1
|
Fang Y, Hu F, Ren W, Xiang L, Wang T, Zhu C, He R, Dong X, Liu C, Ding H, Zhang K. Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse. Biomaterials 2025; 317:123087. [PMID: 39778271 DOI: 10.1016/j.biomaterials.2025.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT. Systematic experiments reveal that ROS further remodels iRFA-potentiated immunosuppressive microenvironment, e.g., expediting tumor-associated macrophages (TAMs) polarization into TAMs-M1, rejecting the intratumoral infiltrations of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Coincidently, they have been demonstrated to stimulate dendritic cells (DCs) maturation and encourage the proliferations and infiltrations of effector T cells, consequently boosting anti-tumor immune responses and attenuating iRFA-enhanced plasticity, treatment resistance and self-adaptation of residual hepatocellular carcinoma (HCC) after iRFA. Thanks to them, such a nanomedicine-unlocked low-temperature RFDT exerts powerful actions on residual HCC model after iRFA with rapid expansion inhibition, relapse repression, survival prolongation, apoptosis promotion, etc. This low-temperature RFDT opens a window to address the iRFA-enhanced immunosuppression.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China. No. 12 Urumqi Middle Road, Shanghai 200040, China; Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Feixiang Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, No. 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Weiwei Ren
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Lihua Xiang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Taixia Wang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Chunyan Zhu
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Ruiqing He
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Xiulin Dong
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Chang Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China. No. 12 Urumqi Middle Road, Shanghai 200040, China.
| | - Kun Zhang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Guo Z, Li W, Liu B, Zhou J, Chen B, Hou J. Multifunctional gold nanoclusters with red fluorescence as nanoantibiotics for imaging-guided infected wound healing. J Colloid Interface Sci 2025; 697:137923. [PMID: 40408944 DOI: 10.1016/j.jcis.2025.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
The increasing emergence of multidrug-resistant (MDR) bacteria threatens the health of the global population by perpetuating microbial infections. Therefore, accelerating the development of nondrug-resistant antimicrobial substances is crucial to combat drug-resistant bacterial infections. Herein, we report a simple one-pot, microwave-assisted strategy for designing ultrasmall lysozyme-functionalized gold nanoclusters (L-Au NCs) through the one-step assembly of natural lysozyme and metal ions (e.g., Au3+) in aqueous solution. Compared with free lysozyme, L-Au NCs efficiently disrupted the membranes of MDR bacteria and induced the formation of reactive oxygen species within bacterial cells, demonstrating potent broad-spectrum antibacterial activity against Gram-positive (e.g., methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative (e.g., MDR Escherichia coli) bacteria. In addition, the red-emitting L-Au NCs exhibited fluorescence labeling capability against MDR bacteria. In mouse infection models, L-Au NCs exhibited good biocompatibility and promoted healing of MRSA-infected skin wounds by eradicating bacterial infection and reducing inflammation without causing systemic damage. These findings provide insights into the antibacterial properties of metal-natural enzyme materials and highlight the potential of rationally designed broad-spectrum antibacterial strategies to treat intractable bacterial infections.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Wenjia Li
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Baiyang Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Jinwen Zhou
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Bingbing Chen
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Jing Hou
- Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Yang Z, Lyu J, Qian J, Wang Y, Liu Z, Yao Q, Chen T, Cao Y, Xie J. Glutathione: a naturally occurring tripeptide for functional metal nanomaterials. Chem Sci 2025; 16:6542-6572. [PMID: 40134663 PMCID: PMC11931393 DOI: 10.1039/d4sc08599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Glutathione (GSH), a naturally occurring tripeptide, plays an important role as an intracellular antioxidant in the physiological microenvironment and participates in redox balance, detoxification, and cellular and disease regulation. The unique structural features of GSH, including the reductive thiol and multiple coordination sites (carboxyl and amino group), make it a significant molecule not only in the physiological context but also as a ligand in the development of functional metal nanomaterials. In this context, GSH's role as a protective ligand and reducing agent in surface etching and ligand exchange reactions has been explored at the molecular level, expanding the diversity of GSH-protected metal nanomaterials. With photoluminescence (PL) as one of its most intriguing properties, investigations into GSH's influence on PL properties emphasize its multifaceted coordination capabilities in surface coating, charge transfer from electron-rich functional groups, chirality arising from its unique structure, and available conjugation sites. Moreover, the biocompatibility of GSH, combined with the synergistic effect of metal components, renders GSH-protected nanomaterials an "Inseparable Duo" highly suited for applications in bio-sensing, bio-imaging via PL radiative decay and anti-cancer bio-therapies through photothermal therapy, photodynamic therapy, and radiotherapy. By exploring the multifaceted roles of GSH, this Perspective aims to highlight pathways including the encouragement of deeper synthetic exploration, innovative design at the bio-nano interface, and expanded nanobiomedical applications.