1
|
Kang Y, Xu X, Lai J, Li Y, Li W, Wei Y, Zhang F, Wang S. Eco-friendly colorful particle boards based on metal-ligand coordination. MATERIALS HORIZONS 2025. [PMID: 40237100 DOI: 10.1039/d5mh00281h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Colorful wood boards are widely favored in construction and decoration for their outstanding qualities and visually striking appearance. However, the current coloration process of wood boards often relies on formaldehyde-releasing organic paints, which raise environmental and health concerns. Here, a general metal-ligand coordination approach is presented to fabricate eco-friendly, colorful particle boards without the utilization of traditional harmful paints. Based on the regulation of the metal-ligand coordination process, the resulting particle boards show a range of tunable colors, including pink, yellow-brown, orange, grass green, turquoise, indigo, and violet. These colorful particle boards demonstrate exceptional mechanical performance, with a flexural strength of 55.3 ± 3.1 MPa. Additionally, the through-color of the as-prepared particle boards allows their unprecedented color durability against repeated wear, unlike that of traditional colorful coating techniques. This study offers a promising eco-friendly coloration pathway for functional wood materials, meeting sustainable, esthetic, and health-related demands.
Collapse
Affiliation(s)
- Yu Kang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuetao Xu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jiankun Lai
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuepeng Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanqiang Wei
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wang P, Ge M, Luo X, Zhai Y, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. Confinement of Sustainable Carbon Dots Results in Long Afterglow Emitters and Photocatalyst for Radical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202402915. [PMID: 38569128 DOI: 10.1002/anie.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.
Collapse
Affiliation(s)
- Ping Wang
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Min Ge
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Xiongfei Luo
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, 150040, Harbin, China
| | - Yingxiang Zhai
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Nicolai Meckbach
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Zhijun Chen
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| |
Collapse
|
3
|
Batanero B, Salardon N, Prieto-Garcés E, Herrera L, Er-Ryhy S, Quirós MT, Gómez-Casanova N, Heredero-Bermejo I, Copa-Patiño JL. Electrosynthesis of dimeric butenolides by C-C-homocoupling in the oxidation of 2,4-diarylfurans under aqueous conditions. iScience 2024; 27:110765. [PMID: 39286499 PMCID: PMC11404206 DOI: 10.1016/j.isci.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/13/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Fast and efficient galvanostatic conversion of 2,4-diarylfurans into dimeric furan-2(5H)-ones is now possible in one pot and good yields at room temperature in sustainable aqueous organic solvent. Recent applications of these highly desired structures demand our attention since they are a versatile alternative to acrylates in polymerization to achieve green materials. The reaction mechanism proposal, supported by density functional theory (DFT) theoretical calculations, involves furanoxy radicals, detected by electron paramagnetic resonance (EPR), as the last intermediate before a homocoupling step that affords butenolides. The process can be successfully extended to an array of electron-donating and electron-withdrawing substituents on the aromatic ring. The proposed pathways to explain the formation of the products are rationalized and discussed. A concomitant oxidation of water to hydroxyl radicals is not discarded, particularly with electron-withdrawing substituents at the aromatic ring. In addition, the biological activity as biocides of the obtained compounds was tested, and they showed promising activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Belen Batanero
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - Noemi Salardon
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - Elena Prieto-Garcés
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - Lorena Herrera
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - Soufyane Er-Ryhy
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - M Teresa Quirós
- University of Alcala, Department of Organic Chemistry and Inorganic Chemistry and Institute of Chemical Research Andrés M. del Rio, 28805 Alcala de Henares, Madrid, Spain
| | - Natalia Gómez-Casanova
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain
| | - Irene Heredero-Bermejo
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain
| | - José Luis Copa-Patiño
- University of Alcala, Department of Biomedicine and Biotechnology, 28805 Alcalá de Henares, Spain
| |
Collapse
|
4
|
