1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Mathew A, Aschwanden R, Tripathi A, Jangid P, Sain B, Zentgraf T, Kruk S. Nonreciprocal Metasurfaces with Epsilon-Near-Zero Materials. NANO LETTERS 2025; 25:3259-3264. [PMID: 39936399 DOI: 10.1021/acs.nanolett.4c06188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nonreciprocal optics enables the asymmetric transmission of light when its sources and detectors are exchanged. A canonical example─optical isolator─enables light propagation in only one direction, similar to how electrical diodes enable unidirectional flow of electric current. Nonreciprocal optics today, unlike nonreciprocal electronics, remains bulky. Recently, nonlinear metasurfaces opened a pathway to strong optical nonreciprocity on the nanoscale. However, demonstrations to date were based on optically slow nonlinearities involving thermal effects or phase transition materials. In this work, we demonstrate a nonreciprocal metasurface with an ultrafast optical response based on indium tin oxide in its epsilon-near-zero regime. It operates in the spectral range of 1200-1300 nm with incident power densities of 40-70 GW/cm2. Furthermore, the nonreciprocity of the metasurface extends to both amplitude and phase of the forward/backward transmission, opening a pathway to nonreciprocal wavefront control at the nanoscale.
Collapse
Affiliation(s)
- Albert Mathew
- Research School of Physics, The Australian National University, Canberra 2601, Australia
| | | | - Aditya Tripathi
- Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Piyush Jangid
- Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Basudeb Sain
- Department of Physics, Paderborn University, Paderborn 33098, Germany
| | - Thomas Zentgraf
- Department of Physics, Paderborn University, Paderborn 33098, Germany
| | - Sergey Kruk
- Australian Research Council Centre of Excellence QUBIC, IBMD, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
3
|
Wang X, Lu J, Shi AC, Liu B. Liquid Crystalline Nanorods by Synchronized Polymerization, Self-Assembly and Oriented Attachment for Utilization in Magnetically Responsive Displays. Angew Chem Int Ed Engl 2025; 64:e202419042. [PMID: 39714453 DOI: 10.1002/anie.202419042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The creation of anisotropic nanoparticles (NPs) by polymerization and/or self-assembly (SA) has significantly promoted the applications of polymer nanomaterials in many fields. However, polymer nanorods are not easily accessible via conventional polymerization or SA. Here we report a one-step route to synthesize single-domain smectic liquid crystalline (LC) nanorods utilizing oriented attachment (OA) that was usually found in the synthesis of inorganic NPs, synchronized with polymerization and SA. The synchronization was achieved by developing a novel stabilizer derived from a thermo-responsive polyelectrolyte system. Mechanistic studies reveal that controlling the thermo-responsive behavior and the distribution of stabilizers on NPs enabled OA. The LC nanorods can further form hierarchical colloidal LCs, which show much larger light transmittance than that of non-LC nanorods. Moreover, we demonstrate that this LC system can be manipulated by an external magnetic field, thus providing a candidate material for magnetic-responsive display.
Collapse
Affiliation(s)
- Xiao Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Doshi S, Ji A, Mahdi AI, Keene ST, Selvin SP, Lalanne P, Appel EA, Melosh NA, Brongersma ML. Electrochemically mutable soft metasurfaces. NATURE MATERIALS 2025; 24:205-211. [PMID: 39537748 DOI: 10.1038/s41563-024-02042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Active optical metasurfaces, capable of dynamically manipulating light in ultrathin form factors, enable novel interfaces between humans and technology. In such interfaces, soft materials bring many advantages based on their flexibility, compliance and large stimulus-driven responses. Here, we create electrochemically mutable, soft metasurfaces that capitalize on the swelling of soft conducting polymers to alter the shape and associated resonant response of metasurface elements. Such geometric tuning overcomes the typical trade-off between achieving substantial tuning and low optical loss that is intrinsic to dynamic metasurfaces relying on index tuning of materials. Using the commercial polymer PEDOT:PSS, we demonstrate dynamic, high-resolution colour tuning and high-diffraction-efficiency (>19%) beam-steering devices that operate at CMOS-compatible voltages (~1.5 V). These results highlight how the deformability of soft materials can enable a class of high-performance metasurfaces that are suitable for body-worn technologies.
Collapse
Affiliation(s)
- Siddharth Doshi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Anqi Ji
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Ali I Mahdi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Skyler P Selvin
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | | | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Yamaguchi M, Hada M, Iwami K. Polarization-independent full-color holographic movie with a single metasurface free from crosstalk. OPTICS EXPRESS 2025; 33:3238-3249. [PMID: 39876452 DOI: 10.1364/oe.550169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Metasurface holograms offer advantages, such as a wide viewing angle, compact size, and high resolution. However, projecting a full-color movie using a single hologram without polarization dependence has remained challenging. Here, we report a full-color dielectric metasurface holographic movie with a resolution of 512 × 512. Eight frames were multiplexed across blue (445 nm), green (532 nm), and red (633 nm) color channels, achieving a maximum reconstruction rate of 5.6 frames per second. The superposition of the three wavelengths was achieved by adjusting the resolution and position of each target image while maintaining a constant pitch of the meta-atoms. Additionally, we identified the positions of crosstalk images generated that occur due to fabrication errors and proposed and demonstrated conditions and corrections to ensure they do not overlap with the intended images. The superimposition of phase distributions for each wavelength was achieved using the least squares error method, based on a library of over 20,000 types of meta-atoms. These results are anticipated to advance the future development of three-dimensional metasurface holographic movies.
Collapse
|
6
|
Huang X, Kaissner R, Renz B, Börner J, Ou X, Neubrech F, Zhang Y, Hu Y, Liu N. Organic Metasurfaces with Contrasting Conducting Polymers. NANO LETTERS 2025; 25:890-897. [PMID: 39757923 DOI: 10.1021/acs.nanolett.4c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Conducting polymers have emerged as promising active materials for metasurfaces due to their electrically tunable states and large refractive index modulation. However, existing approaches are often limited to infrared operation or single-polymer systems, restricting their versatility. In this Letter, we present organic metasurfaces featuring dual conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT), to achieve contrasting dynamic optical responses at visible frequencies. Sequential electrochemical polymerizations locally conjugate subwavelength-thin layers of PANI and PEDOT onto preselected gold nanorods, creating electro-plasmonic antennas with distinct optoelectronic properties. This dual-polymer approach enables dynamic metasurface pixel control without individual electrode routing, thereby simplifying active metasurface designs. The metasurfaces exhibit dual-channel functions, including anomalous transmission and holography, through the redox-state switching of both polymers. Our work underscores the potential of conducting polymers for active metasurface applications, offering a pathway to advanced reconfigurable optical devices at visible frequencies.