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Yifan Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG (GHEI), South China Normal University Guangzhou 510006 P. R. China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
4
|
Li Q, Chen Q, Xiao S, Wang S, Ge X, Wang Q, Zheng L, Wei Q, Du W, Shen W, Wu Y, Song J. A Salidroside-Based Radiosensitizer Regulates the Nrf2/ROS Pathway for X-Ray Activated Synergistic Cancer Precise Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413226. [PMID: 40195850 DOI: 10.1002/adma.202413226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/26/2025] [Indexed: 04/09/2025]
Abstract
The hypoxic microenvironment and radioresistance of tumor cells, as well as the delay in efficacy evaluation, significantly limit the effect of clinical radiotherapy. Therefore, developing effective radiosensitizers with monitoring of tumor response is of great significance for precise radiotherapy. Herein, a novel radiosensitizer (term as: SCuFs) is developed, consisting of traditional Chinese medicine (TCM) compounds salidroside, Cu2+, and hydroxyl radical (•OH) activated second near-infrared window fluorescence (NIR-II FL) molecules, which make the radiosensitization effect and boosted chemodynamic therapy (CDT) efficacy. The overexpressed glutathione in the tumor induces the SCuFs dissociation, allowing deep penetration of the drug to the whole tumor region. After X-ray irradiation, salidroside inhibits the Nuclear factor erythroid 2-like 2 (Nrf2)protein expression and blocks cells in the G2/M phase with the highest radiosensitivity, which amplifies the reactive oxygen species (ROS) generation to exacerbate DNA damage, thus achieving radiosensitization. Meanwhile, the upregulated ROS provides sufficient chemical fuel for Cu+-mediated CDT to produce more •OH. NIR-II FL imaging can monitor the •OH changes during the therapy process, confirming the radiosensitization effect and CDT process related to •OH. This study not only achieves effective radiosensitization and cascaded ROS-mediated CDT efficacy, but also provides a useful tool for monitoring therapeutic efficacy, showing great prospects for clinical application.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuhan Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiaoqiao Wei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenbin Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Luan X, Gao Y, Pan Y, Huang Z, Zeng F, He G, He B, Ye D, Song Y. Bifunctional Nanoassembly Enables Metabolism-Driven Microfluidic Blood Screening Guided by MRI Localization for Cancer Monitoring. Anal Chem 2025; 97:3395-3403. [PMID: 39900559 DOI: 10.1021/acs.analchem.4c05427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Early detection and precise tumor localization are critical for improving treatment outcomes and enabling more targeted and minimally invasive therapies as biotechnology evolves. However, endogenous biomarkers from early lesions face significant challenges, such as short circulation times and blood dilution, which hinder early diagnostic efforts. In this study, we present a multimodal nanosensor specifically engineered to target cancer by responding to CD44 and tumor-associated enzymes within the microenvironment. Following systemic administration, the nanosensor selectively accumulates at the disease site, delivering hexaminolevulinate (HAL) to produce protoporphyrin IX (PpIX) as a synthetic biomarker, thus amplifying disease signals for analysis via a microfluidics-based device. Concurrently, embedded Gd2O3 nanoclusters facilitate tumor visualization through magnetic resonance imaging (MRI). Beyond tumor diagnosis, this innovative methodology supports the multimodal monitoring of drug response through the assessment of blood reporter signals and MRI imaging. This multifunctional system addresses critical limitations in traditional cancer diagnostics, which typically rely on sequential blood biomarker tests, followed by imaging. Our approach enhances diagnostic efficiency, minimizes the need for invasive procedures, and promotes more accurate and personalized cancer care.