Ali H, Ahmed I, Robertson K, Lanterna AE. PDI-Functionalized Glass Beads: Efficient, Metal-Free Heterogeneous Photocatalysts Suitable for Flow Photochemistry. Org Process Res Dev 2024; 28:3698-3706. [PMID: 39323896 PMCID: PMC11421094 DOI: 10.1021/acs.oprd.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Perylene diimides (PDI) have an extraordinary ability to activate both energy and electron transfer processes upon light excitation; however, their extremely low solubility has hindered their wide use as photocatalysts. Here, we show that the combination of solid-supported PDIs with continuous flow photochemistry offers a promising strategy for process intensification and a scalable platform for heterogeneous photocatalysis. The photocatalyst immobilized onto glass beads is highly efficient, easy to separate, and extremely reusable, with a broad synthetic application range. Using the photo-oxidation of n-butyl sulfide as a benchmark reaction, we demonstrate that immobilized PDI are highly active, outperforming reported homogeneous photosensitizers, and capable of extensive reuse (turnover number (TON) >57,000 over 2 months). Transferring the process from batch to flow results in a 10-fold reduction in irradiation time and an increase in the space-time yield by a factor of 33 (40 vs 1338 mmol-1 h-1 L-1 batch vs flow). What is more, the same catalyst sample can be used for the preparation of a range of sulfoxides, the aza-Henry reaction between nitromethane and N-Ar tetrahydroisoquinolines, and the photo-oxidation of furfural with high catalytic activity. Overall, our work combines the remarkable photocatalytic properties of PDI with inert, easy-to-handle glass beads, producing hybrid materials that are reusable and can be adapted for performing heterogeneous photocatalysis in a range of scalable photochemical reactors.
Collapse
Affiliation(s)
- Hamza Ali
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ifty Ahmed
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Karen Robertson
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Anabel E. Lanterna
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
5
|
Jensma A, Elders N, van den Berg KJ, Feringa BL. Waterborne polymers and coatings from bio-based butenolides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:9676-9681. [PMID: 39175958 PMCID: PMC11333933 DOI: 10.1039/d4gc03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
In the quest for sustainable paints and coatings, bio-based resources for the polymeric binder constituents are key. Recently, we introduced poly-butenolides as bio-based acrylate replacement for solventborne and 100% solids (UV-curing) coatings. Here, we report the first step towards aqueous poly-butenolide dispersions, enabling the use of this novel binder technology platform in waterborne coatings.
Collapse
Affiliation(s)
- Andries Jensma
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen 9747 AG Groningen The Netherlands
| | - Niels Elders
- Department Resin Technology, Akzo Nobel Car Refinishes BV 2171 AJ Sassenheim The Netherlands
| | - Keimpe J van den Berg
- Department Resin Technology, Akzo Nobel Car Refinishes BV 2171 AJ Sassenheim The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen 9747 AG Groningen The Netherlands
| |
Collapse
|
6
|
Jiang C, Zhang X, Zhang X, Li X, Xu S, Li Y. Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives. Polymers (Basel) 2024; 16:2404. [PMID: 39274038 PMCID: PMC11397013 DOI: 10.3390/polym16172404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
For polyacrylate latex pressure-sensitive adhesives (PSAs), high peel strength is of crucial significance. It is not only a key factor for ensuring the long-lasting and effective adhesive force of polyacrylate latex PSAs but also can significantly expand their application scope in many vital fields, such as packaging, electronics, and medical high-performance composite materials. High peel strength can guarantee that the products maintain stable and reliable adhesive performance under complex and variable environmental conditions. However, at present, the peel strength capacity of polyacrylate latex PSAs is conspicuously insufficient, making it difficult to fully meet the urgent market demand for high peel strength, and severely restricting their application in many cutting-edge fields. Therefore, based on previous experimental studies, and deeply inspired by the adhesion mechanism of natural marine mussels, in this study, a traditional polyacrylate latex PSA was ingeniously graft-modified with 3,4-dihydroxybenzaldehyde (DHBA) through the method of monomer-starved seeded semi-continuous emulsion polymerization, successfully synthesizing novel high-peel-strength polyacrylate latex pressure-sensitive adhesives (HPSAs) with outstanding strong adhesion properties, and the influence of DHBA content on the properties of the HPSAs was comprehensively studied. The research results indicated that the properties of the modified HPSAs were comprehensively enhanced. Regarding the water resistance of the adhesive film, the minimum water absorption rate was 4.33%. In terms of the heat resistance of the adhesive tape, it could withstand heat at 90 °C for 1 h without leaving residue upon tape peeling. Notably, the adhesive properties were significantly improved, and when the DHBA content reached 4.0%, the loop tack and 180° peel strength of HPSA4 significantly increased to 5.75 N and 825.4 gf/25 mm, respectively, which were 2.5 times and 2 times those of the unmodified PSA, respectively. Such superior adhesive performance of HPSAs, on the one hand, should be attributed to the introduction of the bonding functional monomer DHBA with a rich polyphenol structure; on the other hand, the acetal structure formed by the grafting reaction of DHBA with the PSA effectively enhanced the spatial network and crosslink density of the HPSAs. In summary, in this study, the natural biological adhesion phenomenon was ingeniously utilized to increase the peel strength of pressure-sensitive adhesives, providing a highly forward-looking and feasible direct strategy for the development of environmentally friendly polyacrylate latex pressure-sensitive adhesives.
