1
|
Ector C, Didier J, De Landtsheer S, Nordentoft MS, Schmal C, Keilholz U, Herzel H, Kramer A, Sauter T, Granada AE. Circadian clock features define novel subtypes among breast cancer cells and shape drug sensitivity. Mol Syst Biol 2025; 21:315-340. [PMID: 39994450 PMCID: PMC11965565 DOI: 10.1038/s44320-025-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
The circadian clock regulates key physiological processes, including cellular responses to DNA damage. Circadian-based therapeutic strategies optimize treatment timing to enhance drug efficacy and minimize side effects, offering potential for precision cancer treatment. However, applying these strategies in cancer remains limited due to a lack of understanding of the clock's function across cancer types and incomplete insights into how the circadian clock affects drug responses. To address this, we conducted deep circadian phenotyping across a panel of breast cancer cell lines. Observing diverse circadian dynamics, we characterized metrics to assess circadian rhythm strength and stability in vitro. This led to the identification of four distinct circadian-based phenotypes among 14 breast cancer cell models: functional, weak, unstable, and dysfunctional clocks. Furthermore, we demonstrate that the circadian clock plays a critical role in shaping pharmacological responses to various anti-cancer drugs and we identify circadian features descriptive of drug sensitivity. Collectively, our findings establish a foundation for implementing circadian-based treatment strategies in breast cancer, leveraging clock phenotypes and drug sensitivity patterns to optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Carolin Ector
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin School of Integrative Oncology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Jeff Didier
- Department of Life Sciences and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | | | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
- Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4365, Esch-sur-Alzette, Luxembourg
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
| |
Collapse
|
2
|
Zeng B, Sun C, Tang Q, Li N, Chen S, Yang Y, Wang X, Wang S. Bmal1-Mediated Circadian MELK Expression Potentiates MELK Inhibitor Chronotherapy for Esophageal Cancer. Mol Cancer Res 2025; 23:288-299. [PMID: 39699314 DOI: 10.1158/1541-7786.mcr-24-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) remains a global health challenge. Circadian clock and maternal embryonic leucine zipper kinase (MELK) play a key role in tumorigenesis. However, a link between circadian clock dysregulation and MELK function in the occurrence and development of ESCC remains elusive. Here, In the in vivo and in vitro systems, we found for the first time that MELK exhibits pronounced circadian rhythms expression in mice esophageal tissue, xenograft model, and human ESCC cells. The diurnal differences expression between peak (ZT0) and trough (ZT12) points in normal esophageal tissue is nearly 10-fold. Circadian expression of MELK in ESCC cells was regulated by Bmal1 through binding to the MELK promoter. Supporting this, the levels of MELK were increased significantly in patients with ESCC and were accompanied by altered expression of core clock genes, especially, since Bmal1 is prominently upregulated. Most importantly, Bmal1-deleted eliminated the rhythmic expression of MELK, whereas the knockdown of other core genes had no effect on MELK expression. Furthermore, in nude mice with transplanted tumors, the anticancer effect of OTS167 at ZT0 administration is twice that of ZT12. Implications: Our findings suggest that MELK represents a therapeutic target, and can as a regulator of circadian control ESCC growth, with these findings advance our understanding of the clinical potential of chronotherapy and the importance of time-based MELK inhibition in cancer treatment.
Collapse
Affiliation(s)
- Boning Zeng
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of General Practice, Shenzhen Luohu People's Hospital, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chao Sun
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Qian Tang
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Nan Li
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Siying Chen
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yili Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Bhoumik S, Lee Y. Core Molecular Clock Factors Regulate Osteosarcoma Stem Cell Survival and Behavior via CSC/EMT Pathways and Lipid Droplet Biogenesis. Cells 2025; 14:517. [PMID: 40214471 PMCID: PMC11988071 DOI: 10.3390/cells14070517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The circadian clock, an intrinsic 24 h cellular timekeeping system, regulates fundamental biological processes, including tumor physiology and metabolism. Cancer stem cells (CSCs), a subpopulation of cancer cells with self-renewal and tumorigenic capacities, are implicated in tumor initiation, recurrence, and metastasis. Despite growing evidence for the circadian clock's involvement in regulating CSC functions, its precise regulatory mechanisms remain largely unknown. Here, using a human osteosarcoma (OS) model (143B), we have shown that core molecular clock factors are critical for OS stem cell survival and behavior via direct modulation of CSC and lipid metabolic pathways. In single-cell-derived spheroid formation assays, 143B OS cells exhibited robust spheroid-forming capacity under 3D culture conditions. Furthermore, siRNA-mediated depletion of core clock components (i.e., BMAL1, CLOCK, CRY1/2, PER1/2)-essential positive and negative elements of the circadian clock feedback loop-significantly reduced spheroid formation in 143B CSCs isolated from in vivo OS xenografts. In contrast, knockdown of the secondary clock-stabilizing factor genes NR1D1 and NR1D2 had little effect. We also found that knockdown of BMAL1, CLOCK, or CRY1/2 markedly impaired the migration and invasion capacities of 143B CSCs. At the molecular level, silencing of BMAL1, CLOCK, or CRY1/2 distinctly altered the expression of genes associated with stem cell properties and the epithelial-mesenchymal transition (EMT) in 143B CSCs. In addition, disruption of BMAL1, CLOCK, or CRY1/2 expression significantly reduced lipid droplet formation by downregulating the expression of genes involved in lipogenesis (e.g., DGAT1, FASN, ACSL4, PKM2, CHKA, SREBP1), which are closely linked to CSC/EMT processes. Furthermore, transcriptomic analysis of human OS patient samples revealed that compared with other core clock genes, CRY1 was highly expressed in OS tumors relative to controls, and its expression exhibited strong positive correlations with patient prognosis, survival, and LD biogenesis gene expression. These findings highlight the critical role of the molecular circadian clock in regulating CSC properties and metabolism, underscoring the therapeutic potential of targeting the core clock machinery to enhance OS treatment outcomes.
