1
|
Lau F, Binacchi R, Brugnara S, Cumplido-Mayoral A, Savino SD, Khan I, Orso A, Sartori S, Bellosta P, Carl M, Poggi L, Provenzano G. Using Single-Cell RNA sequencing with Drosophila, Zebrafish, and mouse models for studying Alzheimer's and Parkinson's disease. Neuroscience 2025; 573:505-517. [PMID: 40154937 DOI: 10.1016/j.neuroscience.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Alzheimer's and Parkinson's disease are the most common neurodegenerative diseases, significantly affecting the elderly with no current cure available. With the rapidly aging global population, advancing research on these diseases becomes increasingly critical. Both disorders are often studied using model organisms, which enable researchers to investigate disease phenotypes and their underlying molecular mechanisms. In this review, we critically discuss the strengths and limitations of using Drosophila, zebrafish, and mice as models for Alzheimer's and Parkinson's research. A focus is the application of single-cell RNA sequencing, which has revolutionized the field by providing novel insights into the cellular and transcriptomic landscapes characterizing these diseases. We assess how combining animal disease modeling with high-throughput sequencing and computational approaches has advanced the field of Alzheimer's and Parkinson's disease research. Thereby, we highlight the importance of integrative multidisciplinary approaches to further our understanding of disease mechanisms and thus accelerating the development of successful therapeutic interventions.
Collapse
Affiliation(s)
- Frederik Lau
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Rebecca Binacchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Brugnara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Alba Cumplido-Mayoral
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Serena Di Savino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Ihsanullah Khan
- Department of Civil, Environmental and Mechanical Engineering, University of Trento 38123 Trento, Italy
| | - Angela Orso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy; Department of Medicine NYU Grossman School of Medicine, 550 First Avenue, 10016 NY, USA.
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento 38123 Trento, Italy.
| |
Collapse
|
2
|
Du Z, Li S, Peng H, Li J, Li Z, Ru S, Wang W. Low lipid levels caused by bisphenol S exposure trigger neuroinflammation and apoptosis in the brain of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107328. [PMID: 40121740 DOI: 10.1016/j.aquatox.2025.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Bisphenol S (BPS), as an environmental pollutant, is known to reduce brain lipid levels and induce neurotoxicity. However, whether brain lipid imbalance can induce neurotoxicity has not yet been clarified. Here, wild-type zebrafish and apoEb mutant zebrafish were used to investigate the effect of BPS on the macrophages proliferation and microglia mobilization caused by the decrease of cerebral lipids and its potential neurotoxic effects. The zebrafish exposed to BPS (1, 10, or 100 μg/L) from 2 hours after fertilization (hpf) to 3 days after fertilization (dpf) displayed microglial aggregation, as well as a decrease in brain lipid content. Lipidomic analyses of the brains and plasma of 50 dpf zebrafish exposed to BPS were used to identify key lipids, including lysophosphatidylcholine and phosphatidylcholine in brain and phosphatidylcholine in plasma. The apoEb mutant zebrafish as a hyperlipidemia model was used to further demonstrate that BPS-induced lipid reduction increased the number of microglia in the brain. Our data provide new insight into the mechanism by which pollutants cause neurotoxicity.
Collapse
Affiliation(s)
- Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuai Li
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Qin H, Yu S, Han R, He J. Age-dependent glial heterogeneity and traumatic injury responses in a vertebrate brain structure. Cell Rep 2025; 44:115508. [PMID: 40198221 DOI: 10.1016/j.celrep.2025.115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
The progression of traumatic brain injury (TBI) pathology is significantly influenced by age and involves a complex interplay of glial cells. However, the influence of age on the glial dynamics and their TBI responses remains mostly unexplored. Here, we obtain a comprehensive single-cell transcriptome atlas of three major glial types under the physiological and TBI conditions across four post-embryonic life stages in the zebrafish midbrain optic tectum. We identify a library of glial subtypes and states with specific age-dependent patterns that respond distinctly to TBI. Combining the glial interactome analysis and CRISPR-Cas9-mediated gene disruption, we reveal the essential roles of dla-notch3 and cxcl12a-cxcr4b interactions in the early-larval-stage-specific unresponsiveness of radial astrocytes to TBI and the TBI-induced age-independent recruitment of microglia to injury sites, respectively. Overall, our findings provide the molecular and cellular framework of TBI-induced age-related glial dynamics in vertebrate brains.
Collapse
Affiliation(s)
- Huiwen Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyi Han
- Department of Ophthalmology, Eye, ENT Hospital of Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment, Restoration, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Fudan University, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
4
|
Kroll F, Donnelly J, Özcan GG, Mackay E, Rihel J. Behavioural pharmacology predicts disrupted signalling pathways and candidate therapeutics from zebrafish mutants of Alzheimer's disease risk genes. eLife 2025; 13:RP96839. [PMID: 39960847 PMCID: PMC11832171 DOI: 10.7554/elife.96839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
By exposing genes associated with disease, genomic studies provide hundreds of starting points that should lead to druggable processes. However, our ability to systematically translate these genomic findings into biological pathways remains limited. Here, we combine rapid loss-of-function mutagenesis of Alzheimer's risk genes and behavioural pharmacology in zebrafish to predict disrupted processes and candidate therapeutics. FramebyFrame, our expanded package for the analysis of larval behaviours, revealed that decreased night-time sleep was common to F0 knockouts of all four late-onset Alzheimer's risk genes tested. We developed an online tool, ZOLTAR, which compares any behavioural fingerprint to a library of fingerprints from larvae treated with 3677 compounds. ZOLTAR successfully predicted that sorl1 mutants have disrupted serotonin signalling and identified betamethasone as a drug which normalises the excessive day-time sleep of presenilin-2 knockout larvae with minimal side effects. Predictive behavioural pharmacology offers a general framework to rapidly link disease-associated genes to druggable pathways.
