1
|
Reddy V, Arya A, Shekhar S. Twinfilin is a nonprocessive depolymerase which synergizes with formin to dramatically accelerate actin filament uncapping by 300-fold. Proc Natl Acad Sci U S A 2025; 122:e2501078122. [PMID: 40294253 PMCID: PMC12067289 DOI: 10.1073/pnas.2501078122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 04/30/2025] Open
Abstract
For over four decades, our understanding of cellular actin dynamics has been guided by the concept of treadmilling. However, this paradigm has been challenged by the evidence that twinfilin can uncap and promote depolymerization of filament barbed ends, though its precise mechanism remains debated. Using single-molecule microscopy and microfluidics-assisted TIRF imaging, we demonstrate that twinfilin transiently associates with barbed ends for ~0.2 to 0.5 s, acting as a nonprocessive depolymerase that likely removes one or both terminal actin subunits. Furthermore, we show that twinfilin's barbed-end residence time and its ability to uncap CP-capped filaments (both alone and with formin mDia1) are significantly influenced by filament age. The synergistic enhancement in uncapping by twinfilin and mDia1 ranges from 11-fold for newly assembled to ~318-fold for aged actin filaments. These represent the fastest uncapping rates measured in vitro and approach CP turnover rates in vivo. Our study thus reinforces twinfilin's central role as a multifunctional barbed-end regulator which nonprocessively depolymerizes actin filaments, transiently caps barbed ends, and synergizes with formin to destabilize CP, thereby facilitating rapid actin turnover that depends on filament age.
Collapse
Affiliation(s)
- Vishal Reddy
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| | - Ankita Arya
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| |
Collapse
|
2
|
Alhadrami HA, Sayed AM, Hassan HM, Rateb ME, Taha MN. Optimized peptide inhibitor Aqs1C targets LasR to disrupt quorum sensing and biofilm formation in Pseudomonas aeruginosa: Insights from MD simulations and in vitro studies. Int J Biol Macromol 2025; 300:140119. [PMID: 39855517 DOI: 10.1016/j.ijbiomac.2025.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B. Using molecular dynamics simulations (MDS), the Aqs1C-LasR complex demonstrated a marked increase in structural stability, reflected in reduced root mean square deviation (RMSD) values and lower binding free energy. Electrostatic complementarity analysis showed stronger and more favorable interactions between Aqs1C and LasR. Further, GaMD experiments were able to reproduce the binding state between Aqs1C and LasR, indicating the binding mechanism between them. These molecular insights correlated with functional in vitro assays. Aqs1C effectively inhibited quorum-sensing-associated virulence factors in PA, involving biofilm formation (77.6 % inhibition), pyocyanin production (75.7 % inhibition), protease secretion (61.1 % inhibition), and rhamnolipid production (74.1 % inhibition), at a 100 μg/mL concentration, in a comparable or superior pattern to azithromycin (AZM). Molecular modelling, MDS, and GaMD insights and in vitro assays established Aqs1C as a promising candidate for therapeutic development to mitigate PA infections through targeted quorum-sensing disruption.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| |
Collapse
|
3
|
Towsif EM, Shekhar S. The actin filament pointed-end depolymerase Srv2/CAP depolymerizes barbed ends, displaces capping protein, and promotes formin processivity. Proc Natl Acad Sci U S A 2025; 122:e2411318122. [PMID: 39874286 PMCID: PMC11804681 DOI: 10.1073/pnas.2411318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention. Here, using microfluidics-assisted three-color single-molecule imaging, we reveal that cyclase-associated protein (CAP), long known for its roles in nucleotide exchange and pointed-end depolymerization, also acts as a processive depolymerase at filament barbed ends. CAP molecules track barbed ends for several minutes, inducing depolymerization rates of up to 60 subunits per second. Importantly, CAP modulates barbed-end dynamics even under cytosol-mimicking assembly promoting conditions. We further show that CAP can colocalize with both formin and capping protein (CP) at barbed ends. CAP enhances formin processivity by 10-fold, allowing CAP-formin complexes to track fast-elongating barbed ends. In contrast, CAP destabilizes CP-bound barbed ends and accelerates dissociation of CP by fourfold. Our findings, combined with CAP's previously reported activities, firmly establish CAP as a key regulator of cellular actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| |
Collapse
|
4
|
Ulrichs H, Shekhar S. Regulation of actin dynamics by Twinfilin. Curr Opin Cell Biol 2025; 92:102459. [PMID: 39765045 PMCID: PMC11769735 DOI: 10.1016/j.ceb.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Oosterheert W, Boiero Sanders M, Bieling P, Raunser S. Structural insights into actin filament turnover. Trends Cell Biol 2025:S0962-8924(24)00277-0. [PMID: 39848862 DOI: 10.1016/j.tcb.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025]
Abstract
The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide. We then focus on the molecular basis of actin filament growth at the barbed end and how this process is modulated by core regulators such as profilin, formin, and capping protein (CP). Finally, the mechanisms underlying actin filament pointed-end depolymerization through disassembly factors cofilin/cyclase-associated protein (CAP) or DNase I are discussed. These findings contribute to a structural understanding of how actin filament dynamics are regulated in a complex cellular environment.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.