Collapse
Affiliation(s)
- Xiangyu Huang
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Robin Kaissner
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Benjamin Renz
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Janine Börner
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Xiangnian Ou
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Frank Neubrech
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Na Liu
- Second Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Wang Z, Li Z, Wan C, Wan S, Dai C, Zheng G, Li Z. Gesture-Interactive Dynamic Holo-Display via Topography Flexible Metasurfaces. ACS NANO 2025; 19:1286-1294. [PMID: 39715323 DOI: 10.1021/acsnano.4c13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Heading toward the next-generation intelligent optical device, the meta-optics active tunability is one of the most desirable properties to expand its versatility beyond the traditional optical devices. Despite its advances via various tunable approaches, the encoding freedom of tuning capability still critically restricts its widespread engagement and dynamics in real-life applications. Here, we present a gesture-interactive scheme by topography flexible metasurfaces (TFMs) to expand the encoding freedom for the tuning capability. Through regulating different surface topographies, the potential tuning degree of freedom (DoF) has been fully explored to dynamically display/encrypt up to 16 independent holographic images, exceeding the state-of-the-art tuning DoF. Such topography flexibility is interactively tuned with gesture triggers, manual bending, and other large-area repeatable controlling methods to extract and display the respective holographic images. We envision that this research stimulates active meta-device innovation and suggests potential applications in next-generation interactive displays, information storage and encryption, and wearable optical devices.
Collapse
Affiliation(s)
- Zejing Wang
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Zhe Li
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chengwei Wan
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Wan
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Chenjie Dai
- Electronic Information School, Wuhan University, Wuhan 430072, China
| | - Guoxing Zheng
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Peng Cheng Laboratory, Shenzhen 518055, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Zhongyang Li
- Electronic Information School, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Sun S, Li J, Li X, Zhao X, Li K, Chen L. Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal. MICROSYSTEMS & NANOENGINEERING 2024; 10:203. [PMID: 39719449 DOI: 10.1038/s41378-024-00855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024]
Abstract
Metasurface with natural static structure limits the development of dynamic metasurface holographic display with rapid response and broadband. Currently, liquid crystal (LC) was integrated onto the metasurface to convert the passive metasuface into an active one. But, majority of LC-assisted active metasurfaces often exhibit trade-offs among degree of freedom (DoF, typically less than 2), information capacity, response speed, and crosstalk. Herein, at first time, we experimentally demonstrate a cascaded device with polymer dispersed liquid crystal (PDLC) and broadband metasurface, enabling dynamic three-dimensional (3D) holographic display with ultra-high contrast, rapid response and continuous regulation. The PDLC droplets enable modulation of scattering state of incident light by high-speed dynamic control system for electric scanning. Based on self-addressing, rapid response and multi-channel PDLC-metasurface device, the dynamic holographic effect of monochrome holographic images switching and color-changing holographic display with broadband, low-crosstalk and high contrast, has been achieved. Our approach offers a novel perspective on dynamic metasurface.
Collapse
Affiliation(s)
- Shuo Sun
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China
- Beihang Hangzhou Innovation Institute, Hangzhou, 310052, China
| | - Jin Li
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China.
- Beihang Hangzhou Innovation Institute, Hangzhou, 310052, China.
| | - Xiaoxun Li
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China.
| | - Xianyu Zhao
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210000, China
| | - Kun Li
- CamOptics (Suzhou) Ltd., Suzhou, 215000, China.
| | - Liang Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Ha ST, Li Q, Yang JKW, Demir HV, Brongersma ML, Kuznetsov AI. Optoelectronic metadevices. Science 2024; 386:eadm7442. [PMID: 39607937 DOI: 10.1126/science.adm7442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Metasurfaces have introduced new opportunities in photonic design by offering unprecedented, nanoscale control over optical wavefronts. These artificially structured layers have largely been used to passively manipulate the flow of light by controlling its phase, amplitude, and polarization. However, they can also dynamically modulate these quantities and manipulate fundamental light absorption and emission processes. These valuable traits can extend their application domain to chipscale optoelectronics and conceptually new optical sources, displays, spatial light modulators, photodetectors, solar cells, and imaging systems. New opportunities and challenges have also emerged in the materials and device integration with existing technologies. This Review aims to consolidate the current research landscape and provide perspectives on metasurface capabilities specific to optoelectronic devices, giving new direction to future research and development efforts in academia and industry.
Collapse
Affiliation(s)
- Son Tung Ha
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qitong Li
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore
| | - Hilmi Volkan Demir
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore
- UNAM-Institute of Materials Science and Nanotechnology, The National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA
| | - Arseniy I Kuznetsov
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
10
|
Bian L, Chang X, Jiang S, Yang L, Zhan X, Liu S, Li D, Yan R, Gao Z, Zhang J. Large-scale scattering-augmented optical encryption. Nat Commun 2024; 15:9807. [PMID: 39532877 PMCID: PMC11557899 DOI: 10.1038/s41467-024-54168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Data proliferation in the digital age necessitates robust encryption techniques to protect information privacy. Optical encryption leverages the multiple degrees of freedom inherent in light waves to encode information with parallel processing and enhanced security features. However, implementations of large-scale, high-security optical encryption have largely remained theoretical or limited to digital simulations due to hardware constraints, signal-to-noise ratio challenges, and precision fabrication of encoding elements. Here, we present an optical encryption platform utilizing scattering multiplexing ptychography, simultaneously enhancing security and throughput. Unlike optical encoders which rely on computer-generated randomness, our approach leverages the inherent complexity of light scattering as a natural unclonable function. This enables multi-dimensional encoding with superior randomness. Furthermore, the ptychographic configuration expands encryption throughput beyond hardware limitations through spatial multiplexing of different scatterer regions. We propose a hybrid decryption algorithm integrating model- and data-driven strategies, ensuring robust decryption against various sources of measurement noise and communication interference. We achieved optical encryption at a scale of ten-megapixel pixels with 1.23 µm resolution. Communication experiments validate the resilience of our decryption algorithm, yielding high-fidelity results even under extreme transmission conditions characterized by a 20% bit error rate. Our encryption platform offers a holistic solution for large-scale, high-security, and cost-effective cryptography.
Collapse
Affiliation(s)
- Liheng Bian
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China.