Collapse
Affiliation(s)
- Sukanya Bhoumik
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Gutu N, Ishikuma H, Ector C, Keilholz U, Herzel H, Granada AE. A combined mathematical and experimental approach reveals the drivers of time-of-day drug sensitivity in human cells. Commun Biol 2025; 8:491. [PMID: 40133704 PMCID: PMC11937577 DOI: 10.1038/s42003-025-07931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The circadian clock plays a pivotal role in regulating various aspects of cancer, influencing tumor growth and treatment responses. There are significant changes in drug efficacy and adverse effects when drugs are administered at different times of the day, underscoring the importance of considering the time of day in treatments. Despite these well-established findings, chronotherapy approaches in drug treatment have yet to fully integrate into clinical practice, largely due to the stringent clinical requirements for proving efficacy and safety, alongside the need for deeper mechanistic insights. In this study, we employ a combined mathematical and experimental approach to systematically investigate the factors influencing time-of-day drug sensitivity in human cells. Here we show how circadian and drug properties independently shape time-of-day profiles, providing valuable insights into the temporal dynamics of treatment responses. Understanding how drug efficacy fluctuates throughout the day holds immense potential for the development of personalized treatment strategies aligned with an individual's internal biological clock, revolutionizing cancer treatment by maximizing therapeutic benefits. Moreover, our framework offers a promising avenue for refining future drug screening efforts, paving the way for more effective and targeted therapies across diverse tissue types.
Collapse
Affiliation(s)
- Nica Gutu
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Humboldt Universität zu Berlin, Berlin, Germany
| | - Hitoshi Ishikuma
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Ector
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Humboldt Universität zu Berlin, Berlin, Germany
| | - Ulrich Keilholz
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hanspeter Herzel
- Humboldt Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Berlin, Germany
| | - Adrián E Granada
- Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
| |
Collapse
|
5
|
Ning G, Li BN, Wu H, Shi RB, Peng AJ, Wang HY, Zhou X. Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases. Asian J Androl 2025:00129336-990000000-00298. [PMID: 40101130 DOI: 10.4103/aja20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Collapse
Affiliation(s)
- Gang Ning
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Bo-Nan Li
- Affiliated Changsha Hospital of Hunan Normal University, Changsha 410023, China
| | - Hui Wu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruo-Bing Shi
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - A-Jian Peng
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Yu Wang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
6
|
Paajanen P, Kimmey JM, Dodd AN. Circadian gating: concepts, processes, and opportunities. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230346. [PMID: 39842478 PMCID: PMC11753883 DOI: 10.1098/rstb.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian clocks provide a biological measure of time that coordinates metabolism, physiology and behaviour with 24 h cycles in the environment. Circadian systems have a variety of characteristic properties, such as entrainment to environmental cues, a self-sustaining rhythm of about 24 h and temperature compensation of the circadian rhythm. In this perspective, we discuss the process of circadian gating, which refers to the restriction of a biological event to particular times of day by the circadian clock. We introduce principles and processes associated with circadian gating in a variety of organisms, including some associated mechanisms. We highlight socioeconomic opportunities presented by the investigation of circadian gating, using selected examples from circadian medicine and agricultural crop production to illustrate its importance.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
7
|
Chhe K, Hegde MS, Taylor SR, Farkas ME. Circadian Effects of Melatonin Receptor-Targeting Molecules In Vitro. Int J Mol Sci 2024; 25:13508. [PMID: 39769270 PMCID: PMC11727910 DOI: 10.3390/ijms252413508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythms are important for maintaining homeostasis, from regulating physiological activities (e.g., sleep-wake cycle and cognitive performance) to cellular processes (e.g., cell cycle and DNA damage repair). Melatonin is a key regulator of circadian rhythms and exerts control by binding to melatonin receptor 1 (MT1), decreasing neuronal firing in the suprachiasmatic nucleus (SCN). Previous work studying effects of melatonin on circadian rhythms utilized in vivo models. Since MT1 is also expressed outside of the brain, it is important to study impacts of melatonin on circadian gene oscillations in vitro. We evaluated the effects of melatonin and an MT1 inverse agonist, UCSF7447, in U2OS circadian reporter cell lines, which facilitate detailed assessments of oscillatory changes. We report that cellular circadian rhythms are responsive to treatment with MT1-targeting molecules; their activities are not dependent upon the SCN. Corroborating in vivo data, both melatonin and UCSF7447 lengthened the periods of BMAL1 and PER2, and while melatonin delayed circadian phases, UCSF7447 advanced them. Compounds were also dosed at two different times, however this did not yield changes. Our findings indicate the importance of utilizing in vitro models and that the direct effects of melatonin likely go beyond the SCN and should be explored further.
Collapse
Affiliation(s)
- Kaitlyn Chhe
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Maya S. Hegde
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Michelle E. Farkas
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Ector C, Schmal C, Didier J, De Landtsheer S, Finger AM, Müller-Marquardt F, Schulte JH, Sauter T, Keilholz U, Herzel H, Kramer A, Granada AE. Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping. Nat Commun 2024; 15:7205. [PMID: 39169017 PMCID: PMC11339390 DOI: 10.1038/s41467-024-51611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
The circadian clock, a fundamental biological regulator, governs essential cellular processes in health and disease. Circadian-based therapeutic strategies are increasingly gaining recognition as promising avenues. Aligning drug administration with the circadian rhythm can enhance treatment efficacy and minimize side effects. Yet, uncovering the optimal treatment timings remains challenging, limiting their widespread adoption. In this work, we introduce a high-throughput approach integrating live-imaging and data analysis techniques to deep-phenotype cancer cell models, evaluating their circadian rhythms, growth, and drug responses. We devise a streamlined process for profiling drug sensitivities across different times of the day, identifying optimal treatment windows and responsive cell types and drug combinations. Finally, we implement multiple computational tools to uncover cellular and genetic factors shaping time-of-day drug sensitivity. Our versatile approach is adaptable to various biological models, facilitating its broad application and relevance. Ultimately, this research leverages circadian rhythms to optimize anti-cancer drug treatments, promising improved outcomes and transformative treatment strategies.