Collapse
Affiliation(s)
- François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institut de la Vision, Sorbonne UniversitéParisFrance
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Lin G, Wang Y, Pham TG, Wen Z. Dendritic cells in developing and adult zebrafish arise from different origins and display distinct flt3 dependencies. Development 2025; 152:DEV204410. [PMID: 39866089 DOI: 10.1242/dev.204410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Dendritic cells (DCs) are key cellular components of the immune system and perform crucial functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that, in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs. The EHP-derived DCs emerge early, predominantly colonizing the developing thymus during larval stages and diminishing by juvenile stages. In contrast, HSC-derived DCs emerge later and can populate different tissues from late larval stages to adulthood. We further document that the EHP- and HSC-derived DCs display different dependencies on Fms-like tyrosine kinase 3 (Flt3), a pivotal receptor tyrosine kinase crucial for DC development in mammals. Our study reveals the presence of two distinct waves of DC development in zebrafish, each with unique origins and developmental controls.
Collapse
Affiliation(s)
- Guanzhen Lin
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 000000, China
| | - Youqi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 000000, China
| | - Thi Giang Pham
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 000000, China
| | - Zilong Wen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
6
|
Mizoguchi T, Maki A, Nakase Y, Okita M, Minami Y, Fukunaga M, Itoh M. Neurological function is restored post-ischemic stroke in zebrafish, with aging exerting a deleterious effect on its pathology. Brain Res Bull 2025; 221:111225. [PMID: 39864594 DOI: 10.1016/j.brainresbull.2025.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Ischemic stroke (IS) is a pathological condition characterized by the cessation of blood flow due to factors such as thrombosis, inflicting severe damage to the cranial nervous system and resulting in numerous disabilities including memory impairments and hemiplegia. Despite the critical nature of this condition, therapeutic options remain limited, with a pressing challenge being the development of treatments aimed at restoring neurological function. In this study, we leveraged zebrafish, renowned for their exceptional regenerative capabilities, to analyze the pathology of IS and the subsequent recovery process. We induced photothrombosis in the telencephalon utilizing rose bengal and conducted a temporal investigation of changes in cerebral vascular function and learning ability. Our findings revealed that blood flow in young zebrafish was restored approximately 7 days post-IS induction (dpi), with brain function recuperating by 14 dpi. Furthermore, we observed an escalation in the expression of the neural stem marker gene at 3dpi, followed by an upregulation of the differentiated neuron marker at 7 and 14dpi. In the aged IS model, symptoms were exacerbated. While cerebral blood flow was restored in 7 days, similar to young zebrafish, the recovery of learning ability was protracted in aged fish. Moreover, an upregulation of the differentiated neuron marker seen in young fish was not observed in the aged model. Collectively, our analysis of the zebrafish IS model and its comparison with existing rodent models may lay the groundwork for novel IS treatment strategies. Furthermore, the zebrafish IS model may prove beneficial for analyzing the impact of aging on the pathology of IS and the recovery process.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayumi Maki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuno Nakase
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Okita
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuina Minami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Misa Fukunaga
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
7
|
Li Y, Xu X, Zhang C, Sun X, Zhou S, Li X, Guo J, Hu R, Qu J, Liu L. In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410605. [PMID: 39716869 PMCID: PMC11831470 DOI: 10.1002/advs.202410605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Monitoring the morphological and biochemical information of neurons and glial cells at high temporal resolution in three-dimensional (3D) volumes of in vivo is pivotal for understanding their structure and function, and quantifying the brain microenvironment. Conventional two-photon fluorescence lifetime volumetric imaging speed faces the acquisition speed challenges of slow serial focal tomographic scanning, complex post-processing procedures for lifetime images, and inherent trade-offs among contrast, signal-to-noise ratio, and speed. This study presents a two-photon fluorescence lifetime volumetric projection microscopy using an axially elongated Bessel focus and instant frequency-domain fluorescence lifetime technique, and integrating with a convolutional network to enhance the imaging speed for in vivo neurodynamics mapping. The proposed method is validated by monitoring intracellular Ca2+ concentration throughout whole volume, tracking microglia movement and microenvironmental changes following thermal injury in the zebrafish brain, analyzing structural and functional variations of gap junctions in astrocyte networks, and measuring the Ca2+ concentration in neurons in mouse brains. This innovative methodology enables quantitative in vivo visualization of neurodynamics and the cellular processes and interactions in the brain.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiangcong Xu
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Chao Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xuefeng Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Sisi Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xuan Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Rui Hu
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration & Key Laboratory of Optoelectronic Devices and SystemsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
8
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
10
|
Kembou-Ringert JE, Hotio FN, Steinhagen D, Thompson KD, Surachetpong W, Rakus K, Daly JM, Goonawardane N, Adamek M. Knowns and unknowns of TiLV-associated neuronal disease. Virulence 2024; 15:2329568. [PMID: 38555518 PMCID: PMC10984141 DOI: 10.1080/21505594.2024.2329568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Tilapia Lake Virus (TiLV) is associated with pathological changes in the brain of infected fish, but the mechanisms driving the virus's neuropathogenesis remain poorly characterized. TiLV establishes a persistent infection in the brain of infected fish even when the virus is no longer detectable in the peripheral organs, rendering therapeutic interventions and disease management challenging. Moreover, the persistence of the virus in the brain may pose a risk for viral reinfection and spread and contribute to ongoing tissue damage and neuroinflammatory processes. In this review, we explore TiLV-associated neurological disease. We discuss the possible mechanism(s) used by TiLV to enter the central nervous system (CNS) and examine TiLV-induced neuroinflammation and brain immune responses. Lastly, we discuss future research questions and knowledge gaps to be addressed to significantly advance this field.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of infection, immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Fortune N. Hotio
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
12
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
13
|
Gordon H, Schafer ZT, Smith CJ. Microglia cannibalism and efferocytosis leads to shorter lifespans of developmental microglia. PLoS Biol 2024; 22:e3002819. [PMID: 39475879 PMCID: PMC11524473 DOI: 10.1371/journal.pbio.3002819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/29/2024] [Indexed: 11/02/2024] Open
Abstract
The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here, we show an additional feature of the developing nervous system that causes neural debris-promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood. Using transgenic zebrafish to investigate the microglia debris during brain construction, we identified that unlike other neural cell types that die in developmental stages after they have expanded, necroptosis-dependent microglial debris is prevalent when microglia are expanding in the zebrafish brain. Time-lapse imaging of microglia demonstrates that this debris is cannibalized by other microglia. To investigate features that promote microglia death and cannibalism, we used time-lapse imaging and fate-mapping strategies to track the lifespan of individual developmental microglia. These approaches revealed that instead of embryonic microglia being long-lived cells that completely digest their phagocytic debris, once most developmental microglia in zebrafish become phagocytic they eventually die, including ones that are cannibalistic. These results establish a paradox-which we tested by increasing neural debris and manipulating phagocytosis-that once most microglia in the embryo become phagocytic, they die, create debris, and then are cannibalized by other microglia, resulting in more phagocytic microglia that are destined to die.