- Guangdong Province Key Laboratory of Intelligent Detection in Complex Environment of Aerospace, Land and Sea, Beijing Institute of Technology, Zhuhai, China.
| | - Xuyang Chang
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Xinrui Zhan
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Shicong Liu
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Daoyu Li
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Rong Yan
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Zhen Gao
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China
| | - Jun Zhang
- State Key Laboratory of CNS/ATM & MIIT Key Laboratory of Complex-field Intelligent Sensing, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
11
|
Yang ZQ, Chen J, Wang LG, Yang LH, Li Y, Wu ZS, Gong L. Composite scattering characteristics analysis of micro-ellipsoidal periodic structure optical surface and microdefects. Heliyon 2024; 10:e36039. [PMID: 39247298 PMCID: PMC11379595 DOI: 10.1016/j.heliyon.2024.e36039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
In order to adjust and detect micro-nano periodic structure optical surface accurately and efficiently, the problem of composite scattering between micro-ellipsoidal periodic structure optical surface and pore defects is studied use the multi-resolution time domain (MRTD) approach. A calculation model is established for the intensity distribution of composite scattering, which is modulated by the micro-ellipsoidal periodic structure optical surface and microdefects. Results are in good agreement with those obtained using CST Microwave Studio software and the finite-different time-domain (FDTD) approach, which demonstrates the effectiveness of the calculation model and method. By combining the field distribution of the micro-ellipsoidal periodic structure optical surface containing microdefects with the optical response at different wavelengths, it is necessary to study the influence of various parameters of the micro-ellipsoidal structure and microdefects on the optical system of metamaterials. The effects of the parameters such as roughness, structure of micro-ellipsoidal unit, defect sizes and buried depths on the composite scattering characteristics are analyzed numerically. The results provide technical support for the fields of functional surface design, ultrasensitive detection, scattering peak orientation and frequency selection.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Juan Chen
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Li-Guo Wang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Li-Hong Yang
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Yao Li
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| | - Zhen-Sen Wu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, shaanxi 710016, China
| | - Lei Gong
- School of Photoelectrical Engineering, Xi'an Technological University, shaanxi 710021, China
| |
Collapse
|
12
|
Jung C, Lee E, Rho J. The rise of electrically tunable metasurfaces. SCIENCE ADVANCES 2024; 10:eado8964. [PMID: 39178252 PMCID: PMC11343036 DOI: 10.1126/sciadv.ado8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Metasurfaces, which offer a diverse range of functionalities in a remarkably compact size, have captured the interest of both scientific and industrial sectors. However, their inherent static nature limits their adaptability for their further applications. Reconfigurable metasurfaces have emerged as a solution to this challenge, expanding the potential for diverse applications. Among the series of tunable devices, electrically controllable devices have garnered particular attention owing to their seamless integration with existing electronic equipment. This review presents recent progress reported with respect to electrically tunable devices, providing an overview of their technological development trajectory and current state of the art. In particular, we analyze the major tuning strategies and discuss the applications in spatial light modulators, tunable optical waveguides, and adaptable emissivity regulators. Furthermore, the challenges and opportunities associated with their implementation are explored, thereby highlighting their potential to bridge the gap between electronics and photonics to enable the development of groundbreaking optical systems.
Collapse
Affiliation(s)
- Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Hu H, Lu W, Antonov A, Berté R, Maier SA, Tittl A. Environmental permittivity-asymmetric BIC metasurfaces with electrical reconfigurability. Nat Commun 2024; 15:7050. [PMID: 39147735 PMCID: PMC11327280 DOI: 10.1038/s41467-024-51340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Achieving precise spectral and temporal light manipulation at the nanoscale remains a critical challenge in nanophotonics. While photonic bound states in the continuum (BICs) have emerged as a powerful means of controlling light, their reliance on geometrical symmetry breaking for obtaining tailored resonances makes them highly susceptible to fabrication imperfections, and their generally fixed asymmetry factor fundamentally limits applications in reconfigurable metasurfaces. Here, we introduce the concept of environmental symmetry breaking by embedding identical resonators into a surrounding medium with carefully placed regions of contrasting refractive indexes, activating permittivity-driven quasi-BIC resonances (ε-qBICs) without altering the underlying resonator geometry and unlocking an additional degree of freedom for light manipulation through active tuning of the surrounding dielectric environment. We demonstrate this concept by integrating polyaniline (PANI), an electro-optically active polymer, to achieve electrically reconfigurable ε-qBICs. This integration not only demonstrates rapid switching speeds and exceptional durability but also boosts the system's optical response to environmental perturbations. Our strategy significantly expands the capabilities of resonant light manipulation through permittivity modulation, opening avenues for on-chip optical devices, advanced sensing, and beyond.
Collapse
Affiliation(s)
- Haiyang Hu
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, München, Germany
| | - Wenzheng Lu
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, München, Germany
| | - Alexander Antonov
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, München, Germany
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, München, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University Clayton Campus, Melbourne, Victoria, Australia
- The Blackett Laboratory, Department of Physics, Imperial College London, London, United Kingdom
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, München, Germany.
| |
Collapse
|
14
|
Kaissner R, Renz B, Neubrech F, Hu Y, Liu N. An Electrochemically Programmable Metasurface with Independently Controlled Metasurface Pixels at Optical Frequencies. NANO LETTERS 2024; 24:9961-9966. [PMID: 38994869 DOI: 10.1021/acs.nanolett.4c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Metasurfaces have revolutionized optical technologies by offering powerful, compact, and versatile solutions to control light. Conducting polymers, characterized by their conjugated molecular structures, facilitate charge transport and exhibit interesting electrical, optical, and mechanical properties. Integrating conducting polymers with optical metasurfaces can unlock new opportunities and functionalities in modern optics. In this work, we demonstrate an electrochemically programmable metasurface with independently controlled metasurface pixels at optical frequencies. Electrochemical modulation of locally conjugated polyaniline on gold nanorods, which are arranged on addressable electrodes according to the Pancharatnam-Berry phase design, enables dynamic control over the metasurface pixels into programmable configurations. With the same metasurface device, we showcase diverse optical functions, including dynamic beam diffraction and varifocal lensing along and off the optical axis. The synergy between flat optics and conducting polymer science holds immense potential to enhance the performance and function versatility of metasurfaces, paving the way for innovative optical applications.