| |
Collapse
|
6
|
Adhikary S, Roy S, Budhathoki S, Chowdhury S, Stillwell A, Basnakian AG, Tackett A, Avaritt N, Milad M, Alam MA. Thiazole-fused androstenone and ethisterone derivatives: potent β- and γ-actin cytoskeleton inhibitors to treat melanoma tumors. RSC Med Chem 2024; 16:d4md00719k. [PMID: 39703801 PMCID: PMC11653411 DOI: 10.1039/d4md00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
Melanoma, the most fatal form of skin cancer, often becomes resistant to the current therapeutic approaches in most patients. To explore new treatment options, fused thiazole derivatives were synthesized, and several of these compounds demonstrated potent anti-melanoma activity both in vitro and in vivo. These compounds exhibited significant cytotoxicity against melanoma cell lines at low concentrations. The lead molecules induced apoptosis and caused G2/M phase cell cycle arrest to a lesser extent. These compounds also displayed remarkable antimetastatic activities in several cell-based and molecular assays, significantly inhibiting key processes of metastasis, such as cell migration and adhesion. mRNA sequencing revealed significant downregulation of β-actin (ACTB) and γ-actin (ACTG1) at the transcriptional level, and a similar effect was observed at the protein level by western immunoblotting and proteomics assays. Actin-rich membrane protrusions formation is crucial for facilitating metastasis by promoting cell migration. Fluorescence microscopy demonstrated that compounds E28 and E47 inhibited the formation of these membrane protrusions and impaired actin cytoskeleton dynamics. Docking studies suggested the lead compounds may suppress tumor proliferation and metastasis by targeting the mechanistic target of Rapamycin complex 2 (mTORC2). All these findings unanimously indicated the translational perspective of ethisterone and androstenone fused thiazole derivatives as potent antimetastatic and antimelanoma agents. In a preclinical mouse melanoma model, compounds E2 and E47 significantly reduced tumor growth and greatly improved overall mice survival, while showing a favorable safety profile based on a comprehensive blood plasma metabolite profile. These lead molecules also displayed promising physicochemical properties, making them strong candidates for further drug development studies.
Collapse
Affiliation(s)
- Sanjay Adhikary
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Subrata Roy
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Shailesh Budhathoki
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Siam Chowdhury
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Computer Science, The College of Engineering and Computer Science, Arkansas State University Jonesboro AR 72468 USA
| | - Abbey Stillwell
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences 4301 W. Markham St Little Rock AR 72205 USA
- Central Arkansas Veterans Healthcare System W. 7th St Little Rock AR 72205 USA
| | - Alan Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Mohamed Milad
- The Department of Mathematics and Statistics, Arkansas State University Jonesboro AR 72467 USA
| | - Mohammad Abrar Alam
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Arkansas Biosciences Institute, Arkansas State University Jonesboro AR 72467 USA
| |
Collapse
|
7
|
Mooren OL, McConnell P, DeBrecht JD, Jaysingh A, Cooper JA. Reconstitution of Arp2/3-nucleated actin assembly with proteins CP, V-1, and CARMIL. Curr Biol 2024; 34:5173-5186.e4. [PMID: 39437783 PMCID: PMC11576230 DOI: 10.1016/j.cub.2024.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Actin polymerization is often associated with membrane proteins containing capping-protein-interacting (CPI) motifs, such as capping protein, Arp2/3, myosin I linker (CARMIL), CD2AP, and WASHCAP/Fam21. CPI motifs bind directly to actin-capping protein (CP), and this interaction weakens the binding of CP to barbed ends of actin filaments, lessening the ability of CP to functionally cap those ends. The protein V-1/myotrophin binds to the F-actin-binding site on CP and sterically blocks CP from binding barbed ends. CPI-motif proteins also weaken the binding between V-1 and CP, which decreases the inhibitory effects of V-1, thereby freeing CP to cap barbed ends. Here, we address the question of whether CPI-motif proteins on a surface analogous to a membrane lead to net activation or inhibition of actin assembly nucleated by Arp2/3 complex. Using reconstitution with purified components, we discovered that CARMIL at the surface promotes and enhances actin assembly, countering the inhibitory effects of V-1 and thus activating CP. The reconstitution involves the presence of an Arp2/3 activator on the surface, along with Arp2/3 complex, V-1, CP, profilin, and actin monomers in solution, recreating key features of cell physiology.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - James D DeBrecht