Collapse
Affiliation(s)
- Chunyuan Jiang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xinrui Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xinyue Zhang
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xingjian Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Shoufang Xu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Yinwen Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
7
|
Edwards M, Pratley MT, Gordon CM, Teixeira RI, Ali H, Mahmood I, Lester R, Love A, Hermens JGH, Freese T, Feringa BL, Poliakoff M, George MW. Process Intensification of the Continuous Synthesis of Bio-Derived Monomers for Sustainable Coatings Using a Taylor Vortex Flow Reactor. Org Process Res Dev 2024; 28:1917-1928. [PMID: 38783853 PMCID: PMC11110062 DOI: 10.1021/acs.oprd.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
We describe the optimization and scale-up of two consecutive reaction steps in the synthesis of bio-derived alkoxybutenolide monomers that have been reported as potential replacements for acrylate-based coatings (Sci. Adv.2020, 6, eabe0026). These monomers are synthesized by (i) oxidation of furfural with photogenerated singlet oxygen followed by (ii) thermal condensation of the desired 5-hydroxyfuranone intermediate product with an alcohol, a step which until now has involved a lengthy batch reaction. The two steps have been successfully telescoped into a single kilogram-scale process without any need to isolate the 5-hydroxyfuranone between the steps. Our process development involved FTIR reaction monitoring, FTIR data analysis via 2D visualization, and two different photoreactors: (i) a semicontinuous photoreactor based on a modified rotary evaporator, where FTIR and 2D correlation spectroscopy (2D-COS) revealed the loss of the methyl formate coproduct, and (ii) our fully continuous Taylor Vortex photoreactor, which enhanced the mass transfer and permitted the use of near-stoichiometric equivalents of O2. The use of in-line FTIR monitoring and modeling greatly accelerated process optimization in the Vortex reactor. This led to scale-up of the photo-oxidation in 85% yield with a projected productivity of 1.3 kg day-1 and a space-time yield of 0.06 mol day-1 mL-1. Higher productivities could be achieved while sacrificing yield (e.g., 4 kg day-1 at 40% yield). The use of superheated methanol at 200 °C in a pressurized thermal flow reactor accelerated the second step, the thermal condensation of 5-hydroxyfuranone, from a 20 h batch reflux reaction (0.5 L, 85 g) to a space time of <1 min in a reactor only 3 mL in volume operating with projected productivities of >700 g day-1. Proof of concept for telescoping the two steps was established with an overall two-step yield of 67%, producing a process with a projected productivity of 1.1 kg day-1 for the methoxybutenolide monomer without any purification of the 5-hydroxyfuranone intermediate.
