural network, and topology optimization method. We elaborate on the principle of each approach, analyze their advantages and limitations, and discuss their potential applications. We also summarize recent advances in enabled metasurfaces for quantum optics applications. In short, this paper highlights a promising direction for intelligent metasurface designs and applications for future quantum optics research and serves as an up-to-date reference for researchers in the metasurface and metamaterial fields.
Collapse
Affiliation(s)
- Wenye Ji
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - Jin Chang
- Department of Quantum Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - He-Xiu Xu
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| | - Jian Rong Gao
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
- SRON Netherlands Institute for Space Research, Niels Bohrweg 4, 2333 CA, Leiden, The Netherlands
| | - Simon Gröblacher
- Department of Quantum Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - H Paul Urbach
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands.
| | - Aurèle J L Adam
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| |
Collapse
|
38
|
Wang Y, Yang Q, Shou Y, Luo H. Optical analog computing enabled broadband structured light. OPTICS LETTERS 2023; 48:2014-2017. [PMID: 37058630 DOI: 10.1364/ol.488765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Mathematically, any function can be expressed as the operation form of another function. Here, the idea is introduced into an optical system to generate structured light. In the optical system, a mathematical function is represented by an optical field distribution, and any structured light field can be generated by performing different optical analog computations for any input optical field. In particular, optical analog computing has a good broadband performance, as it can be achieved based on the Pancharatnam-Berry phase. Therefore, our scheme can provide a flexible way to generate broadband structured light, and this is theoretically and experimentally demonstrated. It is envisioned that our work may inspire potential applications in high-resolution microscopy and quantum computation.
Collapse
|
39
|
Wang X, Wang H, Wang J, Liu X, Hao H, Tan YS, Zhang Y, Zhang H, Ding X, Zhao W, Wang Y, Lu Z, Liu J, Yang JKW, Tan J, Li H, Qiu CW, Hu G, Ding X. Single-shot isotropic differential interference contrast microscopy. Nat Commun 2023; 14:2063. [PMID: 37045869 PMCID: PMC10097662 DOI: 10.1038/s41467-023-37606-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.
Collapse
Affiliation(s)
- Xinwei Wang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jinlu Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xingsi Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Huijie Hao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - You Sin Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Yilei Zhang
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - He Zhang
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiangyan Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Weisong Zhao
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuhang Wang
- College of Mechanical and Electrical engineering, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Zhengang Lu
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Jian Liu
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jiubin Tan
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Center of Ultra-Precision Optoelectronic Instrument engineering, Harbin Institute of Technology, Harbin, 150080, China
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China
| | - Haoyu Li
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Xumin Ding
- Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.
- Key Lab of Ultra-Precision Intelligent Instrumentation (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin, 150080, China.
| |
Collapse
|
40
|
Zong M, Liu Y, Lv J, Zhang S, Xu Z. Two-dimensional optical differentiator for broadband edge detection based on dielectric metasurface. OPTICS LETTERS 2023; 48:1902-1905. [PMID: 37221795 DOI: 10.1364/ol.483415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 05/25/2023]
Abstract
Image edge processing has widespread adoption in a variety of scientific and industrial scenarios. To date, implementations of image edge processing have mostly been done electronically, but there are still difficulties to achieve real-time, high-throughput, and low power consumption image edge processing. The advantages of optical analog computing include low power consumption, fast transmission speed, and high parallel processing capability, and optical analog differentiators make this process possible. However, the proposed analog differentiators can hardly meet the requirements of broadband, polarization insensitive, high contrast, and high efficiency at the same time. Moreover, they are limited to one-dimensional differentiation or work in reflection mode. To be better compatible with two-dimensional image processing or image recognition systems, two-dimensional optical differentiators that integrate the above advantages are urgently needed. In this Letter, a two-dimensional analog optical differentiator with edge detection operating in transmission mode is proposed. It can cover the visible band, is polarization uncorrelated, and has a resolution that reaches 1.7 μm. The efficiency of the metasurface is higher than 88%.
Collapse
|
41
|
Ou K, Wan H, Wang G, Zhu J, Dong S, He T, Yang H, Wei Z, Wang Z, Cheng X. Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1235. [PMID: 37049327 PMCID: PMC10097126 DOI: 10.3390/nano13071235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human's pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end.