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Lu H, Ren Y, Qi Y, Xu M, Liang F, Wang Z, Liu J, Du B, Jiang X. Overcoming Hepatic Biotransformation Barrier of Gold Nanoparticles via Au-Se Bond for Enhanced In Vivo Active Targeting. ACS NANO 2024; 18:29178-29188. [PMID: 39382330 DOI: 10.1021/acsnano.4c10700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a key metabolic function of the liver, the hepatic biotransformation process can alter the predesigned surface chemistry of nanoparticles in vivo, leading to hampered functionality and targeting ability. However, strategies to modulate the hepatic biotransformation of nanoparticles have been rarely explored. Herein, using indocyanine green (ICG)-conjugated gold nanoparticles that target liver hepatocytes as a model, we showed that merely changing the metal-ligand bond from gold-sulfur (Au-S) to gold-selenium (Au-Se) completely reshaped the hepatic biotransformation profiles of the nanoparticle as well as its targeting and transport behaviors in vivo. Compared with those of Au-S bond, Au-Se bond markedly slowed down nanoparticle biotransformation in liver sinusoids, enhanced ICG-mediated nanoparticle targeting to hepatocytes by 15-fold, and also altered nanoparticle intrahepatic transport, distribution, and clearance pathways. Moreover, we demonstrated that Au-Se bond could improve the active targeting of gold nanoparticles to hepatic tumors by reducing liver biotransformation-induced dissociation of targeting ligands. These discoveries not only deepen our understanding of nanoparticle biotransformation in the liver but also offer a strategy to overcome the biochemical barrier of hepatic biotransformation, providing guidance for the design and engineering of related nanomedicines by tuning their in vivo biotransformation profiles.
Collapse
Affiliation(s)
- Huixu Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yunfeng Ren
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Fengying Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Ziyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jieman Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
7
|
Qi Y, Xu M, Lu H, Wang X, Peng Y, Wang Z, Liang F, Jiang X, Du B. Hepatic Biotransformation of Renal Clearable Gold Nanoparticles for Noninvasive Detection of Liver Glutathione Level via Urinalysis. Angew Chem Int Ed Engl 2024; 63:e202409477. [PMID: 38877855 DOI: 10.1002/anie.202409477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 07/31/2024]
Abstract
Renal clearable nanoparticles have been drawing much attention as they can avoid prolonged accumulation in the body by efficiently clearing through the kidneys. While much effort has been made to understand their interactions within the kidneys, it remains unclear whether their transport could be influenced by other organs, such as the liver, which plays a crucial role in metabolizing and eliminating both endogenous and exogenous substances through various biotransformation processes. Here, by utilizing renal clearable IRDye800CW conjugated gold nanocluster (800CW4-GS18-Au25) as a model, we found that although 800CW4-GS18-Au25 strongly resisted serum-protein binding and exhibited minimal accumulation in the liver, its surface was still gradually modified by hepatic glutathione-mediated biotransformation when passing through the liver, resulting in the dissociation of IRDye800CW from Au25 and biotransformation-generated fingerprint message of 800CW4-GS18-Au25 in urine, which allowed us to facilely quantify its urinary biotransformation index (UBI) via urine chromatography analysis. Moreover, we observed the linear correlation between UBI and hepatic glutathione concentration, offering us a noninvasive method for quantitative detection of liver glutathione level through a simple urine test. Our discoveries would broaden the fundamental understanding of in vivo transport of nanoparticles and advance the development of urinary probes for noninvasive biodetection.
Collapse
Affiliation(s)
- Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Huixu Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xiaoxian Wang
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Yexi Peng
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| | - Ziyuan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Fengying Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, P.R. China
| |
Collapse
|
8
|
Ning X, Zhong Y, Cai Q, Wang Y, Jia X, Hsieh JT, Zheng J, Yu M. Gold Nanoparticle Transport in the Injured Kidneys with Elevated Renal Function Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402479. [PMID: 39073056 PMCID: PMC11410533 DOI: 10.1002/adma.202402479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Renal function biomarkers such as serum blood urea nitrogen (BUN) and creatinine (Cr) serve as key indicators for guiding clinical decisions before administering kidney-excreted small-molecule agents. With engineered nanoparticles increasingly designed to be renally clearable to expedite their clinical translation, understanding the relationship between renal function biomarkers and nanoparticle transport in diseased kidneys becomes crucial to their biosafety in future clinical applications. In this study, renal-clearable gold nanoparticles (AuNPs) are used as X-ray contrast agents to noninvasively track their transport and retention in cisplatin-injured kidneys with varying BUN and Cr levels. The findings reveal that AuNP transport is significantly slowed in the medulla of severely injured kidneys, with BUN and Cr levels elevated to 10 times normal. In mildly injured kidneys, where BUN and Cr levels only four to five times higher than normal, AuNP transport and retention are not predictable by BUN and Cr levels but correlate strongly with the degree of tubular injury due to the formation of gold-protein casts in the Henle's loop of the medulla. These results underscore the need for caution when employing renal-clearable nanomedicines in compromised kidneys and highlight the potential of renal-clearable AuNPs as X-ray probes for assessing kidney injuries noninvasively.