Collapse
Affiliation(s)
- Carolin Ector
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jeff Didier
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna-Marie Finger
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Müller-Marquardt
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Research for Development, University of Montpellier, Montpellier, France
| | - Johannes H Schulte
- Department of Pediatric Oncology, Hematology and Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Clinic for Pediatrics and Adolescent Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin, Germany.
| |
Collapse
|
9
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
10
|
Masuda K, Sakurai T, Hirano A. A coupled model between circadian, cell-cycle, and redox rhythms reveals their regulation of oxidative stress. Sci Rep 2024; 14:15479. [PMID: 38969743 PMCID: PMC11226698 DOI: 10.1038/s41598-024-66347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Most organisms possess three biological oscillators, circadian clock, cell cycle, and redox rhythm, which are autonomous but interact each other. However, whether their interactions and autonomy are beneficial for organisms remains unclear. Here, we modeled a coupled oscillator system where each oscillator affected the phase of the other oscillators. We found that multiple types of coupling prevent a high H2O2 level in cells at M phase. Consequently, we hypothesized a high H2O2 sensitivity at the M phase and found that moderate coupling reduced cell damage due to oxidative stress by generating appropriate phase relationships between three rhythms, whereas strong coupling resulted in an elevated cell damage by increasing the average H2O2 level and disrupted the cell cycle. Furthermore, the multicellularity model revealed that phase variations among cells confer flexibility in synchronization with environments at the expense of adaptability to the optimal environment. Thus, both autonomy and synchrony among the oscillators are important for coordinating their phase relationships to minimize oxidative stress, and couplings balance them depending on environments.
Collapse
Affiliation(s)
- Kosaku Masuda
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Takeshi Sakurai
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Life Science Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Arisa Hirano
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
11
|
Lamia KA. Telling time in tumor samples reveals diversity of clock disruption. Proc Natl Acad Sci U S A 2024; 121:e2401496121. [PMID: 38422063 PMCID: PMC10945801 DOI: 10.1073/pnas.2401496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Katja A. Lamia
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
12
|
Zhao Y, Sun Y, Xie X, Liang Y, Cavalcanti-Adam EA, Feng W. Compact Micropatterned Chip Empowers Undisturbed and Programmable Drug Addition in High-Throughput Cell Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306814. [PMID: 37793694 DOI: 10.1002/adma.202306814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Simultaneously adding multiple drugs and other chemical reagents to individual droplets at specific time points presents a significant challenge, particularly when dealing with tiny droplets in high-throughput screening applications. In this study, a micropatterned polymer chip is developed as a miniaturized platform for light-induced programmable drug addition in cell-based screening. This chip incorporates a porous superhydrophobic polymer film with atom transfer radical polymerization reactivity, facilitating the efficient grafting of azobenzene methacrylate, a photoconformationally changeable group, onto the hydrophilic regions of polymer matrix at targeted locations and with precise densities. By employing light irradiation, the cyclodextrin-azobenzene host-guest complexes formed on the polymer chip can switch from an "associated" to a "dissociated" state, granting precise photochemical control over the supramolecular coding system and its surface patterning ability. Significantly, the exceptional spatial and temporal control offered by these chemical transitions empowers to utilize digital light processing systems for simultaneous regulation and release of cyclodextrin-bearing drugs across numerous droplets containing suspended or adhered cells. This approach minimizes mechanical disruption while achieving precise control over the timing of addition, dosage, and integration varieties of released drugs in high-throughput screening, all programmable to meet specific requirements.
Collapse
Affiliation(s)
- Yuanyi Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingxue Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yujia Liang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | | | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Zhang X, Pant SM, Ritch CC, Tang HY, Shao H, Dweep H, Gong YY, Brooks R, Brafford P, Wolpaw AJ, Lee Y, Weeraratna A, Sehgal A, Herlyn M, Kossenkov A, Speicher D, Sorger PK, Santagata S, Dang CV. Cell state dependent effects of Bmal1 on melanoma immunity and tumorigenicity. Nat Commun 2024; 15:633. [PMID: 38245503 PMCID: PMC10799901 DOI: 10.1038/s41467-024-44778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
The circadian clock regulator Bmal1 modulates tumorigenesis, but its reported effects are inconsistent. Here, we show that Bmal1 has a context-dependent role in mouse melanoma tumor growth. Loss of Bmal1 in YUMM2.1 or B16-F10 melanoma cells eliminates clock function and diminishes hypoxic gene expression and tumorigenesis, which could be rescued by ectopic expression of HIF1α in YUMM2.1 cells. By contrast, over-expressed wild-type or a transcriptionally inactive mutant Bmal1 non-canonically sequester myosin heavy chain 9 (Myh9) to increase MRTF-SRF activity and AP-1 transcriptional signature, and shift YUMM2.1 cells from a Sox10high to a Sox9high immune resistant, mesenchymal cell state that is found in human melanomas. Our work describes a link between Bmal1, Myh9, mouse melanoma cell plasticity, and tumor immunity. This connection may underlie cancer therapeutic resistance and underpin the link between the circadian clock, MRTF-SRF and the cytoskeleton.
Collapse
Affiliation(s)
- Xue Zhang
- The Wistar Institute, Philadelphia, PA, USA.