Collapse
Affiliation(s)
- Kai Ou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Hengyi Wan
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Guangfeng Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingyuan Zhu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Siyu Dong
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Hui Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
42
|
Yang H, He P, Ou K, Hu Y, Jiang Y, Ou X, Jia H, Xie Z, Yuan X, Duan H. Angular momentum holography via a minimalist metasurface for optical nested encryption. LIGHT, SCIENCE & APPLICATIONS 2023; 12:79. [PMID: 36977672 PMCID: PMC10050323 DOI: 10.1038/s41377-023-01125-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 05/28/2023]
Abstract
Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light, demonstrating great potential in high-capacity information technologies. The orbital angular momentum (OAM) and spin angular momentum (SAM) dimensions have been respectively explored as the independent carrier for information multiplexing. However, fully managing these two intrinsic properties in information multiplexing remains elusive. Here, we propose the concept of angular momentum (AM) holography which can fully synergize these two fundamental dimensions to act as the information carrier, via a single-layer, non-interleaved metasurface. The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel, thereby spatially modulating the resulting waveform at will. As a proof of concept, we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images, i.e., the spin-orbital locked and the spin-superimposed ones. Remarkably, leveraging the designed dual-functional AM meta-hologram, we demonstrate a novel optical nested encryption scheme, which is able to achieve parallel information transmission with ultra-high capacity and security. Our work opens a new avenue for optionally manipulating the AM, holding promising applications in the fields of optical communication, information security and quantum science.
Collapse
Affiliation(s)
- Hui Yang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China
| | - Peng He
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kai Ou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China.
| | - Yuting Jiang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Honghui Jia
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China
| | - Zhenwei Xie
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China.
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060,, Guangdong, China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300,, Guangdong Province, China.
| |
Collapse
|
43
|
Liu J, Zhu X, Zhou Y, Zou X, Qin Z, Wang S, Zhu S, Wang Z. Metasurfaces enabled polarization-multiplexing heralded single photon imaging. OPTICS EXPRESS 2023; 31:6217-6227. [PMID: 36823883 DOI: 10.1364/oe.482426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Quantum imaging has non-negligible advantages in terms of sensitivity, signal-to-noise ratio, and novel imaging schemes. Based on metasurfaces, the information density and stability of the quantum imaging system can be further improved. Here we experimentally demonstrate that two patterns, simultaneously and independently superimposed on a high-efficiency dielectric metasurface, can be remotely switched via polarization-entangled photon pairs. Furthermore, using the time-correlated property of entangled photon pairs, the information carried by quantum light can be remarkably discriminated from background noise. This work confirms that the phase manipulation of quantum light with metasurfaces has a huge potential in the field of quantum imaging, quantum state tomography, and also promises real-world quantum metasurface devices.
Collapse
|
44
|
Gao Z, Su Z, Song Q, Genevet P, Dorfman KE. Metasurface for complete measurement of polarization Bell state. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:569-577. [PMID: 39635401 PMCID: PMC11501330 DOI: 10.1515/nanoph-2022-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 12/07/2024]
Abstract
Bell state measurement is vital to quantum information technology. Conventional linear optical elements, however, cannot fully distinguish all polarization Bell states without assisting of additional degrees of freedom. Leveraging on a pair of binary-pixel metasurfaces, we demonstrate direct measurement of all four polarization Bell states. Each metasurface is designed to produce two output modes that linearly superpose three Bell states in the coincidence counting measurement. By rotating the polarizers, the coincidence counting measurement achieves a tunable anticorrelation between one and the other two Bell states, achieving Bell state detection efficiency of 75% in a single measurement. Complete and deterministic Bell state measurement is further realized by performing two measurements. Our work shows the advantage of utilization of metasurfaces in quantum detection schemes and is of great applicative interest for quantum dense coding, entanglement swapping, quantum teleportation protocols, and novel quantum information processing tasks.
Collapse
Affiliation(s)
- Zhanjie Gao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
| | - Zengping Su
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Patrice Genevet
- Université Côte d’Azur, CNRS, CRHEA, Rue Bernard Gregory, Valbonne06560, France
| | - Konstantin E. Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi030006, China
- Himalayan Institute for Advanced Study, Unit of Gopinath Seva Foundation, MIG 38, Avas Vikas, Rishikesh, Uttarakhand249201, India
| |
Collapse
|
45
|
Yung TK, Liang H, Xi J, Tam WY, Li J. Jones-matrix imaging based on two-photon interference. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:579-588. [PMID: 39635410 PMCID: PMC11501585 DOI: 10.1515/nanoph-2022-0499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/07/2024]
Abstract
Two-photon interference is an important effect that is tightly related to the quantum nature of light. Recently, it has been shown that the photon bunching from the Hong-Ou-Mandel (HOM) effect can be used for quantum imaging in which sample properties (reflection/transmission amplitude, phase delay, or polarization) can be characterized at the pixel-by-pixel level. In this work, we perform Jones matrix imaging for an unknown object based on two-photon interference. By using a reference metasurface with panels of known polarization responses in pairwise coincidence measurements, the object's polarization responses at each pixel can be retrieved from the dependence of the coincidence visibility as a function of the reference polarization. The post-selection of coincidence images with specific reference polarization in our approach eliminates the need in switching the incident polarization and thus parallelized optical measurements for Jones matrix characterization. The parallelization in preparing input states, prevalent in any quantum algorithms, is an advantage of adopting two-photon interference in Jones matrix imaging. We believe our work points to the usage of metasurfaces in biological and medical imaging in the quantum optical regime.