Collapse
Affiliation(s)
- Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yaohong Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xun Jia
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
9
|
Patel D, Huma ZE, Duncan D. Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action. ACS Chem Biol 2024; 19:824-838. [PMID: 38567529 PMCID: PMC11040609 DOI: 10.1021/acschembio.3c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Covalent inhibition has seen a resurgence in the last several years. Although long-plagued by concerns of off-target effects due to nonspecific reactions leading to covalent adducts, there has been success in developing covalent inhibitors, especially within the field of anticancer therapy. Covalent inhibitors can have an advantage over noncovalent inhibitors since the formation of a covalent adduct may serve as an additional mode of selectivity due to the intrinsic reactivity of the target protein that is absent in many other proteins. Unfortunately, many covalent inhibitors form irreversible adducts with off-target proteins, which can lead to considerable side-effects. By designing the inhibitor to form reversible covalent adducts, one can leverage competing on/off kinetics in complex formation by taking advantage of the law of mass action. Although covalent adducts do form with off-target proteins, the reversible nature of inhibition prevents accumulation of the off-target adduct, thus limiting side-effects. In this perspective, we outline important characteristics of reversible covalent inhibitors, including examples and a guide for inhibitor development.
Collapse
Affiliation(s)
| | | | - Dustin Duncan
- Department of Chemistry, Brock
University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
10
|
You W, An Q, Guo D, Huang Z, Guo L, Chen Z, Xu H, Wang G, Weng Y, Ma Z, Chen X, Hong F, Zhao R. Exploration of risk analysis and elimination methods for a Cr(VI)-removal recombinant strain through a biosafety assessment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168743. [PMID: 38007124 DOI: 10.1016/j.scitotenv.2023.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Though recombinant strains are increasingly recognized for their potential in heavy metal remediation, few studies have evaluated their safety. Moreover, biosafety assessments of fecal-oral pathway exposure at country as well as global level have seldom analyzed the health risks of exposure to microorganisms from a microscopic perspective. The present study aimed to predict the long-term toxic effects of recombinant strains by conducting a subacute toxicity test on the chromium-removal recombinant strain 3458 and analyzing the gut microbiome. The available disinfection methods were also evaluated. The results showed that strain 3458 induced liver damage and affected renal function and lipid metabolism at 1.0 × 1011 CFU/mL, which may be induced by its carrier strain, pET-28a. Strain 3458 poses the risk of increasing the number of pathogenic bacteria under prolonged exposure. When 500 mg L-1 chlorine-containing disinfectant or 250 mg L-1 chlorine dioxide disinfectant was added for 30 min, the sterilization rate exceeded 99.9 %. These findings suggest that existing wastewater disinfection methods can effectively sterilize strain 3458, ensuring its application value. The present study can serve a reference for the biosafety evaluation of the recombinant strain through exposure to the digestive tract and its feasibility for application in environmental pollution remediation.
Collapse
Affiliation(s)
- Wanting You
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Qiuying An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zebo Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Lulu Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zigui Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Hao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Guangshun Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Yeting Weng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Zhangye Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Xiaoxuan Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China
| | - Feng Hong
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Ran Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, No. 4221-117 South Xiang'an Road, Xiang'an District, Xiamen 361102, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Gurung S, Timmermand OV, Perocheau D, Gil-Martinez AL, Minnion M, Touramanidou L, Fang S, Messina M, Khalil Y, Spiewak J, Barber AR, Edwards RS, Pinto PL, Finn PF, Cavedon A, Siddiqui S, Rice L, Martini PGV, Ridout D, Heywood W, Hargreaves I, Heales S, Mills PB, Waddington SN, Gissen P, Eaton S, Ryten M, Feelisch M, Frassetto A, Witney TH, Baruteau J. mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria. Sci Transl Med 2024; 16:eadh1334. [PMID: 38198573 PMCID: PMC7615535 DOI: 10.1126/scitranslmed.adh1334] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024]
Abstract
The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.