Collapse
Affiliation(s)
- Hannah Gordon
- Department of Biological Sciences at the University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine at the University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Zachary T. Schafer
- Department of Biological Sciences at the University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences at the University of Notre Dame, Notre Dame, Indiana, United States of America
- The Center for Stem Cells and Regenerative Medicine at the University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
14
|
Yu T, Chen J, Wang Y, Xu J. The embryonic zebrafish brain is exclusively colonized by pu.1-dependent and lymphatic-independent population of microglia. SCIENCE ADVANCES 2024; 10:eado0519. [PMID: 39196933 PMCID: PMC11352844 DOI: 10.1126/sciadv.ado0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Microglia, the crucial immune cells inhabiting the central nervous system (CNS), perform a range of vital functions, encompassing immune defense and neuronal regulation. Microglia subsets with diverse functions and distinct developmental regulations have been identified recently. It is generally accepted that all microglia originate from hematopoiesis and depend on the myeloid transcription factor PU.1. However, a recent study reported the existence of mrc1+ microglia in zebrafish embryos, which are seemingly independent of Pu.1 and reliant on lymphatic vessels, sparking great interest in the possibility of lymphatic-originated microglia. To address this, we took advantage of a pu.1 knock-in zebrafish allele for a detailed investigation. Our results conclusively showed that almost all zebrafish embryonic microglia (~95% on average) express pu.1. Further, lineage tracing and mutant analysis revealed that these microglia neither emerged from nor depended on lymphatic vessels. In essence, our study refutes the presence of pu.1-independent but lymphatic-dependent microglia.
Collapse
Affiliation(s)
- Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jiahao Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yuexin Wang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jin Xu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Carrier M, Robert MÈ, St-Pierre MK, Ibáñez FG, Gonçalves de Andrade E, Laroche A, Picard K, Vecchiarelli HA, Savage JC, Boilard É, Desjardins M, Tremblay MÈ. Bone marrow-derived myeloid cells transiently colonize the brain during postnatal development and interact with glutamatergic synapses. iScience 2024; 27:110037. [PMID: 39021809 PMCID: PMC11253522 DOI: 10.1016/j.isci.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/01/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Although the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3+IBA1+). FLT3+IBA1+ cells were confirmed to be transiently present in the healthy brain during early postnatal development. FLT3+IBA1+ cells have a distinct morphology index at postnatal day(P)0, P7, and P14 compared with neighboring microglia. FLT3+IBA1+ cells also express the microglial markers P2RY12 and TMEM119 and interact with VGLUT1 synapses at P14. Scanning electron microscopy indeed showed that FLT3+ cells contact and engulf pre-synaptic elements. Our findings suggest FLT3+IBA1+ cells might assist microglia in their physiological functions in the developing brain including synaptic pruning which is performed using their purinergic sensors. Our findings stimulate further investigation on the involvement of peripheral macrophages during homeostatic and pathological development.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Marie-Ève Robert
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Audrée Laroche
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Picard
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
| | | | - Julie C. Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Éric Boilard
- Département de microbiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC G1V 0A6, Canada
- Oncology Division, Centre de recherche du CHU de Québec, Université Laval, Québec City, QC G1V 4G2, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 3E6, Canada
- Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 0G4 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
16
|
Hou X, Li Q. Medulla oblongata and NCCs are central defenders against Streptococcus agalactiae infection of the tilapia brain. Front Immunol 2024; 15:1442906. [PMID: 39011038 PMCID: PMC11246860 DOI: 10.3389/fimmu.2024.1442906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various types of professional immune cells first emerge in fish and likely represent the primordial form and functions. Recent advancements revealed the direct connection between the central nervous system and the immune system in the mammalian brain. However, the specifics of brain-immune networks in the fish and the underlying mechanisms of teleost's brain against pathogen infection have not been fully elucidated. In this study, we investigated the distribution of markers representing cerebral cells associated with protection and professional lymphocytes in the seven major components of the Nile tilapia brain through RNA-Seq assay and observed the most dominant abundance in the medulla oblongata. The subsequent challenge test revealed the non-specific cytotoxic cells (NCCs) exhibited the strongest response against streptococcal infection of the brain. The presence of NCCs in the brain was then confirmed using immunofluorescence and the cytotoxic effects usually induced by NCCs under infection were determined as well. Collectively, these findings contribute significantly to comprehending the mechanism of fish neuroimmune interaction and enhancing our understanding of its evolutionary development.