Collapse
Affiliation(s)
- Robin Kaissner
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Benjamin Renz
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Frank Neubrech
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Zhang Y, Zhu S, Hu J, Gu M. Femtosecond laser direct nanolithography of perovskite hydration for temporally programmable holograms. Nat Commun 2024; 15:6661. [PMID: 39107331 PMCID: PMC11303552 DOI: 10.1038/s41467-024-51148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Modern nanofabrication technologies have propelled significant advancement of high-resolution and optically thin holograms. However, it remains a long-standing challenge to tune the complex hologram patterns at the nanoscale for temporal light field control. Here, we report femtosecond laser direct lithography of perovskites with nanoscale feature size and pixel-level temporal dynamics control for temporally programmable holograms. Specifically, under tightly focused laser irradiation, the organic molecules of layered perovskites (PEA)2PbI4 can be exfoliated with nanometric thickness precision and subwavelength lateral size. This creates inorganic lead halide capping nanostructures that retard perovskite hydration, enabling tunable hydration time constant. Leveraging advanced inverse design methods, temporal holograms in which multiple independent images are multiplexed with low cross talk are demonstrated. Furthermore, cascaded holograms are constructed to form temporally holographic neural networks with programmable optical inference functionality. Our work opens up new opportunities for tunable photonic devices with broad impacts on holography display and storage, high-dimensional optical encryption and artificial intelligence.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.
| | - Shengting Zhu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinming Hu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
16
|
Zhong S, Guan Z, Yang F, Jiang Y, Zhao L, Wang W, Liu D, Cai W, Li Y. An Ultra-broadband Metallic Plasmonic Antenna for Ultrasensitive Molecular Fingerprint Identification. NANO LETTERS 2024; 24:6805-6812. [PMID: 38787360 DOI: 10.1021/acs.nanolett.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Near-field enhanced mid-infrared light-matter interactions via metallic plasmonic antennae (PA) have attracted much attention but are inevitably limited by the detuning between their narrow band and the broad applied spectral range. Here, we develop a new low-temperature incubation synthetic method to acquire uniform Ag microparticles (MPs) with numerous hotspots. Their plasmonic band is remarkably extended by the plasmonic coupling of numerous hotspots and covers the entire mid-infrared range (400-4000 cm-1). Hence, the almost complete molecular fingerprint of 4-mercaptobenzonitrile was successfully probed for the first time via resonant surface-enhanced infrared absorption (rSEIRA), and the rSEIRA spectra of different essential amino acids were further detected and exhibit a high spectral identification degree assisted by machine learning. This work changes the inertia perception of "narrow band and large size but small hotspot area" of mid-infrared metallic PA and paves the way for the ultrasensitive mid-infrared optical sensing.
Collapse
Affiliation(s)
- Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Zeyu Guan
- University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Fan Yang
- Tiangong University, Tianjin 300387, People's Republic of China
| | - Yong Jiang
- Tiangong University, Tianjin 300387, People's Republic of China
| | - Lixia Zhao
- Tiangong University, Tianjin 300387, People's Republic of China
| | - Wenhong Wang
- Tiangong University, Tianjin 300387, People's Republic of China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, People's Republic of China
- Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
17
|
Zhou H, Li D, Ren Z, Xu C, Wang LF, Lee C. Surface plasmons-phonons for mid-infrared hyperspectral imaging. SCIENCE ADVANCES 2024; 10:eado3179. [PMID: 38809968 PMCID: PMC11135386 DOI: 10.1126/sciadv.ado3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Surface plasmons have proven their ability to boost the sensitivity of mid-infrared hyperspectral imaging by enhancing light-matter interactions. Surface phonons, a counterpart technology to plasmons, present unclear contributions to hyperspectral imaging. Here, we investigate this by developing a plasmon-phonon hyperspectral imaging system that uses asymmetric cross-shaped nanoantennas composed of stacked plasmon-phonon materials. The phonon modes within this system, controlled by light polarization, capture molecular refractive index intensity and lineshape features, distinct from those observed with plasmons, enabling more precise and sensitive molecule identification. In a deep learning-assisted imaging demonstration of severe acute respiratory syndrome coronavirus (SARS-CoV), phonons exhibit enhanced identification capabilities (230,400 spectra/s), facilitating the de-overlapping and observation of the spatial distribution of two mixed SARS-CoV spike proteins. In addition, the plasmon-phonon system demonstrates increased identification accuracy (93%), heightened sensitivity, and enhanced detection limits (down to molecule monolayers). These findings extend phonon polaritonics to hyperspectral imaging, promising applications in imaging-guided molecule screening and pharmaceutical analysis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
18
|
Zhang JC, Fan Y, Yao J, Chen MK, Lin S, Liang Y, Leng B, Tsai DP. Programmable optical meta-holograms. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1201-1217. [PMID: 39679222 PMCID: PMC11636456 DOI: 10.1515/nanoph-2023-0544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/22/2023] [Indexed: 12/17/2024]
Abstract
The metaverse has captured significant attention as it provides a virtual realm that cannot be experienced in the physical world. Programmable optical holograms, integral components of the metaverse, allow users to access diverse information without needing external equipment. Meta-devices composed of artificially customized nano-antennas are excellent candidates for programmable optical holograms due to their compact footprint and flexible electromagnetic manipulation. Programmable optical meta-holograms can dynamically alter reconstructed images in real-time by directly modulating the optical properties of the metasurface or by modifying the incident light. Information can be encoded across multiple channels and freely selected through switchable functionality. These advantages will broaden the range of virtual scenarios in the metaverse, facilitating further development and practical applications. This review concentrates on recent advancements in the fundamentals and applications of programmable optical meta-holograms. We aim to provide readers with general knowledge and potential inspiration for applying programmable optical meta-holograms, both intrinsic and external ways, into the metaverse for better performance. An outlook and perspective on the challenges and prospects in these rapidly growing research areas are provided.
Collapse
Affiliation(s)
- Jing Cheng Zhang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yubin Fan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jin Yao
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shirong Lin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yao Liang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Borui Leng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
19
|
Yamaguchi M, Saito H, Ikezawa S, Iwami K. Highly-efficient full-color holographic movie based on silicon nitride metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1425-1433. [PMID: 39679229 PMCID: PMC11636475 DOI: 10.1515/nanoph-2023-0756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 12/17/2024]
Abstract
Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.9 frames per second. The high average transmittance and diffraction efficiency of 92.0 % and 72.7 %, respectively, in the visible range, were achieved by adopting polarization-independent silicon nitride waveguide meta-atoms, resulting in high color reproducibility. The superposition of three wavelengths was achieved by adjusting the resolutions and positions of target images for each wavelength while maintaining the meta-atom pitch constant. The improvement in diffraction efficiency was brought about by the optimization of etching conditions to form high-aspect vertical nanopillar structures.