- Ludwig Institute for Cancer Research, New York, NY, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Shishir M Pant
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Cecily C Ritch
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Yao-Yu Gong
- The Wistar Institute, Philadelphia, PA, USA
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Rebekah Brooks
- The Wistar Institute, Philadelphia, PA, USA
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Patricia Brafford
- The Wistar Institute, Philadelphia, PA, USA
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Adam J Wolpaw
- The Wistar Institute, Philadelphia, PA, USA
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Ashani Weeraratna
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi V Dang
- The Wistar Institute, Philadelphia, PA, USA.
- Ludwig Institute for Cancer Research, New York, NY, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Karin J, Bornfeld Y, Nitzan M. scPrisma infers, filters and enhances topological signals in single-cell data using spectral template matching. Nat Biotechnol 2023; 41:1645-1654. [PMID: 36849830 PMCID: PMC10635821 DOI: 10.1038/s41587-023-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023]
Abstract
Single-cell RNA sequencing has been instrumental in uncovering cellular spatiotemporal context. This task is challenging as cells simultaneously encode multiple, potentially cross-interfering, biological signals. Here we propose scPrisma, a spectral computational method that uses topological priors to decouple, enhance and filter different classes of biological processes in single-cell data, such as periodic and linear signals. We apply scPrisma to the analysis of the cell cycle in HeLa cells, circadian rhythm and spatial zonation in liver lobules, diurnal cycle in Chlamydomonas and circadian rhythm in the suprachiasmatic nucleus in the brain. scPrisma can be used to distinguish mixed cellular populations by specific characteristics such as cell type and uncover regulatory networks and cell-cell interactions specific to predefined biological signals, such as the circadian rhythm. We show scPrisma's flexibility in incorporating prior knowledge, inference of topologically informative genes and generalization to additional diverse templates and systems. scPrisma can be used as a stand-alone workflow for signal analysis and as a prior step for downstream single-cell analysis.
Collapse
Affiliation(s)
- Jonathan Karin
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonathan Bornfeld
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Diamantopoulou Z, Gvozdenovic A, Aceto N. A new time dimension in the fight against metastasis. Trends Cell Biol 2023; 33:736-748. [PMID: 36967300 DOI: 10.1016/j.tcb.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Despite advances in uncovering vulnerabilities, identifying biomarkers, and developing more efficient treatments, cancer remains a threat because of its ability to progress while acquiring resistance to therapy. The circadian rhythm governs most of the cellular functions implicated in cancer progression, and its exploitation therefore opens new promising directions in the fight against metastasis. In this review we summarize the role of the circadian rhythm in tumor development and progression, with emphasis on the circadian rhythm-regulated elements that control the generation of circulating tumor cells (CTCs) and metastasis. We then present data on chronotherapy and discuss how circadian rhythm investigations may open new paths to more effective anticancer treatments.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Albuquerque T, Neves AR, Paul M, Biswas S, Vuelta E, García-Tuñón I, Sánchez-Martin M, Quintela T, Costa D. A Potential Effect of Circadian Rhythm in the Delivery/Therapeutic Performance of Paclitaxel-Dendrimer Nanosystems. J Funct Biomater 2023; 14:362. [PMID: 37504857 PMCID: PMC10381694 DOI: 10.3390/jfb14070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient's circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1-the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Milan Paul
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Elena Vuelta
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Ignacio García-Tuñón
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martin
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
17
|
Cheon SY, Kwon S. Molecular Anatomy of the EML4-ALK Fusion Protein for the Development of Novel Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24065821. [PMID: 36982897 PMCID: PMC10054655 DOI: 10.3390/ijms24065821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion gene in non-small-cell lung cancer (NSCLC) was first identified in 2007. As the EML4-ALK fusion protein promotes carcinogenesis in lung cells, much attention has been paid to it, leading to the development of therapies for patients with NSCLC. These therapies include ALK tyrosine kinase inhibitors and heat shock protein 90 inhibitors. However, detailed information on the entire structure and function of the EML4-ALK protein remains deficient, and there are many obstacles to overcome in the development of novel anticancer agents. In this review, we describe the respective partial structures of EML4 and ALK that are known to date. In addition to their structures, noteworthy structural features and launched inhibitors of the EML4-ALK protein are summarized. Furthermore, based on the structural features and inhibitor-binding modes, we discuss strategies for the development of novel inhibitors targeting the EML4-ALK protein.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Sunghark Kwon
- Department of Biotechnology, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
18
|
Šmon J, Kočar E, Pintar T, Dolenc-Grošelj L, Rozman D. Is obstructive sleep apnea a circadian rhythm disorder? J Sleep Res 2023:e13875. [PMID: 36922163 DOI: 10.1111/jsr.13875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Obstructive sleep apnea is the most common sleep-related breathing disorder worldwide and remains underdiagnosed. Its multiple associated comorbidities contribute to a decreased quality of life and work performance as well as an increased risk of death. Standard treatment seems to have limited effects on cardiovascular and metabolic aspects of the disease, emphasising the need for early diagnosis and additional therapeutic approaches. Recent evidence suggests that the dysregulation of circadian rhythms, processes with endogenous rhythmicity that are adjusted to the environment through various cues, is involved in the pathogenesis of comorbidities. In patients with obstructive sleep apnea, altered circadian gene expression patterns have been demonstrated. Obstructive respiratory events may promote circadian dysregulation through the effects of sleep disturbance and intermittent hypoxia, with subsequent inflammation and disruption of neural and hormonal homeostasis. In this review, current knowledge on obstructive sleep apnea, circadian rhythm regulation, and circadian rhythm sleep disorders is summarised. Studies that connect obstructive sleep apnea to circadian rhythm abnormalities are critically evaluated. Furthermore, pathogenetic mechanisms that may underlie this association, most notably hypoxia signalling, are presented. A bidirectional relationship between obstructive sleep apnea and circadian rhythm dysregulation is proposed. Approaching obstructive sleep apnea as a circadian rhythm disorder may prove beneficial for the development of new, personalised diagnostic, therapeutic and prognostic tools. However, further studies are needed before the clinical approach to obstructive sleep apnea includes targeting the circadian system.