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Anshuman Jaysingh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Courtemanche N, Henty-Ridilla JL. Actin filament dynamics at barbed ends: New structures, new insights. Curr Opin Cell Biol 2024; 90:102419. [PMID: 39178734 PMCID: PMC11492572 DOI: 10.1016/j.ceb.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
9
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Alcaide Eligio M, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. J Cell Biol 2024; 223:e202305065. [PMID: 38787349 PMCID: PMC11117073 DOI: 10.1083/jcb.202305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Brian K. Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander D. Nobles
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura M. Haney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra G. Marcin
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
10
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Marcela Alcaide Eligio, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.539490. [PMID: 37205555 PMCID: PMC10187324 DOI: 10.1101/2023.05.04.539490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (Capping Protein, CPz). We explore IQGAP1's roles regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF we show that IQGAP1's displacement activity extends to formin-CPz 'decision complexes', promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian K Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander D Nobles
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura M Haney
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexandra G Marcin
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
11
|
Hummel DR, Hakala M, Toret CP, Kaksonen M. Bsp1, a fungal CPI motif protein, regulates actin filament capping in endocytosis and cytokinesis. Mol Biol Cell 2024; 35:br6. [PMID: 38088874 PMCID: PMC10881157 DOI: 10.1091/mbc.e23-10-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
The capping of barbed filament ends is a fundamental mechanism for actin regulation. Capping protein controls filament growth and actin turnover in cells by binding to the barbed ends of the filaments with high affinity and slow off-rate. The interaction between capping protein and actin is regulated by capping protein interaction (CPI) motif proteins. We identified a novel CPI motif protein, Bsp1, which is involved in cytokinesis and endocytosis in budding yeast. We demonstrate that Bsp1 is an actin binding protein with a high affinity for capping protein via its CPI motif. In cells, Bsp1 regulates capping protein at endocytic sites and is a major recruiter of capping protein to the cytokinetic actin ring. Lastly, we define Bsp1-related proteins as a distinct fungi-specific CPI protein group. Our results suggest that Bsp1 promotes actin filament capping by the capping protein. This study establishes Bsp1 as a new capping protein regulator and promising candidate to regulate actin networks in fungi.
Collapse
Affiliation(s)
- Daniel R. Hummel
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | - Markku Hakala
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| | | | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
12
|
Lamb AK, Fernandez AN, Eadaim A, Johnson K, Di Pietro SM. Mechanism of actin capping protein recruitment and turnover during clathrin-mediated endocytosis. J Cell Biol 2024; 223:e202306154. [PMID: 37966720 PMCID: PMC10651396 DOI: 10.1083/jcb.202306154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Clathrin-mediated endocytosis depends on polymerization of a branched actin network to provide force for membrane invagination. A key regulator in branched actin network formation is actin capping protein (CP), which binds to the barbed end of actin filaments to prevent the addition or loss of actin subunits. CP was thought to stochastically bind actin filaments, but recent evidence shows CP is regulated by a group of proteins containing CP-interacting (CPI) motifs. Importantly, how CPI motif proteins function together to regulate CP is poorly understood. Here, we show Aim21 and Bsp1 work synergistically to recruit CP to the endocytic actin network in budding yeast through their CPI motifs, which also allosterically modulate capping strength. In contrast, twinfilin works downstream of CP recruitment, regulating the turnover of CP through its CPI motif and a non-allosteric mechanism. Collectively, our findings reveal how three CPI motif proteins work together to regulate CP in a stepwise fashion during endocytosis.