Collapse
Affiliation(s)
- Matthew
D. Edwards
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Matthew T. Pratley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Charles M. Gordon
- Scale-up
Systems Ltd., 23 Shelbourne
Road, Dublin 4, D04 PY68, Ireland
| | - Rodolfo I. Teixeira
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hamza Ali
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Irfhan Mahmood
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Reece Lester
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ashley Love
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Johannes G. H. Hermens
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas Freese
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Martyn Poliakoff
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
8
|
Freese T, Elzinga N, Heinemann M, Lerch MM, Feringa BL. The relevance of sustainable laboratory practices. RSC SUSTAINABILITY 2024; 2:1300-1336. [PMID: 38725867 PMCID: PMC11078267 DOI: 10.1039/d4su00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Scientists are of key importance to the society to advocate awareness of the climate crisis and its underlying scientific evidence and provide solutions for a sustainable future. As much as scientific research has led to great achievements and benefits, traditional laboratory practices come with unintended environmental consequences. Scientists, while providing solutions to climate problems and educating the young innovators of the future, are also part of the problem: excessive energy consumption, (hazardous) waste generation, and resource depletion. Through their own research operations, science, research and laboratories have a significant carbon footprint and contribute to the climate crisis. Climate change requires a rapid response across all sectors of society, modeled by inspiring leaders. A broader scientific community that takes concrete actions would serve as an important step in convincing the general public of similar actions. Over the past years, grassroots movements across the sciences have recognized the overlooked impact of the scientific enterprise, and so-called Green Lab initiatives emerged seeking to address the environmental footprint of research. Driven by the voluntary efforts of researchers and staff, they educate peers, develop sustainability guidelines, write scientific publications and maintain accreditation frameworks. With this perspective we want to advocate for and spark leadership to promote a systemic change in laboratory practices and approach to research. Comprehensive evidence for the environmental impact of laboratories and their root-causes is presented, expanded with data from a current case study of the University of Groningen showcasing annual savings of 398 763 € as well as 477.1 tons of CO2e. This is followed by guidelines for sustainable lab practices and hands-on advice on how to achieve a systemic change at research institutions and industry. How can we expect industry, politics, and society to change, if we as scientists are not changing either? Scientists should lead by example and practice the change they want to see.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nils Elzinga
- Green Office, University of Groningen Broerstraat 5 9712 CP Groningen The Netherlands
| | - Matthias Heinemann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
9
|
Du L, Zhong Y, Zhao L, Hu C, Shen L, Yang Y, Zhong J. Self-healing polyacrylates based on dynamic disulfide and quadruple hydrogen bonds. SOFT MATTER 2024; 20:3612-3619. [PMID: 38619442 DOI: 10.1039/d4sm00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, a self-healing polyacrylate system was successfully prepared by introducing crosslinking agents containing disulfide bonds and monomers capable of forming quadruple hydrogen bonds through free radical copolymerization. This polymer material exhibited good toughness and self-healing properties through chemical and physical dual dynamic networks while maintaining excellent mechanical properties, which expanded the development path of self-healing acrylate materials. Compared to uncrosslinked and single dynamically crosslinked polymers, its elongation at break was as high as 437%, and its tensile strength was 5.48 MPa. Due to the presence of dual reversible dynamic bonds in the copolymer system, good self-healing was also achieved at 60 °C. In addition, differential scanning calorimetry and thermogravimetric analysis measurements confirmed that the thermal stability and glass transition temperature of the material were improved owing to the presence of physical and chemical cross-linking networks.
Collapse
Affiliation(s)
- Longjin Du
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuting Zhong
- School of Education, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Linying Zhao
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Chengzhen Hu
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Liang Shen
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Yuping Yang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Jiang Zhong
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Department of Coatings and Polymeric Materials, School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
10
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
11
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Awasthi S, Prior Palomero B, Srivastava A, Selvaraj S, Pandey SK. Nanodiamond-structured zinc composite coatings with strong bonding and high load-bearing capacity. NANOSCALE ADVANCES 2024; 6:1001-1010. [PMID: 38298590 PMCID: PMC10825905 DOI: 10.1039/d3na00809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