Collapse
Affiliation(s)
- Julija Šmon
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadeja Pintar
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc-Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Nassar A, Abdelhamid A, Ramsay G, Bekheit M. Chronomodulated Administration of Chemotherapy in Advanced Colorectal Cancer: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e36522. [PMID: 37090313 PMCID: PMC10120847 DOI: 10.7759/cureus.36522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
In this systematic review, the efficacy and safety of chronomodulated chemotherapy, defined as the delivery of chemotherapy timed according to the human circadian rhythm, were assessed and compared to continuous infusion chemotherapy for patients with advanced colorectal cancer. Electronic English-language studies published until October 2020 were searched. Randomised controlled trials (RCTs) comparing chronomodulated chemotherapy with non-chronomodulated (conventional) chemotherapy for the management of advanced colorectal cancer were included. The main outcomes were the objective response rate (ORR) and system-specific and overall toxicity related to chemotherapy. Electronic databases including Ovid Medline, Ovid Embase, Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Review were searched. In total, seven RCTs including 1,137 patients were analysed. Males represented 684 (60%) of the study population. The median age was 60.5 (range = 47.2-64) years. There was no significant difference between chronomodulated and conventional chemotherapy in ORR (risk ratio (RR) = 1.15; 95% confidence interval (CI) = 0.87-1.53). Similarly, there was no significant difference in gastrointestinal toxicity under the random effect model (RR = 1.02; 95% CI = 0.68-1.51). No significant difference was found regarding neurological and skin toxicities (RR = 0.64, 95% CI = 0.32-1.270 and RR = 2.11, 95% CI = 0.33-13.32, respectively). However, patients who received chronomodulated chemotherapy had less haematological toxicity (RR = 0.36, 95% CI = 0.27-0.48). In conclusion, there was no overall difference in ORR or haematologic toxicity between chronomodulated and non-chronomodulated chemotherapy used for patients with advanced colorectal cancer. Chronomodulated chemotherapy can be considered in patients at high risk of haematological toxicities.
Collapse
Affiliation(s)
- Ahmed Nassar
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - Amir Abdelhamid
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Aberdeen Royal Infirmary, National Health Service (NHS) Grampian, Aberdeen, GBR
| | - George Ramsay
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
| | - Mohamed Bekheit
- The Health Services Research Unit, University of Aberdeen, Aberdeen, GBR
- Dr Gray's Hospital, National Health Service (NHS) Grampian, Aberdeen, GBR
- HPB Centre, Elite Integrated Centres of Excellence, Alexandria, EGY
| |
Collapse
|
20
|
Abstract
Circadian rhythms are natural rhythms that widely exist in all creatures, and regulate the processes and physiological functions of various biochemical reactions. The circadian clock is critical for cancer occurrence and progression. Its function is regulated by metabolic activities, and the expression and transcription of various genes. This review summarizes the composition of the circadian clock; the biological basis for its function; its relationship with, and mechanisms in, cancer; its various functions in different cancers; the effects of anti-tumor treatment; and potential therapeutic targets. Research in this area is expected to advance understanding of circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1) in tumor diseases, and contribute to the development of new anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Chen Huang
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jian Li
- West China School of Medicine, Sichuan University, Chengdu 610000, China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
21
|
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy. Int J Mol Sci 2022; 23:ijms232214181. [PMID: 36430659 PMCID: PMC9698777 DOI: 10.3390/ijms232214181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms, including sleep/wake cycles as well as hormonal, immune, metabolic, and cell proliferation rhythms, are fundamental biological processes driven by a cellular time-keeping system called the circadian clock. Disruptions in these rhythms due to genetic alterations or irregular lifestyles cause fundamental changes in physiology, from metabolism to cellular proliferation and differentiation, resulting in pathological consequences including cancer. Cancer cells are not uniform and static but exist as different subtypes with phenotypic and functional differences in the tumor microenvironment. At the top of the heterogeneous tumor cell hierarchy, cancer stem cells (CSCs), a self-renewing and multi-potent cancer cell type, are most responsible for tumor recurrence and metastasis, chemoresistance, and mortality. Phenotypically, CSCs are associated with the epithelial-mesenchymal transition (EMT), which confers cancer cells with increased motility and invasion ability that is characteristic of malignant and drug-resistant stem cells. Recently, emerging studies of different cancer types, such as glioblastoma, leukemia, prostate cancer, and breast cancer, suggest that the circadian clock plays an important role in the maintenance of CSC/EMT characteristics. In this review, we describe recent discoveries regarding how tumor intrinsic and extrinsic circadian clock-regulating factors affect CSC evolution, highlighting the possibility of developing novel chronotherapeutic strategies that could be used against CSCs to fight cancer.
Collapse
|
22
|
Brooks R, Monzy J, Aaron B, Zhang X, Kossenkov A, Hayden J, Keeney F, Speicher DW, Zhang L, Dang CV. Circadian lncRNA ADIRF-AS1 binds PBAF and regulates renal clear cell tumorigenesis. Cell Rep 2022; 41:111514. [PMID: 36261012 PMCID: PMC9652615 DOI: 10.1016/j.celrep.2022.111514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022] Open
Abstract
We identify ADIRF-AS1 circadian long non-coding RNA (lncRNA). Deletion of ADIRF-AS1 in U2OS cells alters rhythmicity of clock-controlled genes and expression of extracellular matrix genes. ADIRF-AS1 interacts with all components of the PBAF (PBRM1/BRG1) complex in U2OS cells. Because PBRM1 is a tumor suppressor mutated in over 40% of clear cell renal carcinoma (ccRCC) cases, we evaluate ADIRF-AS1 in ccRCC cells. Reducing ADIRF-AS1 expression in ccRCC cells decreases expression of some PBAF-suppressed genes. Expression of these genes is partially rescued by PBRM1 loss, consistent with ADIRF-AS1 acting in part to modulate PBAF. ADIRF-AS1 expression correlates with survival in human ccRCC, particularly in PBRM1 wild-type, but not mutant, tumors. Loss of ADIRF-AS1 eliminates in vivo tumorigenesis, partially rescued by concurrent loss of PBRM1 only when co-injected with Matrigel, suggesting a PBRM1-independent function of ADIRF-AS1. Our findings suggest that ADIRF-AS1 functions partly through PBAF to regulate specific genes as a BMAL1-CLOCK-regulated, oncogenic lncRNA.