Collapse
Affiliation(s)
- Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
17
|
Chen H, Xie Y, Zhang M, Huang J, Jiang W, Zhang R, Li C, Du X, Chen H, Nie Q, Liang S, Tan Q, Yang J, Jin M, Huang S, Kuang L, Su N, Qi H, Luo X, Xu X, Deng C, Chen L, Luo F. An Hsp70 promoter-based mouse for heat shock-induced gene modulation. J Mol Med (Berl) 2024; 102:693-707. [PMID: 38492027 DOI: 10.1007/s00109-024-02433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.
Collapse
Affiliation(s)
- Hangang Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yangli Xie
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Mei Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Junlan Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wanling Jiang
- Department of Chinese Medicine Rehabilitation, Chongqing Emergency Medical Center, Chongqing University Central Hospital), Chongqing, 400042, China
| | - Ruobin Zhang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Can Li
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiaolan Du
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Hua Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Qiang Nie
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Sen Liang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Qiaoyan Tan
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jing Yang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Min Jin
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shuo Huang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Liang Kuang
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Nan Su
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Huabing Qi
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqing Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lin Chen
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Fengtao Luo
- Laboratory of Wound Repair and Rehabilitation Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
19
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
20
|
Morizet D, Foucher I, Alunni A, Bally-Cuif L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat Commun 2024; 15:3306. [PMID: 38632253 PMCID: PMC11024210 DOI: 10.1038/s41467-024-47484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D. rerio as a distant vertebrate model with moderate glial diversity as anchor to reanalyze datasets covering over 600 million years of evolution. We identify core features of adult neurogenesis and innovations in the mammalian lineage with a potential link to the rarity of radial glia-like cells in adult humans. Our results also suggest that functions associated with astrocytes originated in a multifunctional cell type fulfilling both neural stem cell and astrocytic functions before these diverged. Finally, we identify conserved elements of macroglial cell identity and function and their time of emergence during evolution.
Collapse
Affiliation(s)
- David Morizet
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
- Sorbonne Université, Collège doctoral, F-75005, Paris, France.
| | - Isabelle Foucher
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
| | - Alessandro Alunni
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, F-91190, Gif-sur-Yvette, France
| | - Laure Bally-Cuif
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
21
|
Zhang Y, Wang D, Liu J, Bai Y, Fan B, Lu C, Wang F. Structural Characterization and Antidepressant-like Effects of Polygonum sibiricum Polysaccharides on Regulating Microglial Polarization in Chronic Unpredictable Mild Stress-Induced Zebrafish. Int J Mol Sci 2024; 25:2005. [PMID: 38396684 PMCID: PMC10888389 DOI: 10.3390/ijms25042005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.
Collapse
Affiliation(s)
- Yingyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Danyang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
| | - Yajuan Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.Z.); (D.W.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
22
|
Nguyen LTM, Hassan S, Pan H, Wu S, Wen Z. Interplay of Zeb2a, Id2a and Batf3 regulates microglia and dendritic cell development in the zebrafish brain. Development 2024; 151:dev201829. [PMID: 38240311 DOI: 10.1242/dev.201829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
In vertebrates, the central nervous system (CNS) harbours various immune cells, including parenchymal microglia, perivascular macrophages and dendritic cells, which act in coordination to establish an immune network to regulate neurogenesis and neural function, and to maintain the homeostasis of the CNS. Recent single cell transcriptomic profiling has revealed that the adult zebrafish CNS contains microglia, plasmacytoid dendritic cells (pDCs) and two conventional dendritic cells (cDCs), ccl35+ cDCs and cnn3a+cDCs. However, how these distinct myeloid cells are established in the adult zebrafish CNS remains incompletely defined. Here, we show that the Inhibitor of DNA binding 2a (Id2a) is essential for the development of pDCs and cDCs but is dispensable for the formation of microglia, whereas the Basic leucine zipper transcription factor ATF-like 3 (Batf3) acts downstream of id2a and is required exclusively for the formation of the cnn3a+ cDC subset. In contrast, the Zinc finger E-box-binding homeobox 2a (Zeb2a) promotes the expansion of microglia and inhibits the DC specification, possibly through repressing id2a expression. Our study unravels the genetic networks that govern the development of microglia and brain-associated DCs in the zebrafish CNS.