The aerospace and automotive industries find that relying solely on the intrinsic resistance of alloys is inadequate to safeguard aircraft and automotive structural components from harsh environmental conditions. While it is difficult to attribute accidents exclusively to coating failure due to the involvement of multiple factors, there are instances where defects in the coating initiate a wear or degradation process, leading to premature and unplanned structural failures. Metallic coatings have been introduced to protect the aircraft mainly from wear due to the extreme temperatures and moisture exposure during their service life. Bare metallic coatings have a limited lifespan and need to be replaced frequently. Herein, the strength and wear resistance of zinc (Zn) coating is enhanced using varying concentrations of diamond particles as an additive in the Zn matrix (Zn-D). The dispersion strengthening mechanism is attributed to the high hardness (70 HRC), and reduced friction-of-coefficient (0.21) and dissipation energy (4.6 × 10-4 J) of electrodeposited Zn-D7.5 (7.5 g l-1 of diamond concentration) composite coating. Moreover, enhanced wear resistance with minimum wear volume (1.12 × 10-3 mm3) and wear rate (1.25 × 10-3 mm3 N-1 m-1) of the Zn-D7.5 composite coating resulted in perfect blending of diamond with Zn. The improved hardness and wear resistance for Zn-D7.5 (optimum 7.5 g l-1 diamond concentration) is due to the steadiness between well-dispersed diamonds in Zn and enrichment in load-bearing ability due to the incorporation of diamond particles. Electronic structure calculations on the zinc-diamond composite models (two configurations adopted) have been performed using the density functional theory (DFT) approach, and the in silico studies appeared to facilitate meaningful and evocative outcomes. Zn-doped diamond (C10@Zn) without hydrogen (H) atoms (binding energy: 418 kcal mol-1, i.e. showing an endothermic reaction and thermodynamically not favourable) was detected to be more stable than the Zn-doped diamond (C10H16@Zn) consisting of hydrogen (H) atoms (binding energy: -33.3 kcal mol-1, i.e. showing an exothermic reaction and thermodynamically preferable). Thus, a composite coating of zinc and diamond can be a suitable candidate for the aerospace and automotive industries.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, Manipal University Jaipur 303007 India
| | | | - Ankur Srivastava
- Department of Mechanical Engineering, Manipal University Jaipur India 303007
| | - S Selvaraj
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Thandalam Chennai 602105 Tamil Nadu India
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Manipal University Jaipur 303007 India
- Department of Chemistry, Maulana Azad National Institute of Technology Bhopal 462003 India
| |
Collapse
|
13
|
Freese T, Meijer JT, Brands MB, Alachouzos G, Stuart MCA, Tarozo R, Gerlach D, Smits J, Rudolf P, Reek JNH, Feringa BL. Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H 2O 2). EES CATALYSIS 2024; 2:262-275. [PMID: 38222062 PMCID: PMC10782808 DOI: 10.1039/d3ey00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/16/2024]
Abstract
Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jelmer T Meijer
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Maria B Brands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Georgios Alachouzos
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7 9747AG Groningen The Netherlands
| | - Rafael Tarozo
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost Smits
- Shell Global Solutions International BV Grasweg 31 1031 HW Amsterdam The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
14
|
de Zwart FJ, Wolzak LA, Laan PCM, Mathew S, Flapper J, van den Berg KJ, Reek JNH, de Bruin B. Thermal/Blue Light Induced Cross-Linking of Acrylic Coatings with Diazo Compounds. Macromol Rapid Commun 2023; 44:e2300380. [PMID: 37595267 DOI: 10.1002/marc.202300380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Indexed: 08/20/2023]
Abstract
The thermal curing of industrial coatings (e.g., car painting and metal coil coatings) is accompanied by a substantial energy consumption due to the intrinsically high temperatures required during the curing process. Therefore, the development of new photochemical curing processes-preferably using visible light-is in high demand. This work describes new diazo-based cross-linkers that can be used to photocure acrylic coatings using blue light. This work demonstrates that the structure of the tethered diazo compounds influences the cross-linking efficiency, finding that side reactions are suppressed upon engineering greater molecular flexibility. Importantly, this work shows that these diazo compounds can be employed as either thermal or photochemical cross-linkers, exhibiting identical crosslinking performances. The performance of diazo-cross-linked coatings is evaluated to reveal excellent water resistance and demonstrably similar material properties to UV-cured acrylates. These studies pave the way for further usage of diazo-functionalized cross-linkers in the curing of paints and coatings.
Collapse
Affiliation(s)
- Felix J de Zwart
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Lukas A Wolzak
- Akzo Nobel Car Refinishes B.V., Sassenheim, 2171 AJ, The Netherlands
| | - Petrus C M Laan
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Jitte Flapper
- Akzo Nobel Decorative Coatings B.V., Sassenheim, 2171 AJ, The Netherlands
| | | | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
15
|
Lepage ML, Alachouzos G, Hermens JGH, Elders N, van den Berg KJ, Feringa BL. Electron-Poor Butenolides: The Missing Link between Acrylates and Maleic Anhydride in Radical Polymerization. J Am Chem Soc 2023; 145:17211-17219. [PMID: 37498188 PMCID: PMC10416300 DOI: 10.1021/jacs.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 07/28/2023]
Abstract
Butenolides are a class of 5-membered lactones that hold great potential as bio-based monomers to replace oil-derived acrylates, of which they are cyclic analogues. Despite this structural resemblance, the reactivity of the unsaturated ester moiety of electron-poor butenolides leans toward that of maleic anhydride, another essential monomer that does not homopolymerize but copolymerizes in a highly alternating fashion with polarized electron-rich comonomers. By studying the reactivity of 5-methoxy and 5-acyloxy butenolides through a combination of kinetics and density functional theory (DFT) experiments, we explain why electron-poor butenolides constitute a missing link between acrylates and maleic anhydride in radical polymerization.