Collapse
Affiliation(s)
- Andrew K. Lamb
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Andres N. Fernandez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Abdunaser Eadaim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Katelyn Johnson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Santiago M. Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Mooren OL, Stuchell-Brereton MD, McConnell P, Yan C, Wilkerson EM, Goldfarb D, Cooper JA, Sept D, Soranno A. Biophysical Mechanism of Allosteric Regulation of Actin Capping Protein. J Mol Biol 2023; 435:168342. [PMID: 37924863 PMCID: PMC10872493 DOI: 10.1016/j.jmb.2023.168342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. Interaction with CPI-motif peptides induced conformations within CP that bring the cap and stalk closer, while interaction with V-1 moves them away from one another. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wild-type (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | - Melissa D Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | - Chenbo Yan
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Emily M Wilkerson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States; Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States; Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States.
| | - David Sept
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO, United States.
| |
Collapse
|
14
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Towsif EM, Shekhar S. Cyclase-associated protein is a pro-formin anti-capping processive depolymerase of actin barbed and pointed ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569482. [PMID: 38076850 PMCID: PMC10705416 DOI: 10.1101/2023.11.30.569482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cellular actin networks display distinct assembly and disassembly dynamics resulting from multicomponent reactions occurring primarily at the two ends and the sides of actin filaments [1-3]. While barbed ends are considered the hotspot of actin assembly [4], disassembly is thought to primarily occur via reactions on filament sides and pointed ends [3, 5-11]. Cyclase-associated protein (CAP) has emerged as the main protagonist of actin disassembly and remodeling - it collaborates with cofilin to increase pointed-end depolymerization by 300-fold [6, 7], promotes filament "coalescence" in presence of Abp1 [12], and accelerates nucleotide exchange to regenerate monomers for new rounds of assembly [13-15]. CAP has also been reported to enhance cofilin-mediated severing [16, 17], but these claims have since been challenged [7]. Using microfluidics-assisted three-color single-molecule imaging, we now reveal that CAP also has important functions at filament barbed ends. We reveal that CAP is a processive barbed-end depolymerase capable of tracking both ends of the filament. Each CAP binding event leads to removal of about 5,175 and 620 subunits from the barbed and pointed ends respectively. We find that the WH2 domain is essential, and the CARP domain is dispensable for barbed-end depolymerization. We show that CAP co-localizes with barbed-end bound formin and capping protein, in the process increasing residence time of formin by 10-fold and promoting dissociation of CP by 4-fold. Our barbed-end observations combined with previously reported activities of CAP at pointed ends and sides, firmly establish CAP as a key player in actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Du WW, Qadir J, Du KY, Chen Y, Wu N, Yang BB. Nuclear Actin Polymerization Regulates Cell Epithelial-Mesenchymal Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300425. [PMID: 37566765 PMCID: PMC10558697 DOI: 10.1002/advs.202300425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Indexed: 08/13/2023]
Abstract
Current studies on actin function primarily rely on cytoplasmic actin due to the absence of cellular models specifically expressing nuclear actin. Here, cell models capable of expressing varying levels of nuclear F/G-actin are generated and a significant role of nuclear actin in the regulation of epithelial-mesenchymal transition (EMT) is uncovered. Through immunoprecipitation and mass spectrometry analyses, distinct binding partners for nuclear F-actin (β-catenin, SMAD2, and SMAD3) and nuclear G-actin (MYBBP1A, NKRF, and MYPOP) are investigated, which respectively modulate EMT-promoting and EMT-repressing transcriptional events. While nuclear F-actin promotes EMT with enhanced cell migration, survival, and elongated mesenchymal morphology, nuclear G-actin represses EMT and related cell activities. Mechanistically, nuclear F-actin enhances β-catenin, SMAD2, and SMAD3 expression and stability in the nuclei, while nuclear G-actin increases MYBBP1A, NKRF, and MYPOP expression and stability in the nuclei. The association between nuclear F/G-actin and N-cadherin/E-cadherin in the cell lines (in vitro), and increased nuclear actin polymerization in the wound healing cells (in vivo) affirm a significant role of nuclear actin in EMT regulation. With evidence of nuclear actin polymerization and EMT during development, and irregularities in disease states such as cancer and fibrosis, targeting nuclear actin dynamics to trigger dysregulated EMT warrants ongoing study.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Javeria Qadir
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Kevin Y. Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Yu Chen
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Nan Wu
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Burton B. Yang
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| |
Collapse
|
17
|
Mooren OL, Stuchell-Brereton MD, McConnell P, Yan C, Wilkerson EM, Goldfarb D, Cooper JA, Sept D, Soranno A. Biophysical Mechanism of Allosteric Regulation of Actin Capping Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553570. [PMID: 37645735 PMCID: PMC10462145 DOI: 10.1101/2023.08.16.553570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. CPI-motif peptide association induced conformational changes within CP that propagate in one direction, while V-1 association induced conformational changes in the opposite direction. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wildtype (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI-motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.