Collapse
Affiliation(s)
- Masakazu Yamaguchi
- Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| | - Hiroki Saito
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| | - Satoshi Ikezawa
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo169–8555Japan
| | - Kentaro Iwami
- Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| |
Collapse
|
20
|
Ko JH, Yeo JE, Jeong HE, Yoo DE, Lee DW, Oh YW, Jung S, Kang IS, Jeong HH, Song YM. Electrochromic nanopixels with optical duality for optical encryption applications. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1119-1129. [PMID: 39633997 PMCID: PMC11501882 DOI: 10.1515/nanoph-2023-0737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Advances in nanophotonics have created numerous pathways for light-matter interactions in nanometer scale, enriched by physical and chemical mechanisms. Over the avenue, electrically tunable photonic response is highly desired for optical encryption, optical switch, and structural color display. However, the perceived obstacle, which lies in the energy-efficient tuning mechanism and/or its weak light-matter interaction, is treated as a barrier. Here, we introduce electrochromic nanopixels made of hybrid nanowires integrated with polyaniline (PANI). The device shows optical duality between two resonators: (i) surface plasmon polariton (SPP)-induced waveguide (wavelength-selective absorber) and (ii) ultrathin resonator (broadband absorber). With switching effect of between resonant modes, we achieve enhanced chromatic variation spanning from red to green and blue while operating at a sub-1-volt level, ensuring compatibility with the CMOS voltage range. This modulation is achieved by improving the light-matter interaction, effectively harnessing the intrinsic optical property transition of PANI from lossy to dielectric in response to the redox states. In our experimental approach, we successfully scaled up device fabrication to an 8-inch wafer, tailoring the nanowire array to different dimensions for optical information encryption. Demonstrating distinct chromaticity modulation, we achieve optical encryption of multiple data bits, up to 8 bits per unit cell. By capitalizing on the remarkable sensitivity to the angular dependence of the waveguiding mode, we further enhance the information capacity to an impressive 10 bits per unit cell.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju61005, Republic of Korea
| | - Ji-Eun Yeo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju61005, Republic of Korea
| | - Hyo Eun Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju61005, Republic of Korea
| | - Dong Eun Yoo
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Dong Wook Lee
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Yeon-Wha Oh
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Sanghee Jung
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Il-Seok Kang
- National Nanofab Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science and Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Department of Semiconductor Engineering, and Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju61005, Republic of Korea
| |
Collapse
|
21
|
Kim G, Kim D, Ko S, Han JH, Kim J, Ko JH, Song YM, Jeong HH. Programmable directional color dynamics using plasmonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:22. [PMID: 38304019 PMCID: PMC10831043 DOI: 10.1038/s41378-023-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/03/2024]
Abstract
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices. However, the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs. Here, we present a multicolor nanofilter consisting of multilayered 'active' plasmonic nanocomposites, wherein metallic nanoparticles are embedded within a conductive polymer nanofilm. These nanocomposites are fabricated with a total thickness below 100 nm using a 'lithography-free' method at the wafer level, and they inherently exhibit three prominent optical modes, accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors. Here, a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed, encompassing the entire visible spectrum. Furthermore, this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum (3250 K-6250 K). This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun's elevation and prevailing weather conditions.
Collapse
Affiliation(s)
- Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Soeun Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
22
|
Lu W, Menezes LDS, Tittl A, Ren H, Maier SA. Active Huygens' metasurface based on in-situ grown conductive polymer. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:39-49. [PMID: 39633995 PMCID: PMC11502067 DOI: 10.1515/nanoph-2023-0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Active metasurfaces provide unique advantages for on-demand light manipulation at a subwavelength scale for emerging visual applications of displays, holographic projectors, optical sensors, light detection and ranging (LiDAR). These applications put stringent requirements on switching speed, cycling duration, electro-optical controllability, modulation contrast, optical efficiency and operation voltages. However, previous demonstrations focus only on particular subsets of these key performance requirements for device implementation, while the other performance metrics have remained too low for any practical use. Here, we demonstrate an active Huygens' metasurface based on conductive polyaniline (PANI), which can be in-situ grown and optimized on the metasurface. We have achieved simultaneously on the active metasurface switching speed of 60 frame per second (fps), switching duration of more than 2000 switching cycles without noticeable degradation, hysteresis-free controllability over intermediate states, modulation contrast of over 1400 %, optical efficiency of 28 % and operation voltage range within 1 V. Such PANI-powered active metasurface design can be readily incorporated into other metasurface concepts to deliver high-reliability electrical control over its optical response, paving the way for compact and robust electro-optic metadevices.
Collapse
Affiliation(s)
- Wenzheng Lu
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539Munich, Germany
| | - Leonardo de S. Menezes
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539Munich, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901Recife-PE, Brazil
- Center for Nanoscience, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539Munich, Germany
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539Munich, Germany
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
| | - Stefan A. Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
- Department of Physics, Imperial College London, LondonSW72AZ, UK
| |
Collapse
|
23
|
Chen P, Li D, Li Z, Xu X, Wang H, Zhou X, Zhai T. Programmable Physical Unclonable Functions Using Randomly Anisotropic Two-Dimensional Flakes. ACS NANO 2023. [PMID: 37982379 DOI: 10.1021/acsnano.3c08740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Physical unclonable functions (PUFs) have been developed as promising strategies for secure authentication. Conventional strategies of PUFs have a limitation in the aspect of security for their static single channel. The introduction of polarization will endow a static PUF with many dynamic transformations based on polarized properties. Herein, high-security PUFs based on the polarized luminescence of chaotic luminescent patterns are fabricated by anisotropic rare earth (RE) material Er3O4Cl flakes. These derivatives under different polarizations show strong randomness (with similarity of the same PUF as high as 97%, while that for different PUFs is as low as 44%), which further widens the security and capacity of PUFs. Polarized luminescence control of Er3O4Cl patterns gives freedom to the PUFs and ensures a high encoding capacity of 2380000. Furthermore, we build a convolutional neural network (CNN) to realize fast intelligent authentication by extracting image features for convolution operation with a very high accuracy of 99.8% and fast classification speed in only 5 epochs.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China
| |
Collapse
|
24
|
Li W, Chen B, Hu X, Guo H, Wang S, Wu J, Fan K, Zhang C, Wang H, Jin B, Chen J, Wu P. Modulo-addition operation enables terahertz programmable metasurface for high-resolution two-dimensional beam steering. SCIENCE ADVANCES 2023; 9:eadi7565. [PMID: 37851805 PMCID: PMC10584335 DOI: 10.1126/sciadv.adi7565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Electrically controlled terahertz (THz) beamforming antennas are essential for various applications such as wireless communications, security checks, and radar to improve coverage and information capacity. The emerging programmable metasurface provides a flexible, cost-effective platform for THz beam steering. However, scaling such arrays to achieve high-gain beam steering faces several technical challenges. Here, we propose a pixelated liquid crystal THz metasurface with a crossbar structure, thereby increasing the array scale to more than 3000. The coding pattern on the programmable device is generated by the modulo-addition of the coding sequences on the top and bottom layers. We experimentally demonstrate the programmable liquid crystal metasurface capable of active beam deflection in the upper half-space. This scale-up of programmable devices opens exciting opportunities in pencil beamforming, high-speed information processing, and optical computing.