Collapse
Affiliation(s)
- Linh Thi My Nguyen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shaoli Hassan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongru Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shuting Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Immunology and Microbiology, School of Life Science, the Southern University of Science and Technology, Shenzhen 518000, China
| |
Collapse
|
23
|
Wang X, Yang X, He W, Zhang S, Song X, Zhang J, Ma J, Chen L, Niu P, Chen T. Single-cell transcriptomics analysis of zebrafish brain reveals adverse effects of manganese on neurogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122908. [PMID: 37952916 DOI: 10.1016/j.envpol.2023.122908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Manganese (Mn) is considered as an important environmental risk factor for Parkinson's disease. Excessive exposure to Mn can damage various neural cells and affect the neurogenesis, resulting in neurological dysfunction. However, the specific mechanisms of Mn exposure affecting neurogenesis have not been well understood, including compositional changes and heterogeneity of various neural cells. Zebrafish have been successfully used as a neurotoxicity model due to its homology with mammals in several key regions of the brain, as well as its advantages such as small size. We performed single-cell RNA sequencing of zebrafish brains from normal and Mn-exposed groups. Our results suggested that low levels of Mn exposure activated neurogenesis in the zebrafish brain, including promoting the proliferation of neural progenitor cells and differentiation to newborn neurons and oligodendrocytes, while high levels of Mn exposure inhibited neurogenesis and neural function. Mn could affect neurogenesis through specific molecular pathways. In addition, Mn regulated intercellular communication and affected cellular communication in neural cells through specific signaling pathways. Taken together, our study elucidates the cellular composition of the zebrafish brain and adds to the understanding of the mechanisms involved in Mn-induced neurogenesis damage.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
24
|
Butler T, Wang X, Chiang G, Xi K, Niogi S, Glodzik L, Li Y, Razlighi QR, Zhou L, Hojjati SH, Ozsahin I, Mao X, Maloney T, Tanzi E, Rahmouni N, Tissot C, Lussier F, Shah S, Shungu D, Gupta A, De Leon M, Mozley PD, Pascoal TA, Rosa-Neto P. Reduction in Constitutively Activated Auditory Brainstem Microglia in Aging and Alzheimer's Disease. J Alzheimers Dis 2024; 99:307-319. [PMID: 38669537 DOI: 10.3233/jad-231312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective To define age and AD associations of brainstem TSPO PET signal in humans. Methods We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Xiuyuan Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Gloria Chiang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sumit Niogi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ilker Ozsahin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Maloney
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Tanzi
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| | - Sudhin Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Dikoma Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mony De Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Tharick A Pascoal
- Departments of Neurology and Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montréal, QC, Canada
| |
Collapse
|
25
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
26
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
27
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Mu X, Wang K, He L, Liu Z, Zhang Y, Zhang R, Duan M, Wang C. Neural System Impairment and Involved Microglia-Neuron Regulation of Broflanilide in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14138-14149. [PMID: 37695573 DOI: 10.1021/acs.est.3c03626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Broflanilide is widely used to control pests and has attracted attention due to its adverse effects on aquatic organisms. Our previous study showed that broflanilide has a negative impact on the central nervous system (CNS) at lethal dosages; however, its neural effects under practical situations and the underlying mechanisms remain unknown. To elucidate how broflanilide affects the CNS, we exposed zebrafish larvae to broflanilide at 16.9 and 88.0 μg/L (the environmentally relevant concentrations) for 120 h. Zebrafish locomotion was significantly disturbed at 88.0 μg/L, with a decreased moving distance and velocity accompanied by an inhibited neurotransmitter level. In vivo neuroimaging analysis indicated that the nerves of zebrafish larvae, including the axons, myelin sheaths, and neurons, were impaired. The number of neurons was significantly reduced after exposure, with an impaired morphological structure. These changes were accompanied by the abnormal transcription of genes involved in early CNS development. In addition, an increased total number of microglia and an elevated proportion of amoeboid microglia were observed after 88.0 μg/L broflanilide exposure, pointing out to an upstream role of microglia activation in mediating broflanilide neurotoxicity. Meanwhile, increased inflammatory cytokine levels and brain neutrophil numbers were observed, implicating significant inflammatory response and immune toxicity. Our findings indicate that broflanilide interferes with microglia-neuron regulation and induces neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang 100866, People's Republic of China
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang 100866, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yining Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Ru Zhang
- Plant Protection College, Shenyang Agricultural University, Shenyang 100866, People's Republic of China
| | - Manman Duan
- College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
29
|
Zhou Q, Zhao C, Yang Z, Qu R, Li Y, Fan Y, Tang J, Xie T, Wen Z. Cross-organ single-cell transcriptome profiling reveals macrophage and dendritic cell heterogeneity in zebrafish. Cell Rep 2023; 42:112793. [PMID: 37453064 DOI: 10.1016/j.celrep.2023.112793] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Tissue-resident macrophages (TRMs) and dendritic cells (DCs) are highly heterogeneous and essential for immunity, tissue regeneration, and homeostasis maintenance. Here, we comprehensively profile the heterogeneity of TRMs and DCs across adult zebrafish organs via single-cell RNA sequencing. We identify two macrophage subsets: pro-inflammatory macrophages with potent phagocytosis signatures and pro-remodeling macrophages with tissue regeneration signatures in barrier tissues, liver, and heart. In parallel, one conventional dendritic cell (cDC) population with prominent antigen presentation capacity and plasmacytoid dendritic cells (pDCs) featured by anti-virus properties are also observed in these organs. Remarkably, in addition to a single macrophage/microglia population with potent phagocytosis capacity, a pDC population and two distinct cDC populations are identified in the brain. Finally, we generate specific reporter lines for in vivo tracking of macrophage and DC subsets. Our study depicts the landscape of TRMs and DCs and creates valuable tools for in-depth study of these cells in zebrafish.