Collapse
|
18
|
Sexton JA, Potchernikov T, Bibeau JP, Casanova-Sepúlveda G, Cao W, Lou HJ, Boggon TJ, De La Cruz EM, Turk BE. Distinct functional constraints driving conservation of the cofilin N-terminal regulatory tail. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547189. [PMID: 37425676 PMCID: PMC10327202 DOI: 10.1101/2023.06.30.547189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but the aspects of cofilin functionality driving this conservation are not clear. Here, we screened a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and subsequent biochemical analysis of individual variants revealed distinct sequence requirements for actin binding and regulation by LIM kinase. While the presence of a serine, rather than threonine, phosphoacceptor residue was essential for phosphorylation by LIM kinase, the native cofilin N-terminus was otherwise a suboptimal LIM kinase substrate. This circumstance was not due to sequence requirements for actin binding and severing, but rather appeared primarily to maintain the capacity for phosphorylation to inactivate cofilin. Overall, the individual sequence requirements for cofilin function and regulation were remarkably loose when examined separately, but collectively restricted the N-terminus to sequences found in natural cofilins. Our results illustrate how a regulatory phosphorylation site can balance potentially competing sequence requirements for function and regulation.
Collapse
Affiliation(s)
- Joel A. Sexton
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Tony Potchernikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Jeffrey P. Bibeau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
19
|
Ulrichs H, Gaska I, Shekhar S. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein. Nat Commun 2023; 14:3981. [PMID: 37414761 PMCID: PMC10326068 DOI: 10.1038/s41467-023-39655-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Cells control actin assembly by regulating reactions at actin filament barbed ends. Formins accelerate elongation, capping protein (CP) arrests growth and twinfilin promotes depolymerization at barbed ends. How these distinct activities get integrated within a shared cytoplasm is unclear. Using microfluidics-assisted TIRF microscopy, we find that formin, CP and twinfilin can simultaneously bind filament barbed ends. Three‑color, single-molecule experiments reveal that twinfilin cannot bind barbed ends occupied by formin unless CP is present. This trimeric complex is short-lived (~1 s), and results in dissociation of CP by twinfilin, promoting formin-based elongation. Thus, the depolymerase twinfilin acts as a pro-formin pro-polymerization factor when both CP and formin are present. While one twinfilin binding event is sufficient to displace CP from the barbed-end trimeric complex, ~31 twinfilin binding events are required to remove CP from a CP-capped barbed end. Our findings establish a paradigm where polymerases, depolymerases and cappers together tune actin assembly.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Ignas Gaska
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Carman PJ, Barrie KR, Rebowski G, Dominguez R. Structures of the free and capped ends of the actin filament. Science 2023; 380:1287-1292. [PMID: 37228182 PMCID: PMC10880383 DOI: 10.1126/science.adg6812] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
The barbed and pointed ends of the actin filament (F-actin) are the sites of growth and shrinkage and the targets of capping proteins that block subunit exchange, including CapZ at the barbed end and tropomodulin at the pointed end. We describe cryo-electron microscopy structures of the free and capped ends of F-actin. Terminal subunits at the free barbed end adopt a "flat" F-actin conformation. CapZ binds with minor changes to the barbed end but with major changes to itself. By contrast, subunits at the free pointed end adopt a "twisted" monomeric actin (G-actin) conformation. Tropomodulin binding forces the second subunit into an F-actin conformation. The structures reveal how the ends differ from the middle in F-actin and how these differences control subunit addition, dissociation, capping, and interactions with end-binding proteins.