Collapse
Affiliation(s)
- Weili Li
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Benwen Chen
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Hu
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Hangbing Guo
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Wang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jingbo Wu
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Kebin Fan
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Caihong Zhang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Biaobing Jin
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Jian Chen
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
25
|
Ye Z, Li Z, Feng J, Wu C, Fan Q, Chen C, Chen J, Yin Y. Dual-Responsive Fe 3O 4@Polyaniline Chiral Superstructures for Information Encryption. ACS NANO 2023; 17:18517-18524. [PMID: 37669537 DOI: 10.1021/acsnano.3c06461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Incorporating stimuli-responsive mechanisms into chiral assemblies of nanostructures offers numerous opportunities to create optical materials capable of dynamically modulating their chiroptical properties. In this study, we demonstrate the formation of chiral superstructures by assembling Fe3O4@polyaniline hybrid nanorods by using a gradient magnetic field. The resulting superstructures exhibit a dual response to changes in both the magnetic field and solution pH, enabling dynamic regulation of the position, intensity, and sign of its circular dichroism peaks. Such responsiveness allows for convenient control over the optical rotatory dispersion properties of the assemblies, which are further integrated into the design of a chiroptical switch that can display various colors and patterns when illuminated with light of different wavelengths and polarization states. Finally, an optical information encryption system is constructed through the controlled assembly of the hybrid nanorods to showcase the potential opportunities for practical applications brought by the resulting responsive chiral superstructures.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
26
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
27
|
Edel JB, Ma Y, Kornyshev AA. Electrochemical photonics: a pathway towards electrovariable optical metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2717-2744. [PMID: 39635491 PMCID: PMC11501799 DOI: 10.1515/nanoph-2023-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 12/07/2024]
Abstract
This review article focuses on the latest achievements in the creation of a class of electrotuneable optical metamaterials for switchable mirrors/windows, variable colour mirrors, optical filters, and SERS sensors, based on the voltage-controlled self-assembly of plasmonic nanoparticles at liquid/liquid or solid/liquid electrochemical interfaces. Practically, these experimental systems were navigated by physical theory, the role of which was pivotal in defining the optimal conditions for their operation, but which itself was advanced in feedback with experiments. Progress and problems in the realisation of the demonstrated effects for building the corresponding devices are discussed. To put the main topic of the review in a wider perspective, the article also discusses a few other types of electrovariable metamaterials, as well as some of those that are controlled by chemistry.
Collapse
Affiliation(s)
- Joshua B. Edel
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| | - Ye Ma
- Department of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| |
Collapse
|
28
|
Chen TH, Hong Y, Fu CT, Nandi A, Xie W, Yin J, Hsu PC. A kirigami-enabled electrochromic wearable variable-emittance device for energy-efficient adaptive personal thermoregulation. PNAS NEXUS 2023; 2:pgad165. [PMID: 37325025 PMCID: PMC10263260 DOI: 10.1093/pnasnexus/pgad165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
For centuries, people have put effort to improve the thermal performance of clothing to adapt to varying temperatures. However, most clothing we wear today only offers a single-mode insulation. The adoption of active thermal management devices, such as resistive heaters, Peltier coolers, and water recirculation, is limited by their excessive energy consumption and form factor for long-term, continuous, and personalized thermal comfort. In this paper, we developed a wearable variable-emittance (WeaVE) device, enabling the tunable radiative heat transfer coefficient to fill the missing gap between thermoregulation energy efficiency and controllability. WeaVE is an electrically driven, kirigami-enabled electrochromic thin-film device that can effectively tune the midinfrared thermal radiation heat loss of the human body. The kirigami design provides stretchability and conformal deformation under various modes and exhibits excellent mechanical stability after 1,000 cycles. The electronic control enables programmable personalized thermoregulation. With less than 5.58 mJ/cm2 energy input per switching, WeaVE provides 4.9°C expansion of the thermal comfort zone, which is equivalent to a continuous power input of 33.9 W/m2. This nonvolatile characteristic substantially decreases the required energy while maintaining the on-demand controllability, thereby providing vast opportunities for the next generation of smart personal thermal managing fabrics and wearable technologies.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Ching-Tai Fu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ankita Nandi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wanrong Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Po-Chun Hsu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Zhou Z, Fang Y, Liu R, Hu R, Zhou J, Hu B. Reconfigurable mechano-responsive soft film for adaptive visible and infrared dual-band camouflage. OPTICS LETTERS 2023; 48:2756-2759. [PMID: 37186758 DOI: 10.1364/ol.487282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Learning from nature in terms of the camouflage used by species has enabled the continuous development of camouflage technologies for the visible to mid-infrared bands to prevent objects from being detected by sophisticated multispectral detectors, thereby avoiding potential threats. However, achieving visible and infrared dual-band camouflage without destructive interference while also realizing rapidly responsive adaptivity to the varying background remains challenging for high-demand camouflage systems. Here, we report a reconfigurable mechano-responsive soft film for dual-band camouflage. Its modulation ranges for visible transmittance and longwave infrared emittance can be up to 66.3% and 21%, respectively. Rigorous optical simulations are performed to elucidate the modulation mechanism of dual-band camouflage and identify the optimal wrinkles required to achieve the goal. The broadband modulation capability (figure of merit) of the camouflage film can be as high as 2.91. Other advantages, such as simple fabrication and a fast response, make this film a potential candidate for dual-band camouflage that can adapt to diverse environments.
Collapse
|
30
|
de Jong D, Karst J, Ludescher D, Floess M, Moell S, Dirnberger K, Hentschel M, Ludwigs S, Braun PV, Giessen H. Electrically switchable metallic polymer metasurface device with gel polymer electrolyte. NANOPHOTONICS 2023; 12:1397-1404. [PMID: 37114093 PMCID: PMC10125172 DOI: 10.1515/nanoph-2022-0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/08/2023] [Indexed: 06/11/2023]
Abstract
We present an electrically switchable, compact metasurface device based on the metallic polymer PEDOT:PSS in combination with a gel polymer electrolyte. Applying square-wave voltages, we can reversibly switch the PEDOT:PSS from dielectric to metallic. Using this concept, we demonstrate a compact, standalone, and CMOS compatible metadevice. It allows for electrically controlled ON and OFF switching of plasmonic resonances in the 2-3 µm wavelength range, as well as electrically controlled beam switching at angles up to 10°. Furthermore, switching frequencies of up to 10 Hz, with oxidation times as fast as 42 ms and reduction times of 57 ms, are demonstrated. Our work provides the basis towards solid state switchable metasurfaces, ultimately leading to submicrometer-pixel spatial light modulators and hence switchable holographic devices.
Collapse
Affiliation(s)
- Derek de Jong
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
- Department of Materials Science and Engineering, Materials Research Laboratory, and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801, USA
| | - Julian Karst
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Dominik Ludescher
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Moritz Floess
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Sophia Moell
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Klaus Dirnberger
- IPOC-Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
| | - Mario Hentschel
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany
| | - Paul V. Braun
- Department of Materials Science and Engineering, Materials Research Laboratory, and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801, USA
| | - Harald Giessen
- 4th Physics Institute and Research Center ScoPE, University of Stuttgart, Pfaffenwaldring 57, 70569Stuttgart, Germany
| |
Collapse
|
31
|
Electro-active metaobjective from metalenses-on-demand. Nat Commun 2022; 13:7183. [PMID: 36418295 PMCID: PMC9684136 DOI: 10.1038/s41467-022-34494-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
Switchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.