Collapse
Affiliation(s)
- Rebekah Brooks
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Judith Monzy
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Bailey Aaron
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | - Xue Zhang
- The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - James Hayden
- The Ludwig Institute for Cancer Research, New York, NY, USA
| | | | | | - Lin Zhang
- Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA, USA; The Ludwig Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
23
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
24
|
Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL, Lamia KA. Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. SCIENCE ADVANCES 2022; 8:eabo1123. [PMID: 36170373 PMCID: PMC9519049 DOI: 10.1126/sciadv.abo1123] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/12/2022] [Indexed: 05/04/2023]
Abstract
Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.
Collapse
Affiliation(s)
- Marie Pariollaud
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lara H. Ibrahim
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emanuel Irizarry
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca M. Mello
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alanna B. Chan
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian J. Altman
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katja A. Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Yang Y, Chen R, Gong Y, Yang W, Li K, Fan W, Gou S, Gao P, He T, Cai K. Double-drug loading upconversion nanoparticles for monitoring and therapy of a MYC/BCL6-positive double-hit diffuse large B-cell lymphoma. Biomaterials 2022; 287:121607. [PMID: 35696785 DOI: 10.1016/j.biomaterials.2022.121607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a systemic hematological malignancy. Herein, through whole exome sequencing (WES), we found that DLBCL genome changes and expression characteristics are associated with various immune cells. Lenalidomide (Len) is a leading candidate for the immunomodulatory treatment of multiple myeloma in the clinic. Inspired by lenalidomide as an immunomodulatory drug for the treatment of multiple myeloma, we constructed a multifunctional nanoplatform with therapeutic and imaging properties for DLBCL by co-loading lenalidomide and dexamethasone (Dex) with upconversion nanoparticles using a GSH-sensitive linker (named as UCNPs-Len-Dex). In vitro cell experiments proved that the UCNPs-Len-Dex had good biocompatibility and obvious antitumor efficacy. UCNPs-Len-Dex also exhibited excellent anti-tumor efficacy and imaging properties in vivo. RNA sequencing showed that UCNPs-Len-Dex targeted and activated the E3 ligase of CRBN, resulting in IKZF1/3 degradation, which inhibited MYC/BCL6-positive DLBCL and maintained the stability of the immune microenvironment. Therefore, this study provided a new monitoring and therapeutic synergetic strategy for DLBCL.
Collapse
Affiliation(s)
- Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Chen
- Department of Pathology, Chongqing Cancer Institute/Hospital, Chongqing, 400030, China
| | - Yi Gong
- Department of Phase I Clinical Trial Ward, Chongqing Cancer Institute/Hospital, Chongqing, 400030, China.
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
26
|
Field JM, Sehgal A. The Kinetics and (Dys)kinetics of Cancer Chronotherapy. Cancer Res 2022; 82:2357-2360. [PMID: 35709495 PMCID: PMC9256782 DOI: 10.1158/0008-5472.can-21-3799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/07/2023]
Abstract
Circadian rhythms are the daily cycles that time almost all aspects of physiology, but treatments of the clock or by the clock are rarely tested in the clinic. We develop a framework for identifying interventions that may benefit from administration at the appropriate time of day (chronotherapy). Typically, pharmacokinetics is an important consideration for chronotherapy, with short half-life drugs deemed optimal for such treatments. However, recent data suggest long-lived antibodies can show time-of-day specific effects. Examples include both tumor-targeted antibodies as well as immunotherapies with antibodies that activate T cells. Clues to the immunotherapy mechanism come from animal vaccination studies, which demonstrate circadian responses of T cells to a single dose that leads to long-lasting T-cell activation. Conversely, some studies have challenged the efficacy of chronotherapy, underscoring the need to rigorously investigate its application for each drug and tumor type.
Collapse
Affiliation(s)
- Jeffrey M. Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Corresponding author:
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Damato AR, Herzog ED. Circadian clock synchrony and chronotherapy opportunities in cancer treatment. Semin Cell Dev Biol 2022; 126:27-36. [PMID: 34362656 PMCID: PMC8810901 DOI: 10.1016/j.semcdb.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023]
Abstract
Cell-autonomous, tissue-specific circadian rhythms in gene expression and cellular processes have been observed throughout the human body. Disruption of daily rhythms by mistimed exposure to light, food intake, or genetic mutation has been linked to cancer development. Some medications are also more effective at certain times of day. However, a limited number of clinical studies have examined daily rhythms in the patient or drug timing as treatment strategies. This review highlights advances and challenges in cancer biology as a function of time of day. Recent evidence for daily rhythms and their entrainment in tumors indicate that personalized medicine should include understanding and accounting for daily rhythms in cancer patients.