Collapse
Affiliation(s)
- Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhiyong Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Rui Qu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yining Fan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinlin Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
30
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Molinaro AM, Pike SC, Karra P, Christensen BC, Salas LA. Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Front Neurosci 2023; 17:1198243. [PMID: 37404460 PMCID: PMC10315586 DOI: 10.3389/fnins.2023.1198243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The human brain comprises heterogeneous cell types whose composition can be altered with physiological and pathological conditions. New approaches to discern the diversity and distribution of brain cells associated with neurological conditions would significantly advance the study of brain-related pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA methylation-based deconvolution does not require special sample handling or processing, is cost-effective, and easily scales to large study designs. Existing DNA methylation-based methods for brain cell deconvolution are limited in the number of cell types deconvolved. Methods Using DNA methylation profiles of the top cell-type-specific differentially methylated CpGs, we employed a hierarchical modeling approach to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. Results We demonstrate the utility of our method by applying it to data on normal tissues from various brain regions and in aging and diseased tissues, including Alzheimer's disease, autism, Huntington's disease, epilepsy, and schizophrenia. Discussion We expect that the ability to determine the cellular composition in the brain using only DNA from bulk samples will accelerate understanding brain cell type composition and cell-type-specific epigenetic states in normal and diseased brain tissues.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl T. Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven C. Pike
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Prasoona Karra
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
31
|
Emmerich K, White DT, Kambhampati SP, Casado GL, Fu TM, Chunawala Z, Sahoo A, Nimmagadda S, Krishnan N, Saxena MT, Walker SL, Betzig E, Kannan RM, Mumm JS. Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina. Commun Biol 2023; 6:534. [PMID: 37202450 PMCID: PMC10193316 DOI: 10.1038/s42003-023-04898-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
Retinal Müller glia function as injury-induced stem-like cells in zebrafish but not mammals. However, insights gleaned from zebrafish have been applied to stimulate nascent regenerative responses in the mammalian retina. For instance, microglia/macrophages regulate Müller glia stem cell activity in the chick, zebrafish, and mouse. We previously showed that post-injury immunosuppression by the glucocorticoid dexamethasone accelerated retinal regeneration kinetics in zebrafish. Similarly, microglia ablation enhances regenerative outcomes in the mouse retina. Targeted immunomodulation of microglia reactivity may therefore enhance the regenerative potential of Müller glia for therapeutic purposes. Here, we investigated potential mechanisms by which post-injury dexamethasone accelerates retinal regeneration kinetics, and the effects of dendrimer-based targeting of dexamethasone to reactive microglia. Intravital time-lapse imaging revealed that post-injury dexamethasone inhibited microglia reactivity. The dendrimer-conjugated formulation: (1) decreased dexamethasone-associated systemic toxicity, (2) targeted dexamethasone to reactive microglia, and (3) improved the regeneration enhancing effects of immunosuppression by increasing stem/progenitor proliferation rates. Lastly, we show that the gene rnf2 is required for the enhanced regeneration effect of D-Dex. These data support the use of dendrimer-based targeting of reactive immune cells to reduce toxicity and enhance the regeneration promoting effects of immunosuppressants in the retina.
Collapse
Affiliation(s)
- Kevin Emmerich
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David T White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Siva P Kambhampati
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Grace L Casado
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Tian-Ming Fu
- Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Electrical and Computer Engineering and Princeton Bioengineering Initiative, Princeton University, Princeton, NJ, USA
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Arpan Sahoo
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Nimisha Krishnan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Steven L Walker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric Betzig
- Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Rangaramanujam M Kannan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Jeff S Mumm
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Zhao C, Li Y, Tang J, Zhou Q, Lin X, Wen Z. Metaphocytes are IL-22BP-producing cells regulated by ETS transcription factor Spic and essential for zebrafish barrier immunity. Cell Rep 2023; 42:112483. [PMID: 37148242 DOI: 10.1016/j.celrep.2023.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.
Collapse
Affiliation(s)
- Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinlin Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xi Lin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MS 02115, USA
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
33
|
Pandey S, Moyer AJ, Thyme SB. A single-cell transcriptome atlas of the maturing zebrafish telencephalon. Genome Res 2023; 33:658-671. [PMID: 37072188 PMCID: PMC10234298 DOI: 10.1101/gr.277278.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
The zebrafish telencephalon is composed of highly specialized subregions that regulate complex behaviors such as learning, memory, and social interactions. The transcriptional signatures of the neuronal cell types in the telencephalon and the timeline of their emergence from larva to adult remain largely undescribed. Using an integrated analysis of single-cell transcriptomes of approximately 64,000 cells obtained from 6-day-postfertilization (dpf), 15-dpf, and adult telencephalon, we delineated nine main neuronal cell types in the pallium and eight in the subpallium and nominated novel marker genes. Comparing zebrafish and mouse neuronal cell types revealed both conserved and absent types and marker genes. Mapping of cell types onto a spatial larval reference atlas created a resource for anatomical and functional studies. Using this multiage approach, we discovered that although most neuronal subtypes are established early in the 6-dpf fish, some emerge or expand in number later in development. Analyzing the samples from each age separately revealed further complexity in the data, including several cell types that expand substantially in the adult forebrain and do not form clusters at the larval stages. Together, our work provides a comprehensive transcriptional analysis of the cell types in the zebrafish telencephalon and a resource for dissecting its development and function.
Collapse
Affiliation(s)
- Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
| | - Anna J Moyer
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Summer B Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| |
Collapse
|
34
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
35
|
He J, Zhao F, Chen B, Cui N, Li Z, Qin J, Luo L, Zhao C, Li L. Alterations in immune cell heterogeneities in the brain of aged zebrafish using single-cell resolution. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2223-4. [PMID: 36607494 DOI: 10.1007/s11427-021-2223-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
Immunocytes, including the microglia, are crucial in the neurodegenerative process in old people. However, the understanding of regarding microglia heterogeneity and other involved immunocytes remains elusive. We analyzed 26,456 immunocytes from 12-and 26-month-old zebrafish brains at single-cell resolution. Microglia and T lymphocytes were detected in the brain at both time points. Two types of microglia were annotated, namely, ac+ microglia and xr+ microglia, which were clustered into subsets 1, 2, 3, 4, 5, and subsets 6, 7, 8, 9, respectively. Diversified microglia predominated the adult brains and cooperated with T cells to perform the functions of immune response and neuronal nutrition. We validated the specific microglia markers. The novel transgenic lines, Tg(lgals3bpb:eGFP) and Tg(apoc1:eGFP), were created, which faithfully labeled ac+ microglia and served as valuable labeling tools. However, the microglia population reduced while T cells of six subtypes intriguingly increased to serve as the primary immune cells in aged brains. Unlike in 12-month-old brains, T cells, together with microglia, exhibited a coordinated signature of inflammation in the 26-month-old brains. Our findings revealed the immunocytes atlas in aged zebrafish brains. It implied the involvement of microglia and T cells in the progression of neurodegeneration in aging.