Collapse
Affiliation(s)
- Sonam Gurung
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Dany Perocheau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ana Luisa Gil-Martinez
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Loukia Touramanidou
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sherry Fang
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Martina Messina
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Youssef Khalil
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Justyna Spiewak
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Abigail R Barber
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Richard S Edwards
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Patricia Lipari Pinto
- Santa Maria's Hospital, Lisbon North University Hospital Center, 1649-028 Lisbon, Portugal
| | | | | | | | - Lisa Rice
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Deborah Ridout
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Wendy Heywood
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ian Hargreaves
- Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool L3 5UG, UK
| | - Simon Heales
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Philippa B Mills
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Simon N Waddington
- EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of Witswatersrand, Braamfontein, 2000 Johannesburg, South Africa
| | - Paul Gissen
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | | | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Julien Baruteau
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
12
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
13
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
14
|
Huang Y, Xiao W, Ahrari S, Yu M, Zheng J. Crosstalk between Hepatic Glutathione Efflux and Tumor Targeting Efficiency of Indocyanine Green-Conjugated Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202308909. [PMID: 37688526 DOI: 10.1002/anie.202308909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
The elevated glutathione (GSH) level in solid tumors has been used as a major hallmark for GSH-responsive nanoparticles to enhance targeting efficiency and specificity. Meanwhile, GSH is mainly synthesized inside the hepatocytes of the liver in the body and constantly released into the blood through hepatic GSH efflux to regulate redox potential of the entire body. However, it remains largely unknown how this hepatic GSH efflux affects the tumor targeting of GSH-responsive nanoparticles. Herein, we report that depletion of hepatic GSH enhanced the tumor targeting of GSH-responsive indocyanine green-conjugated Au25 nanoclusters coated with 18 GSH ligand (ICG-Au25 SG18 ). The dissociation of ICG from Au25 SG18 by the hepatic GSH through thiol-exchange reaction and the subsequent hepatobiliary clearance of the detached ICG were slowed down by GSH depletion, which in turn prolonged the blood circulation of intact ICG-Au25 SG18 and enhanced its tumor targeting. Our work highlights glutathione-mediated crosstalk between the liver and tumor, in addition to well-known Kupffer cell-mediated uptake, in the tumor targeting of engineered nanoparticles, which could be modulated to enhance targeting efficiency and specificity of cancer nanomedicines while reducing their nonspecific accumulation.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Wei Xiao
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| |
Collapse
|
15
|
Tan Y, Huang D, Luo C, Tang J, Kwok RTK, Lam JWY, Sun J, Liu J, Tang BZ. In Vivo Aggregation of Clearable Bimetallic Nanoparticles with Interlocked Surface Motifs for Cancer Therapeutics Amplification. NANO LETTERS 2023; 23:7683-7690. [PMID: 37561078 DOI: 10.1021/acs.nanolett.3c02399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Although renal-clearable luminescent metal nanoparticles (NPs) have been widely developed, their application to efficient cancer therapy is still limited due to low reactive oxygen species (ROS) production. Here, a novel system of clearable mercaptosuccinic acid (MSA) coated Au-Ag bimetallic NPs is designed to enhance ROS production. The results show that the strong COO-Ag coordination bonds between the carboxylic acid groups of MSA and Ag atoms on the Au-Ag bimetallic NPs could construct high-rigidity interlocked surface motifs to restrict the intrananoparticle motions for enhanced ROS generation. Moreover, bimetallic NPs exhibit pH-responsive self-assembly capability under the acidic environment inside lysosomes of cancer cells at both in vitro and in vivo, restricting the internanoparticle motions to further boost ROS production. The well-designed bimetallic NPs show high tumor targeting efficiency, fast elimination from the body through rapid liver biotransformation, and extensive destruction to cancer cells, resulting in good security and prominent therapeutic performance.