Collapse
Affiliation(s)
- Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Kyle R. Barrie
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Walker CK, Greathouse KM, Tuscher JJ, Dammer EB, Weber AJ, Liu E, Curtis KA, Boros BD, Freeman CD, Seo JV, Ramdas R, Hurst C, Duong DM, Gearing M, Murchison CF, Day JJ, Seyfried NT, Herskowitz JH. Cross-Platform Synaptic Network Analysis of Human Entorhinal Cortex Identifies TWF2 as a Modulator of Dendritic Spine Length. J Neurosci 2023; 43:3764-3785. [PMID: 37055180 PMCID: PMC10198456 DOI: 10.1523/jneurosci.2102-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.
Collapse
Affiliation(s)
- Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cameron D Freeman
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jung Vin Seo
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Raksha Ramdas
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Charles F Murchison
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
22
|
Ulrichs H, Gaska I, Shekhar S. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538010. [PMID: 37163095 PMCID: PMC10168238 DOI: 10.1101/2023.04.24.538010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Living cells assemble their actin networks by regulating reactions at the barbed end of actin filaments. Formins accelerate elongation, capping protein (CP) arrests growth and twinfilin promotes depolymerization at barbed ends. How cells integrate these disparate activities within a shared cytoplasm to produce diverse actin networks, each with distinct morphologies and finely tuned assembly kinetics, is unclear. We used microfluidics-assisted TIRF microscopy to investigate how formin mDia1, CP and twinfilin influence the elongation of actin filament barbed ends. We discovered that the three proteins can simultaneously bind a barbed end in a multiprotein complex. Three-color single molecule experiments showed that twinfilin cannot bind actin filament ends occupied by formin mDia1 unless CP is present. The trimeric complex is short-lived (∼1s) and results in rapid dissociation of CP by twinfilin causing resumption of rapid formin- based elongation. Thus, the depolymerase twinfilin acts as a pro-formin factor that promotes polymerization when both CP and formin are present. While a single twinfilin binding event is sufficient to displace CP from the trimeric complex, it takes about 30 independent twinfilin binding events to remove capping protein from CP-bound barbed end. Our findings establish a new paradigm in which polymerases, depolymerases and cappers work in concert to tune cellular actin assembly.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Ignas Gaska
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
23
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
24
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
25
|
Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Commun Biol 2022; 5:890. [PMID: 36045281 PMCID: PMC9433394 DOI: 10.1038/s42003-022-03783-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Charting the emergence of eukaryotic traits is important for understanding the characteristics of organisms that contributed to eukaryogenesis. Asgard archaea and eukaryotes are the only organisms known to possess regulated actin cytoskeletons. Here, we determined that gelsolins (2DGels) from Lokiarchaeota (Loki) and Heimdallarchaeota (Heim) are capable of regulating eukaryotic actin dynamics in vitro and when expressed in eukaryotic cells. The actin filament severing and capping, and actin monomer sequestering, functionalities of 2DGels are strictly calcium controlled. We determined the X-ray structures of Heim and Loki 2DGels bound actin monomers. Each structure possesses common and distinct calcium-binding sites. Loki2DGel has an unusual WH2-like motif (LVDV) between its two gelsolin domains, in which the aspartic acid coordinates a calcium ion at the interface with actin. We conclude that the calcium-regulated actin cytoskeleton predates eukaryogenesis and emerged in the predecessors of the last common ancestor of Loki, Heim and Thorarchaeota. Calcium-regulated actin filament assembly predates eukaryogenesis and was present in the last common ancestor of Asgard archaea Loki, Heim, and Thorarchaeota.
Collapse
|
26
|
Kotila T, Wioland H, Selvaraj M, Kogan K, Antenucci L, Jégou A, Huiskonen JT, Romet-Lemonne G, Lappalainen P. Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nat Commun 2022; 13:3442. [PMID: 35705539 PMCID: PMC9200798 DOI: 10.1038/s41467-022-31068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Muniyandi Selvaraj
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lina Antenucci
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Juha T Huiskonen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | | | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
27
|
Gao J, Nakamura F. Actin-Associated Proteins and Small Molecules Targeting the Actin Cytoskeleton. Int J Mol Sci 2022; 23:2118. [PMID: 35216237 PMCID: PMC8880164 DOI: 10.3390/ijms23042118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Actin-associated proteins (AAPs) act on monomeric globular actin (G-actin) and polymerized filamentous actin (F-actin) to regulate their dynamics and architectures which ultimately control cell movement, shape change, division; organelle localization and trafficking. Actin-binding proteins (ABPs) are a subset of AAPs. Since actin was discovered as a myosin-activating protein (hence named actin) in 1942, the protein has also been found to be expressed in non-muscle cells, and numerous AAPs continue to be discovered. This review article lists all of the AAPs discovered so far while also allowing readers to sort the list based on the names, sizes, functions, related human diseases, and the dates of discovery. The list also contains links to the UniProt and Protein Atlas databases for accessing further, related details such as protein structures, associated proteins, subcellular localization, the expression levels in cells and tissues, mutations, and pathology. Because the actin cytoskeleton is involved in many pathological processes such as tumorigenesis, invasion, and developmental diseases, small molecules that target actin and AAPs which hold potential to treat these diseases are also listed.