Collapse
Affiliation(s)
- Tsz Kit Yung
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hong Liang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jiawei Xi
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wing Yim Tam
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jensen Li
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
46
|
Shou Y, Wang Y, Miao L, Chen S, Luo H. Realization of all-optical higher-order spatial differentiators based on cascaded operations. OPTICS LETTERS 2022; 47:5981-5984. [PMID: 37219152 DOI: 10.1364/ol.473988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 05/24/2023]
Abstract
Cascaded operations play an important role in traditional electronic computing systems for the realization of advanced strategies. Here, we introduce the idea of cascaded operations into all-optical spatial analog computing. The single function of the first-order operation has difficulty meeting the requirements of practical applications in image recognition. The all-optical second-order spatial differentiators are implemented by cascading two first-order differential operation units, and the image edge detection of amplitude and phase objects are demonstrated. Our scheme provides a possible pathway toward the development of compact multifunctional differentiators and advanced optical analog computing networks.
Collapse
|
47
|
Xia D, Zhi Q, Yang J. Designable optical differential operation based on surface plasmon resonance. OPTICS EXPRESS 2022; 30:37015-37025. [PMID: 36258620 DOI: 10.1364/oe.466136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Various optical differential computing devices have been designed, which have advantages of high speed and low power consumption compared with traditional digital computing. In this paper, considering the reflection of a light beam through a three-layer structure composed of glass, metal and air, we propose a designable optical differential operation based on surface plasmon resonance (SPR). When the SPR is excited under certain conditions, the spin-dependent splitting in the photonic spin Hall effect (SHE) changes dramatically. We first prove theoretically that this three-layer structure can realize one-dimensional optical differential operation. By discussing the transverse beam displacement under different conditions, it is found that the designable differential operation with high sensitivity can be realized by slightly adjusting the incident angle and the thickness of metal film. We design the differentiator which can obtain the image of measured target edge in real time and get different edge effects at different times. This will provide more possible applications for autonomous driving and target recognition.
Collapse
|
48
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
49
|
Liu J, Wang H, Kogos LC, Li Y, Li Y, Tian L, Paiella R. Optical spatial filtering with plasmonic directional image sensors. OPTICS EXPRESS 2022; 30:29074-29087. [PMID: 36299091 DOI: 10.1364/oe.460556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Photonics provides a promising approach for image processing by spatial filtering, with the advantage of faster speeds and lower power consumption compared to electronic digital solutions. However, traditional optical spatial filters suffer from bulky form factors that limit their portability. Here we present a new approach based on pixel arrays of plasmonic directional image sensors, designed to selectively detect light incident along a small, geometrically tunable set of directions. The resulting imaging systems can function as optical spatial filters without any external filtering elements, leading to extreme size miniaturization. Furthermore, they offer the distinct capability to perform multiple filtering operations at the same time, through the use of sensor arrays partitioned into blocks of adjacent pixels with different angular responses. To establish the image processing capabilities of these devices, we present a rigorous theoretical model of their filter transfer function under both coherent and incoherent illumination. Next, we use the measured angle-resolved responsivity of prototype devices to demonstrate two examples of relevant functionalities: (1) the visualization of otherwise invisible phase objects and (2) spatial differentiation with incoherent light. These results are significant for a multitude of imaging applications ranging from microscopy in biomedicine to object recognition for computer vision.
Collapse
|
50
|
Wang A, Zhu J, Luo L, Liu X, Ye L, Zhang Z, Du J. Optical differentiation based on weak measurements. OPTICS LETTERS 2022; 47:3880-3883. [PMID: 35913337 DOI: 10.1364/ol.463016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Optical differentiation shows much potential to be applied in computation due to its strong parallelizability. Currently, each optical differential method can only obtain partial differential information. Here, we propose a general approach to obtain complete differentiation. Compared to previous methods, we can separately obtain the differentiation of amplitude and phase, reserve the negative value of the differentiation, and acquire the differentiation in arbitrary directions of the two-dimensional field. We measure the differentiation of the Gaussian beam to demonstrate this method. A practical experiment of identifying the move direction of the motion-blurred image is also presented to verify the practicability of our method. Our method can further be applied to intelligence algorithms, image identification, and optical analog computing.
Collapse
|