Collapse
Affiliation(s)
- Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China.,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Bingyue Chen
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Nianfei Cui
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Zhifan Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, China. .,Research Center of Stem cells and Aging, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
36
|
Microglia and Cholesterol Handling: Implications for Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10123105. [PMID: 36551857 PMCID: PMC9775660 DOI: 10.3390/biomedicines10123105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.
Collapse
|
37
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
38
|
Bruckner JJ, Stednitz SJ, Grice MZ, Zaidan D, Massaquoi MS, Larsch J, Tallafuss A, Guillemin K, Washbourne P, Eisen JS. The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol 2022; 20:e3001838. [PMID: 36318534 PMCID: PMC9624426 DOI: 10.1371/journal.pbio.3001838] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Host-associated microbiotas guide the trajectory of developmental programs, and altered microbiota composition is linked to neurodevelopmental conditions such as autism spectrum disorder. Recent work suggests that microbiotas modulate behavioral phenotypes associated with these disorders. We discovered that the zebrafish microbiota is required for normal social behavior and reveal a molecular pathway linking the microbiota, microglial remodeling of neural circuits, and social behavior in this experimentally tractable model vertebrate. Examining neuronal correlates of behavior, we found that the microbiota restrains neurite complexity and targeting of forebrain neurons required for normal social behavior and is necessary for localization of forebrain microglia, brain-resident phagocytes that remodel neuronal arbors. The microbiota also influences microglial molecular functions, including promoting expression of the complement signaling pathway and the synaptic remodeling factor c1q. Several distinct bacterial taxa are individually sufficient for normal microglial and neuronal phenotypes, suggesting that host neuroimmune development is sensitive to a feature common among many bacteria. Our results demonstrate that the microbiota influences zebrafish social behavior by stimulating microglial remodeling of forebrain circuits during early neurodevelopment and suggest pathways for new interventions in multiple neurodevelopmental disorders.
Collapse
Affiliation(s)
- Joseph J. Bruckner
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Sarah J. Stednitz
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Max Z. Grice
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dana Zaidan
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michelle S. Massaquoi
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Johannes Larsch
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Alexandra Tallafuss
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
39
|
Narra SS, Rondeau P, Fernezelian D, Gence L, Ghaddar B, Bourdon E, Lefebvre d'Hellencourt C, Rastegar S, Diotel N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J Comp Neurol 2022; 531:238-255. [PMID: 36282721 DOI: 10.1002/cne.25421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA-sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2 O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems‐Biological Information Processing (IBCS‐BIP), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
40
|
Zhao S, Zhang A, Zhu H, Wen Z. The ETS transcription factor Spi2 regulates hematopoietic cell development in zebrafish. Development 2022; 149:276980. [DOI: 10.1242/dev.200881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The E26 transformation-specific or E-twenty-six (ETS) genes encode a superfamily of transcription factors involved in diverse biological processes. Here, we report the identification and characterization of a previously unidentified member of the ETS transcription factors, Spi2, that is found exclusively in the ray-finned fish kingdom. We show that the expression of spi2 is restricted to hemogenic endothelial cells (HECs) and to hematopoietic stem and progenitor cells (HSPCs) in zebrafish. Using bacteria artificial chromosome transgenesis, we generate a spi2 reporter line, TgBAC(spi2:P2a-GFP), which manifests the GFP pattern recapitulating the endogenous spi2 expression. Genetic ablation of spi2 has little effect on HEC formation and the endothelial-to-hematopoietic transition, but results in compromised proliferation of HSPCs in the caudal hematopoietic tissue (CHT) during early development and in severe myeloid lineage defect in adulthood. Epistatic analysis shows that spi2 acts downstream of runx1 in regulating HSPC development in the CHT. Our study identifies Spi2 as an essential regulator for definitive hematopoietic cell development and creates a TgBAC(spi2:P2a-GFP) reporter line for tracking HECs, HSPCs, myeloid cells and thrombocytes from early development to adulthood.
Collapse
Affiliation(s)
- Shizheng Zhao
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Ao Zhang
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Hao Zhu
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 2 , Shenzhen 518055 , China
| |
Collapse
|
41
|
Mafba and Mafbb regulate microglial colonization of zebrafish brain via controlling chemotaxis receptor expression. Proc Natl Acad Sci U S A 2022; 119:e2203273119. [PMID: 36122226 PMCID: PMC9522419 DOI: 10.1073/pnas.2203273119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microglia are a subpopulation of macrophages residing in the central nervous system (CNS). Because microglial precursors/peripheral macrophages are born in peripheral hematopoietic tissues, the establishment of a microglia pool in the CNS involves two processes: colonization, the homing of macrophages from peripheral tissues to the CNS, and maturation, the differentiation of brain-colonizing macrophages into microglia. This study aims to investigate the molecular mechanisms underlying microglial colonization during early development. Utilizing a zebrafish model system, we show that Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB essential for macrophage differentiation and phagocytosis, regulate microglial colonization of the brain via modulating the lysoPS-Gpr34a signaling pathway during early embryogenesis. Our findings reveal a previously unappreciated genetic mechanism involved in microglial colonization of the brain. Microglia are the central nervous system (CNS)–resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein–coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.