Collapse
Affiliation(s)
- Yue Tan
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Di Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Caiming Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiahao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, People's Republic of China
- Center for Aggregation-Induced Emission and Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
17
|
Chen L, Zhen X, Jiang X. Activatable Optical Probes for Fluorescence and Photoacoustic Imaging of Drug‐Induced Liver Injury. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Linrong Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science & Engineering School of Chemistry & Chemical Engineering Nanjing University Nanjing 210093 P.R. China
| |
Collapse
|
18
|
Tailoring of a bionic bifunctional cellulose nanocrystal-based gold nanocluster probe for the detection of intracellular pathological biomarkers. Int J Biol Macromol 2022; 224:1079-1090. [DOI: 10.1016/j.ijbiomac.2022.10.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
19
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022; 61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Small-molecule-based second near-infrared (NIR-II) activatable fluorescent probes can potentially provide a high target-to-background ratio and deep tissue penetration. However, most of the reported NIR-II activatable small-molecule probes exhibit poor versatility owing to the lack of a general and stable optically tunable group. In this study, we designed NIRII-HDs, a novel dye scaffold optimized for NIR-II probe development. In particular, dye NIRII-HD5 showed the best optical properties such as proper pKa value, excellent stability, and high NIR-II brightness, which can be beneficial for in vivo imaging with high contrast. To demonstrate the applicability of the NIRII-HD5 dye, we designed three target-activatable NIR-II probes for ROS, thiols, and enzymes. Using these novel probes, we not only realized reliable NIR-II imaging of different diseases in mouse models but also evaluated the redox potential of liver tissue during a liver injury in vivo with high fidelity.
Collapse
Affiliation(s)
- Zuojia Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huijie Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
20
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
21
|
Huang Z, Yu S, Jian M, Weng Z, Deng H, Peng H, Chen W. Ultrasensitive Glutathione-Mediated Facile Split-Type Electrochemiluminescence Nanoswitch Sensing Platform. Anal Chem 2022; 94:2341-2347. [PMID: 35049295 DOI: 10.1021/acs.analchem.1c05198] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluster (AuNC) probe-based ECL platform. The system utilizes GSH as an efficient etching agent to turn on the MnO2/AuNC-based ECL nanoswitch platform. This method successfully achieves an ultrasensitive detection of GSH, which significantly outperformed other sensors. Based on the above excellent results, GSH-related biological assays have been further established by taking ATP as a model. Combined with the high catalytic oxidation ability of DNAzyme, this ECL sensor can realize ATP assay as low as 1.4 fmol without other complicated exonuclease amplification strategies. Thus, we successfully achieved an ultrahigh sensitivity, extremely wide dynamic range, great simplicity, and strong anti-interference detection of ATP. In addition, the actual sample detection for GSH and ATP exhibits satisfactory results. We believe that our proposed high-performance platform will provide more possibilities for the detection of other GSH-related substances and show great prospect in disease diagnosis and biochemical research.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Sunxing Yu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Meili Jian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhimin Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
22
|
Liu K, Kang B, Luo X, Yang Z, Sun C, Li A, Fan Y, Chen X, Gao J, Lin H. Redox-Activated Contrast-Enhanced T1-Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS NANO 2021; 15:17831-17841. [PMID: 34751559 DOI: 10.1021/acsnano.1c06026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GSH-mediated liver biotransformation is a crucial physiological process demanding efficient research tools. Here, we report a type of amorphous FexMnyO nanoparticles (AFMO-ZDS NPs) as redox-activated probes for in vivo visualization of the dynamics of GSH-mediated biotransformation in liver with T1-weighted magnetic resonance imaging (MRI). This imaging technique reveals the periodic variations in GSH concentration during the degradation of AFMO-ZDS NPs due to the limited transportation capacity of GSH carriers in the course of GSH efflux from hepatocytes to perisinusoidal space, providing direct imaging evidence for this important carrier-mediated process during GSH-mediated biotransformation. Therefore, this technique offers an effective method for in-depth investigations of GSH-related biological processes in liver under various conditions as well as a feasible means for the real-time assessment of liver functions, which is highly desirable for early diagnosis of liver diseases and prompt a toxicity evaluation of pharmaceuticals.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bilun Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119228, Singapore
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|