Collapse
Affiliation(s)
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
28
|
Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Cell Mol Life Sci 2022; 79:125. [PMID: 35132495 PMCID: PMC8821504 DOI: 10.1007/s00018-021-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the β-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a β-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.
Collapse
|
29
|
Duong HTT, Suzuki H, Katagiri S, Shibata M, Arai M, Yura K. Computational study of the impact of nucleotide variations on highly conserved proteins: In the case of actin. Biophys Physicobiol 2022; 19:e190025. [PMID: 36160324 PMCID: PMC9465404 DOI: 10.2142/biophysico.bppb-v19.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022] Open
Abstract
Sequencing of individual human genomes enables studying relationship among nucleotide variations, amino acid substitutions, effect on protein structures and diseases. Many studies have found general tendencies, for instance, that pathogenic variations tend to be found in the buried regions of the protein structures, that benign variations tend to be found on the surface of the proteins, and that variations on evolutionary conserved residues tend to be pathogenic. These tendencies were deduced from globular proteins with standard evolutionary changes in amino acid sequences. In this study, we investigated the variation distribution on actin, one of the highly conserved proteins. Many nucleotide variations and three-dimensional structures of actin have been registered in databases. By combining those data, we found that variations buried inside the protein were rather benign and variations on the surface of the protein were pathogenic. This idiosyncratic distribution of the variation impact is likely ascribed to the extensive use of the surface of the protein for protein-protein interactions in actin.
Collapse
Affiliation(s)
- Ha T. T. Duong
- Graduate School of Humanities and Sciences, Ochanomizu University
| | - Hirofumi Suzuki
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Saki Katagiri
- Graduate School of Humanities and Sciences, Ochanomizu University
| | - Mayu Shibata
- Graduate School of Humanities and Sciences, Ochanomizu University
| | - Misae Arai
- Graduate School of Humanities and Sciences, Ochanomizu University
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University
| |
Collapse
|
30
|
Funk J, Merino F, Schaks M, Rottner K, Raunser S, Bieling P. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks. Nat Commun 2021; 12:5329. [PMID: 34504078 PMCID: PMC8429771 DOI: 10.1038/s41467-021-25682-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP's C-terminal "tentacle" extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes-capping and nucleation-in branched actin network assembly.
Collapse
Affiliation(s)
- Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
31
|
Lamb AK, Fernandez AN, Peersen OB, Di Pietro SM. The dynein light chain protein Tda2 functions as a dimerization engine to regulate actin capping protein during endocytosis. Mol Biol Cell 2021; 32:1459-1473. [PMID: 34081539 PMCID: PMC8351736 DOI: 10.1091/mbc.e21-01-0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain (DLC) that works with Aim21 to regulate actin assembly during endocytosis. Here we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical DLC ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein (CP) recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a CP interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin CP recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicate the Tda2-Aim21 complex functions in actin assembly primarily through CP regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.
Collapse
Affiliation(s)
- Andrew K Lamb
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Andres N Fernandez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|
32
|
Abstract
The turnover of actin filament networks in cells has long been considered to reflect the treadmilling behavior of pure actin filaments in vitro, where only the pointed ends depolymerize. Newly discovered molecular mechanisms challenge this notion, as they provide evidence of situations in which growing and depolymerizing barbed ends coexist.
Collapse
Affiliation(s)
- Guillaume Romet-Lemonne
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
33
|
Takeda S, Koike R, Fujiwara I, Narita A, Miyata M, Ota M, Maéda Y. Structural Insights into the Regulation of Actin Capping Protein by Twinfilin C-terminal Tail. J Mol Biol 2021; 433:166891. [PMID: 33639213 DOI: 10.1016/j.jmb.2021.166891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI.
Collapse
Affiliation(s)
- Shuichi Takeda
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan; The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuichiro Maéda
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|