Collapse
|
42
|
Ma WY, Wang SS, Wu QL, Zhou X, Chu SF, Chen NH. The versatile role of TREM2 in regulating of microglia fate in the ischemic stroke. Int Immunopharmacol 2022; 109:108733. [PMID: 35525233 DOI: 10.1016/j.intimp.2022.108733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are the earliest activated and the longest lasting immune cells after stroke, and they participate in almost all the pathological reactions after stroke. However, their regulatory mechanism has not been fully elucidated. Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor that is mainly expressed in microglia of the central nervous system. The receptor plays an important role in regulating microglia energy metabolism and phenotypic transformation. At present, TREM2 has been developed as a potential target for AD, coronary atherosclerosis and other diseases. However, TREM2 does not provide a systematic summary of the functional transformation and intrinsic molecular mechanisms of microglia after stroke. In this paper, we have summarized the functional changes of TREM2 in microglia after stroke in recent years, and found that TREM2 has important effects on energy metabolism, phagocytosis and anti-inflammatory function of microglia after stroke, suggesting that TREM2 is a potential therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
43
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
44
|
Hemogenic and aortic endothelium arise from a common hemogenic angioblast precursor and are specified by the Etv2 dosage. Proc Natl Acad Sci U S A 2022; 119:e2119051119. [PMID: 35333649 PMCID: PMC9060440 DOI: 10.1073/pnas.2119051119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceHematopoietic stem cells (HSCs) are generated from specialized endothelial cells, called hemogenic endothelial cells (HECs). It has been debated whether HECs and non-HSC-forming conventional endothelial cells (cECs) arise from a common precursor or represent distinct lineages. Moreover, the molecular basis underlying their distinct fate determination is poorly understood. We use photoconvertible labeling, time-lapse imaging, and single-cell RNA-sequencing analysis to trace the lineage of HECs. We discovered that HECs and cECs arise from a common hemogenic angioblast precursor, and their distinct fate is determined by high or low dosage of Etv2, respectively. Our results illuminate the lineage origin and a mechanism on the fate determination of HECs, which may enhance the understanding on the ontogeny of HECs in vertebrates.
Collapse
|
45
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
46
|
Devlin BA, Smith CJ, Bilbo SD. Sickness and the social brain: How the immune system regulates behavior across species. BRAIN, BEHAVIOR AND EVOLUTION 2021; 97:197-210. [PMID: 34915474 DOI: 10.1159/000521476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bi-directional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.
Collapse
Affiliation(s)
- Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
47
|
Thiel W, Esposito EJ, Findley AP, Blume ZI, Mitchell DM. Modulation of retinoid-X-receptors differentially regulates expression of apolipoprotein genes apoc1 and apoeb by zebrafish microglia. Biol Open 2021; 11:273656. [PMID: 34878094 PMCID: PMC8822359 DOI: 10.1242/bio.058990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS. Summary: Here we investigate expression of two apolipoprotein genes by microglia in the zebrafish model during normal development, and in contexts of pharmacological manipulations that target candidate regulatory receptors.
Collapse
Affiliation(s)
- Whitney Thiel
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Emma J Esposito
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Anna P Findley
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| | - Diana M Mitchell
- Biological Sciences, University of Idaho, Moscow, ID 83844, Russia
| |
Collapse
|
48
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Mojzesz M, Widziolek M, Adamek M, Orzechowska U, Podlasz P, Prajsnar TK, Pooranachandran N, Pecio A, Michalik A, Surachetpong W, Chadzinska M, Rakus K. Tilapia Lake Virus-Induced Neuroinflammation in Zebrafish: Microglia Activation and Sickness Behavior. Front Immunol 2021; 12:760882. [PMID: 34707620 PMCID: PMC8544261 DOI: 10.3389/fimmu.2021.760882] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
In mammals, the relationship between the immune system and behavior is widely studied. In fish, however, the knowledge concerning the brain immune response and behavioral changes during brain viral infection is very limited. To further investigate this subject, we used the model of tilapia lake virus (TiLV) infection of zebrafish (Danio rerio), which was previously developed in our laboratory. We demonstrated that TiLV persists in the brain of adult zebrafish for at least 90 days, even when the virus is not detectable in other peripheral organs. The virions were found in the whole brain. During TiLV infection, zebrafish displayed a clear sickness behavior: decreased locomotor activity, reduced food intake, and primarily localizes near the bottom zone of aquaria. Moreover, during swimming, individual fish exhibited also unusual spiral movement patterns. Gene expression study revealed that TiLV induces in the brain of adult fish strong antiviral and inflammatory response and upregulates expression of genes encoding microglia/macrophage markers. Finally, using zebrafish larvae, we showed that TiLV infection induces histopathological abnormalities in the brain and causes activation of the microglia which is manifested by changes in cell shape from a resting ramified state in mock-infected to a highly ameboid active state in TiLV-infected larvae. This is the first study presenting a comprehensive analysis of the brain immune response associated with microglia activation and subsequent sickness behavior during systemic viral infection in zebrafish.
Collapse
Affiliation(s)
- Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Widziolek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Urszula Orzechowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz K Prajsnar
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Niedharsan Pooranachandran
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Michalik
- Department of Invertebrate Development and Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
50
|
Silva NJ, Dorman LC, Vainchtein ID, Horneck NC, Molofsky AV. In situ and transcriptomic identification of microglia in synapse-rich regions of the developing zebrafish brain. Nat Commun 2021; 12:5916. [PMID: 34625548 PMCID: PMC8501082 DOI: 10.1038/s41467-021-26206-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain. We found that ramified microglia increased in synaptic regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synaptic-region associated microglia (SAMs) that were highly enriched in the hindbrain and expressed multiple candidate synapse modulating genes, including genes in the complement pathway. In contrast, neurogenic associated microglia (NAMs) were enriched in the optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish the zebrafish hindbrain as a model for investigating microglial-synapse interactions. Microglia remodel synapses and engulf apoptotic cells. The molecular program underlying these distinct functions are unclear. Here, the authors identify distinct microglial subsets associated with synaptic vs. neurogenic regions of the developing zebrafish brain.
Collapse
Affiliation(s)
- Nicholas J Silva
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leah C Dorman
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nadine C Horneck
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|