Collapse
|
32
|
Saifullah Y, He Y, Boag A, Yang G, Xu F. Recent Progress in Reconfigurable and Intelligent Metasurfaces: A Comprehensive Review of Tuning Mechanisms, Hardware Designs, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203747. [PMID: 36117118 PMCID: PMC9685480 DOI: 10.1002/advs.202203747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Indexed: 05/25/2023]
Abstract
Intelligent metasurfaces have gained significant importance in recent years due to their ability to dynamically manipulate electromagnetic (EM) waves. Their multifunctional characteristics, realized by incorporating active elements into the metasurface designs, have huge potential in numerous novel devices and exciting applications. In this article, recent progress in the field of intelligent metasurfaces are reviewed, focusing particularly on tuning mechanisms, hardware designs, and applications. Reconfigurable and programmable metasurfaces, classified as space gradient, time modulated, and space-time modulated metasurfaces, are discussed. Then, reconfigurable intelligent surfaces (RISs) that can alter their wireless environments, and are considered as a promising technology for sixth-generation communication networks, are explored. Next, the recent progress made in simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) that can achieve full-space EM wave control are summarized. Finally, the perspective on the challenges and future directions of intelligent metasurfaces are presented.
Collapse
Affiliation(s)
- Yasir Saifullah
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060China
| | - Yejun He
- College of Electronics and Information EngineeringShenzhen UniversityShenzhen518060China
| | - Amir Boag
- School of Electrical EngineeringTel Aviv UniversityRamat Aviv69978Israel
| | - Guo‐Min Yang
- Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghai200433China
| | - Feng Xu
- Key Laboratory for Information Science of Electromagnetic Waves (MoE)Fudan UniversityShanghai200433China
| |
Collapse
|
33
|
Yang L, Hong X, Li J, Ji CY, Han Y, Chen S, Jiang H, Song WL, Chen HS, Fang D. Rechargeable Metasurfaces for Dynamic Color Display Based on a Compositional and Mechanical Dual-Altered Mechanism. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9828757. [PMID: 38645680 PMCID: PMC11030115 DOI: 10.34133/2022/9828757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 04/23/2024]
Abstract
Dynamic color display can be realized by tunable optical metasurfaces based on the compositional or structural control. However, it is still a challenge to realize the efficient modulation by a single-field method. Here, we report a novel compositional and mechanical dual-altered rechargeable metasurface for reversible and broadband optical reconfiguration in both visible and near-infrared wavelength regions. By employing a simple fabrication and integration strategy, the continuous optical reconfiguration is manipulated through an electro-chemo-mechanical coupled process in a lithium ion battery, where lithiation and delithiation processes occur dynamically under a low electric voltage (≤1.5 V). By controlling the phase transformation from Si to Li xSi, both structural morphology and optical scattering could be rapidly and dramatically tailored within 30 s, exhibiting high-contrast colorization and decolorization in a large-area nanofilm and showing long cyclic stability. Significant wide-angle reconfiguration of high-resolution structural colors in bowtie metasurfaces is demonstrated from anomalous reflection. The results provide a multifield mechanism for reconfigurable photonic devices, and the new platform can be introduced to the multidimensional information encryption and storage.
Collapse
Affiliation(s)
- Le Yang
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures,
Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems,
School of Physics,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems,
School of Physics,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems,
School of Physics,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Yu Han
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems,
School of Physics,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Shanshan Chen
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education),
Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems,
School of Physics,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Hanqing Jiang
- School of Engineering,
Westlake University,
Hangzhou 310024,
China
| | - Wei-Li Song
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures,
Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Hao-Sen Chen
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures,
Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081,
China
| | - Daining Fang
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures,
Institute of Advanced Structure Technology,
Beijing Institute of Technology,
Beijing 100081,
China
| |
Collapse
|
34
|
Li R, Wei X, Liang Y, Gao H, Kurilkina S, Peng W. Electrically switchable capabilities of conductive polymers-based plasmonic nanodisk arrays. OPTICS EXPRESS 2022; 30:33627-33638. [PMID: 36242393 DOI: 10.1364/oe.471524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The electrically dynamic regulation of plasmonic nanostructures provides a promising technology for integrated and miniaturized electro-optical devices. In this work, we systematically investigate the electrical regulation of optical properties of plasmonic Au nanodisk (AuND) arrays integrated with different conductive polymers, polypyrrole (PPy), polyaniline (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT), which show their respective superiority of electrical modulation by applying the appropriate low voltages. For the hybrid structure of polymer-coated AuND arrays, its reflection spectrum and corresponding structural color are dynamically modulated by altering the complex dielectric function of the covering nanometer-thick conductive polymers based on the electrically controlled redox reaction. Due to the distinct refractive index responses of different polymers on the external voltage, polymer-coated AuND arrays exhibit different spectral variations, response time, and cycle stability. As a result, the reflection intensity of PPy-coated AuND arrays is mainly tailored by increasing optical absorption of the PPy polymer over a broad spectral range, which is distinguished from the wavelength shift of the resonance modes of AuND arrays induced by the other two polymers. Additionally, AuND arrays integrated with both PANI and PEDOT polymers exhibit a rapid switching time of less than 50 ms, which is 5 times smaller than the case of the PPy polymer. Most importantly, PPy-coated AuND arrays exhibit excellent cycle stability over 50 cycles compared to the other two polymers integrated devices. This work demonstrates a valuable technique strategy to realize high-performance polymer-coated dynamically tunable nanoscale electro-optical devices, which has especially significance for smart windows or dynamic display applications.