Collapse
Affiliation(s)
- Anna R Damato
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA
| | - Erik D Herzog
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
28
|
Albuquerque T, Neves AR, Quintela T, Costa D. The Influence of Circadian Rhythm on Cancer Cells Targeting and Transfection Efficiency of a Polycation-Drug/Gene Delivery Vector. Polymers (Basel) 2022; 14:polym14040681. [PMID: 35215593 PMCID: PMC8875434 DOI: 10.3390/polym14040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
The conception of novel anticancer delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy. In this work, polyethylenimine (PEI) has been used to complex p53 encoded plasmid DNA (pDNA), and the anticancer drug methotrexate (MTX) has also been loaded into the vectors. To investigate the influence of circadian clock on drug/gene delivery efficiency, HeLa, C33A and fibroblast cells have been transfected with developed PEI/pDNA/MTX delivery vectors at six different time points. Phenomena as the cellular uptake/internalization, drug/gene delivery and p53 protein production have been evaluated. The cell-associated MTX fluorescence have been monitored, and p53 protein levels quantified. In HeLa and C33A cancer cells, significant levels of MTX were found for T8 and T12. For these time points, a high amount of p53 protein was quantified. Confocal microscopy images showed successful HeLa cell’s uptake of PEI/pDNA/MTX particles, at T8. In comparison, poor levels of MTX and p53 protein were found in fibroblasts; nevertheless, results indicated rhythmicity. Data demonstrate the influence of circadian rhythm on both cancer-cells targeting ability and transfection performance of PEI/pDNA/MTX carriers and seemed to provide the optimum time for drug/gene delivery. This report adds a great contribution to the field of cancer chronobiology, highlighting the relationship between circadian rhythm and nanodelivery systems, and charting the path for further research on a, yet, poorly explored but promising topic.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Ana R. Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- Correspondence:
| |
Collapse
|
29
|
Almaida-Pagan PF, Torrente M, Campos M, Provencio M, Madrid JA, Franco F, Morilla BR, Cantos B, Sousa PA, Madrid MJM, Pimentao J, Rol MÁ. Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock. Curr Oncol Rep 2022; 24:135-149. [PMID: 35061192 PMCID: PMC8857092 DOI: 10.1007/s11912-021-01158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 02/01/2023]
Abstract
Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Torrente
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
- Medical Oncology Department, Puerta de Hierro-Majadahonda University Hospital, Calle Manuel de Falla, 1, 28222, Madrid, Spain.
- Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain.
| | - Manuel Campos
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Juan Antonio Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabio Franco
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Beatriz Rodríguez Morilla
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Cantos
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Pedro A Sousa
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María José Martínez Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joao Pimentao
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María Ángeles Rol
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Lu D, Wang Z, Wu B. Pharmacokinetics-based Chronotherapy. Curr Drug Metab 2022; 23:2-7. [PMID: 34994324 DOI: 10.2174/1389200223666220106124218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Dosing time-dependency of pharmacokinetics (or chronopharmacokinetics) has been long recognized. Studies in recent years have revealed that diurnal rhythmicity in expression of drug-metabolizing enzymes and transporters (DMETs) are key factors determining chronopharmacokinetics. In this article, we briefly summarize current knowledge with respect to circadian mechanisms of DMETs and discuss how rhythmic DMETs are translated to drug chronoeffects. More importantly, we present our perspectives on pharmacokinetics-based chronotherapy.
Collapse
Affiliation(s)
- Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
A multidisciplinary perspective on the complex interactions between sleep, circadian, and metabolic disruption in cancer patients. Cancer Metastasis Rev 2021; 40:1055-1071. [PMID: 34958429 PMCID: PMC8825432 DOI: 10.1007/s10555-021-10010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023]
Abstract
Sleep is a basic need that is frequently set aside in modern societies. This leads to profound but complex physiological maladaptations in the body commonly referred to as circadian disruption, which recently has been characterized as a carcinogenic factor and reason for poor treatment outcomes, shortened survival, and reduced quality of life in cancer patients. As sleep and circadian physiology in cancer patients spans several disciplines including nursing science, neurology, oncology, molecular biology and medical technology, there is a lack of comprehensive and integrated approaches to deal with this serious and growing issue and at best a fractionated understanding of only part of the problem among researchers within each of these segments. Here, we take a multidisciplinary approach to comprehensively review the diagnosis and impact of sleep and circadian disruption in cancer patients. We discuss recent discoveries on molecular regulation of the circadian clock in healthy and malignant cells, the neurological and endocrine pathways controlling sleep and circadian rhythmicity, and their inputs to and outputs from the organism. The benefits and drawbacks of the various technologies, devices, and instruments used to assess sleep and circadian function, as well as the known consequences of sleep disruption and how sleep can be corrected in cancer patients, will be analyzed. We will throughout the review highlight the extensive crosstalk between sleep, circadian rhythms, and metabolic pathways involved in malignancy and identify current knowledge gaps and barriers for addressing the issue of sleep and circadian disruption in cancer patients. By addressing these issues, we hope to provide a foundation for further research as well as better and more effective care for the patients in the future.
Collapse
|
32
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
33
|
Zhang J, Jiang H, Du K, Xie T, Wang B, Chen C, Reiter RJ, Cen B, Yuan Y. Pan-cancer analyses reveal genomics and clinical characteristics of the melatonergic regulators in cancer. J Pineal Res 2021; 71:e12758. [PMID: 34289167 DOI: 10.1111/jpi.12758] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
Melatonin, an endogenous hormone, plays protective roles in cancer. In addition to regulating circadian rhythms, sleep, and neuroendocrine activity, melatonin functions in various survival pathways. However, the mechanisms of melatonin regulation in cancer remain unknown. In the present study, we performed a comprehensive characterization of melatonin regulators in 9125 tumor samples across 33 cancer types using multi-omic data from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia. In the genomic landscape, we identified the heterozygous amplification of AANAT and GPR50, and heterozygous deletion of PER3, CYP2C19, and MTNR1A as the dominant alteration events. Expression analysis revealed methylation-mediated downregulation of melatonergic regulator expression. In addition, we found that melatonergic regulator expression could be used to predict patient survival in various cancers. In depth, microRNA (miRNA) analysis revealed an miRNA-mRNA interaction network, and the deregulated miRNAs were involved in melatonin secretion and metabolism by targeting circadian clock genes. Pathway analysis showed that melatonergic regulators were associated with inhibition of apoptosis, the cell cycle, the DNA damage response, and activation of RAS/MAPK and RTK signaling pathways. Importantly, by mining the Genomics of Drug Sensitivity in Cancer database, we discovered a number of potential drugs that might target melatonergic regulators. In summary, this study revealed the genomic alteration and clinical characteristics of melatonergic regulators across 33 cancers, which might clarify the relationship between melatonin and tumorigenesis. Our findings also might provide a novel approach for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Kunpeng Du
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, USA
| | - Bohong Cen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
34
|
Lee Y. Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med 2021; 53:1529-1538. [PMID: 34615982 PMCID: PMC8568965 DOI: 10.1038/s12276-021-00681-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Circadian clocks are ubiquitous timing mechanisms that generate approximately 24-h rhythms in cellular and bodily functions across nearly all living species. These internal clock systems enable living organisms to anticipate and respond to daily changes in their environment in a timely manner, optimizing temporal physiology and behaviors. Dysregulation of circadian rhythms by genetic and environmental risk factors increases susceptibility to multiple diseases, particularly cancers. A growing number of studies have revealed dynamic crosstalk between circadian clocks and cancer pathways, providing mechanistic insights into the therapeutic utility of circadian rhythms in cancer treatment. This review will discuss the roles of circadian rhythms in cancer pathogenesis, highlighting the recent advances in chronotherapeutic approaches for improved cancer treatment.