Collapse
|
35
|
Ko JH, Yoo YJ, Lee Y, Jeong HH, Song YM. A review of tunable photonics: Optically active materials and applications from visible to terahertz. iScience 2022; 25:104727. [PMID: 35865136 PMCID: PMC9294196 DOI: 10.1016/j.isci.2022.104727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The next frontier of photonics is evolving into reconfigurable platforms with tunable functions to realize the ubiquitous application. The dynamic control of optical properties of photonics is highly desirable for a plethora of applications, including optical communication, dynamic display, self-adaptive photonics, and multi-spectral camouflage. Recently, to meet the dynamic response over broad optical bands, optically active materials have been integrated with the diverse photonic platforms, typically in the dimension of micro/nanometer scales. Here, we review recent advances in tunable photonics with controlling optical properties from visible to terahertz (THz) spectral range. We propose guidelines for designing tunable photonics in conjunction with optically active materials, inherent in wavelength characteristics. In particular, we devote our review to their potential uses for five different applications: structural coloration, metasurface for flat optics, photonic memory, thermal radiation, and terahertz plasmonics. Finally, we conclude with an outlook on the challenges and prospects of tunable photonics.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yubin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
36
|
Chu Z, Li T, Wang J, Jiang J, Zhu R, Gui B, Qu S. Tailoring permittivity using metasurface: a facile way of enhancing extreme-angle transmissions for both TE- and TM-polarizations. OPTICS EXPRESS 2022; 30:29365-29379. [PMID: 36299112 DOI: 10.1364/oe.467426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
The transmission of electromagnetic (EM) waves through a dielectric plate will be decreased significantly when the incident angle becomes extremely large, regardless of transverse electric (TE)- or transverse magnetic (TM)- polarization. In this regard, we propose a facile way of tailoring the permittivity of the dielectric material using metasurface to enhance the transmissions of both TE- and TM-polarized waves under extremely large incidence angles. Due to parallel or antiparallel electric fields induced by the metasurface, the net electric susceptibility is altered, and hence the effective permittivity can be tailored to improve the impedance matching on the two air-dielectric interfaces, which enhances the wave transmissions significantly under extreme incident angles. As an example, we apply this method to a typical ceramic-matrix composite (CMC) plate. By incorporating orthogonal meta-gratings into the CMC plate, its effective permittivity is reduced for the TE-polarized waves but increased for the TM-polarized waves under the extreme incidence angle, which can reduce the impedance for the TE-polarization and increase the Brewster angle for the TM-polarization. Therefore, the impedance matchings for both TE- and TM-polarizations are improved simultaneously and dual-polarized transmission enhancements are achieved under the extreme angles. Here, the transmission responses have been numerically and investigated using the finite-difference-time-domain (FDTD) method. A proof-of-principle prototype is designed, fabricated, and measured to verify this method. Both numerical simulations and measurement results show that the prototype can operate under extremely large incidence angles θi∈[75°,85°] with significant transmission enhancement for both TE- and TM-polarizations compared to the pure dielectric plate. This work provides a facile way to enhance the transmissions under extreme angles and can be readily extended to terahertz and optical frequencies.
Collapse
|
37
|
Han JH, Kim D, Kim J, Kim G, Kim JT, Jeong HH. Responsive photonic nanopixels with hybrid scatterers. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1863-1886. [PMID: 39633928 PMCID: PMC11501278 DOI: 10.1515/nanoph-2021-0806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/07/2024]
Abstract
Metallic and dielectric nanoscatterers are optical pigments that offer rich resonating coloration in the subwavelength regime with prolonged material consistency. Recent advances in responsive materials, whose mechanical shapes and optical properties can change in response to stimuli, expand the scope of scattering-based colorations from static to active. Thus, active color-changing pixels are achieved with extremely high spatial resolution, in conjunction with various responsive polymers and phase-change materials. This review discusses recent progress in developing such responsive photonic nanopixels, ranging from electrochromic to other color-changing concepts. We describe what parameters permit modulation of the scattering colors and highlight superior functional devices. Potential fields of application focusing on imaging devices, including active full-color printing and flexible displays, information encryption, anticounterfeiting, and active holograms, are also discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 61005Gwangju, Republic of Korea
| |
Collapse
|
38
|
Jung C, Kim G, Jeong M, Jang J, Dong Z, Badloe T, Yang JKW, Rho J. Metasurface-Driven Optically Variable Devices. Chem Rev 2021; 121:13013-13050. [PMID: 34491723 DOI: 10.1021/acs.chemrev.1c00294] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optically variable devices (OVDs) are in tremendous demand as optical indicators against the increasing threat of counterfeiting. Conventional OVDs are exposed to the danger of fraudulent replication with advances in printing technology and widespread copying methods of security features. Metasurfaces, two-dimensional arrays of subwavelength structures known as meta-atoms, have been nominated as a candidate for a new generation of OVDs as they exhibit exceptional behaviors that can provide a more robust solution for optical anti-counterfeiting. Unlike conventional OVDs, metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered. Well-known examples of mOVDs include ultrahigh-resolution structural color printing, various types of holography, and polarization encoding. In this review, we discuss the new generation of mOVDs. The fundamentals of plasmonic and dielectric metasurfaces are presented to explain how the optical responses of metasurfaces can be manipulated. Then, examples of monofunctional, tunable, and multifunctional mOVDs are discussed. We follow up with a discussion of the fabrication methods needed to realize these mOVDs, classified into prototyping and manufacturing techniques. Finally, we provide an outlook and classification of mOVDs with respect to their capacity and security level. We believe this newly proposed concept of OVDs may bring about a new era of optical anticounterfeit technology leveraging the novel concepts of nano-optics and nanotechnology.
Collapse
Affiliation(s)
- Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joel K W Yang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore.,Engineering Product Development, Singapore University of Technology and Design, 487372, Singapore
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
39
|
Karst J, Floess M, Ubl M, Dingler C, Malacrida C, Steinle T, Ludwigs S, Hentschel M, Giessen H. Electrically switchable metallic polymer nanoantennas. Science 2021; 374:612-616. [PMID: 34709910 DOI: 10.1126/science.abj3433] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian Karst
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Moritz Floess
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Monika Ubl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Carsten Dingler
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Claudia Malacrida
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tobias Steinle
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mario Hentschel
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
40
|
Yu P, Li J, Liu N. Electrically Tunable Optical Metasurfaces for Dynamic Polarization Conversion. NANO LETTERS 2021; 21:6690-6695. [PMID: 34286586 PMCID: PMC8361430 DOI: 10.1021/acs.nanolett.1c02318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Dynamic control over the polarization of light is highly desirable in many optical applications, including optical communications, laser science, three-dimensional displays, among others. Conventional methods for polarization control are often based on bulky optical elements. To achieve highly integrated optical devices, metasurfaces, which have been intensively studied in recent years, hold great promises to replace conventional optical elements for a variety of optical functions. In this work, we demonstrate electrically tunable optical metasurfaces for dynamic polarization conversion at visible frequencies. By exploring both the geometric and propagation phase tuning capabilities, rapid and reversible polarization rotation up to 90° is achieved for linearly polarized light. The dynamic functionality is imparted by liquid crystals, which serve as a thin surrounding medium with electrically tunable refractive indices for the metasurface antennas. Furthermore, we expand our concept to demonstrate electrically tunable metasurfaces for dynamic holography and holographic information generation with independently controlled multiple pixels.
Collapse
Affiliation(s)
- Ping Yu
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Jianxiong Li
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Na Liu
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- 2nd
Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|