Collapse
Affiliation(s)
- Yool Lee
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
35
|
From circadian clock mechanism to sleep disorders and jet lag: Insights from a computational approach. Biochem Pharmacol 2021; 191:114482. [DOI: 10.1016/j.bcp.2021.114482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
|
36
|
Yang Y, Lindsey-Boltz LA, Vaughn CM, Selby CP, Cao X, Liu Z, Hsu DS, Sancar A. Circadian clock, carcinogenesis, chronochemotherapy connections. J Biol Chem 2021; 297:101068. [PMID: 34375638 PMCID: PMC8403766 DOI: 10.1016/j.jbc.2021.101068] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/27/2023] Open
Abstract
The circadian clock controls the expression of nearly 50% of protein coding genes in mice and most likely in humans as well. Therefore, disruption of the circadian clock is presumed to have serious pathological effects including cancer. However, epidemiological studies on individuals with circadian disruption because of night shift or rotating shift work have produced contradictory data not conducive to scientific consensus as to whether circadian disruption increases the incidence of breast, ovarian, prostate, or colorectal cancers. Similarly, genetically engineered mice with clock disruption do not exhibit spontaneous or radiation-induced cancers at higher incidence than wild-type controls. Because many cellular functions including the cell cycle and cell division are, at least in part, controlled by the molecular clock components (CLOCK, BMAL1, CRYs, PERs), it has also been expected that appropriate timing of chemotherapy may increase the efficacy of chemotherapeutic drugs and ameliorate their side effect. However, empirical attempts at chronochemotherapy have not produced beneficial outcomes. Using mice without and with human tumor xenografts, sites of DNA damage and repair following treatment with the anticancer drug cisplatin have been mapped genome-wide at single nucleotide resolution and as a function of circadian time. The data indicate that mechanism-based studies such as these may provide information necessary for devising rational chronochemotherapy regimens.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Courtney M Vaughn
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Zhenxing Liu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David S Hsu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
37
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
38
|
Trebucq LL, Cardama GA, Lorenzano Menna P, Golombek DA, Chiesa JJ, Marpegan L. Timing of Novel Drug 1A-116 to Circadian Rhythms Improves Therapeutic Effects against Glioblastoma. Pharmaceutics 2021; 13:1091. [PMID: 34371781 PMCID: PMC8309043 DOI: 10.3390/pharmaceutics13071091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Ras homologous family of small guanosine triphosphate-binding enzymes (GTPases) is critical for cell migration and proliferation. The novel drug 1A-116 blocks the interaction site of the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase with some of its guanine exchange factors (GEFs), such as T-cell lymphoma invasion and metastasis 1 (TIAM1), inhibiting cell motility and proliferation. Knowledge of circadian regulation of targets can improve chemotherapy in glioblastoma. Thus, circadian regulation in the efficacy of 1A-116 was studied in LN229 human glioblastoma cells and tumor-bearing nude mice. METHODS Wild-type LN229 and BMAL1-deficient (i.e., lacking a functional circadian clock) LN229E1 cells were assessed for rhythms in TIAM1, BMAL1, and period circadian protein homolog 1 (PER1), as well as Tiam1, Bmal1, and Rac1 mRNA levels. The effects of 1A-116 on proliferation, apoptosis, and migration were then assessed upon applying the drug at different circadian times. Finally, 1A-116 was administered to tumor-bearing mice at two different circadian times. RESULTS In LN229 cells, circadian oscillations were found for BMAL1, PER1, and TIAM1 (mRNA and protein), and for the effects of 1A-116 on proliferation, apoptosis, and migration, which were abolished in LN229E1 cells. Increased survival time was observed in tumor-bearing mice when treated with 1A-116 at the end of the light period (zeitgeber time 12, ZT12) compared either to animals treated at the beginning (ZT3) or with vehicle. CONCLUSIONS These results unveil the circadian modulation in the efficacy of 1A-116, likely through RAC1 pathway rhythmicity, suggesting that a chronopharmacological approach is a feasible strategy to improve glioblastoma treatment.
Collapse
Affiliation(s)
- Laura Lucía Trebucq
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Georgina Alexandra Cardama
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Pablo Lorenzano Menna
- Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (G.A.C.); (P.L.M.)
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Bernal 1876, Buenos Aires, Argentina; (L.L.T.); (D.A.G.)
| | - Luciano Marpegan
- Departamento de Física Médica, Comisión Nacional de Energía Atómica, Bariloche 8400, Río Negro, Argentina
| |
Collapse
|
39
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|