Collapse
Affiliation(s)
- Mathieu L. Lepage
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Georgios Alachouzos
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johannes G. H. Hermens
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Niels Elders
- Department
Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Keimpe J. van den Berg
- Department
Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
16
|
Filippova OV, Maksimkin AV, Dayyoub T, Larionov DI, Telyshev DV. Sustainable Elastomers for Actuators: "Green" Synthetic Approaches and Material Properties. Polymers (Basel) 2023; 15:2755. [PMID: 37376401 DOI: 10.3390/polym15122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Elastomeric materials have great application potential in actuator design and soft robot development. The most common elastomers used for these purposes are polyurethanes, silicones, and acrylic elastomers due to their outstanding physical, mechanical, and electrical properties. Currently, these types of polymers are produced by traditional synthetic methods, which may be harmful to the environment and hazardous to human health. The development of new synthetic routes using green chemistry principles is an important step to reduce the ecological footprint and create more sustainable biocompatible materials. Another promising trend is the synthesis of other types of elastomers from renewable bioresources, such as terpenes, lignin, chitin, various bio-oils, etc. The aim of this review is to address existing approaches to the synthesis of elastomers using "green" chemistry methods, compare the properties of sustainable elastomers with the properties of materials produced by traditional methods, and analyze the feasibility of said sustainable elastomers for the development of actuators. Finally, the advantages and challenges of existing "green" methods of elastomer synthesis will be summarized, along with an estimation of future development prospects.
Collapse
Affiliation(s)
- Olga V Filippova
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Aleksey V Maksimkin
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Tarek Dayyoub
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Department of Physical Chemistry, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Dmitry I Larionov
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
| | - Dmitry V Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia
| |
Collapse
|
17
|
van Vliet S, Hermens JGH, Fu Y, Pfeifer L, Feringa BL. Hydrazone-based boron difluoride complexes as triplet photosensitizers for singlet oxygen generation. Chem Commun (Camb) 2023; 59:884-887. [PMID: 36594230 DOI: 10.1039/d2cc05336e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to the highly selective nature of singlet oxygen as an oxidant, it has received considerable interest in various areas of (organic) chemistry. Two green light activated hydrazone-based boron difluoride triplet photosensitizers possessing high quantum yields for 1O2 formation are reported. These photostable complexes are promising in applications in synthesis and catalysis.
Collapse
Affiliation(s)
- Sven van Vliet
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Johannes G H Hermens
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Youxin Fu
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Lukas Pfeifer
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
18
|
Stuhr R, Bayer P, von Wangelin AJ. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. CHEMSUSCHEM 2022; 15:e202201323. [PMID: 36214486 PMCID: PMC10100308 DOI: 10.1002/cssc.202201323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.
Collapse
Affiliation(s)
- Robin Stuhr
- Department of ChemistryUniversity of HamburgMartin-Luther-King Platz 620146HamburgGermany
| | - Patrick Bayer
- Pantheon AustriaThermo Fisher ScientificSt. Peter Str. 254020LinzAustria
| | | |
Collapse
|
19
|
Hermens JGH, Lepage ML, Kloekhorst A, Keller E, Bloem R, Meijer M, Feringa BL. Development of a modular photoreactor for the upscaling of continuous flow photochemistry. REACT CHEM ENG 2022; 7:2280-2284. [PMID: 36352841 PMCID: PMC9594834 DOI: 10.1039/d2re00310d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The upscaling of biphasic photochemical reactions is challenging because of the inherent constraints of liquid-gas mixing and light penetration. Using semi-permeable coaxial flow chemistry within a modular photoreactor, the photooxidation of the platform chemical furfural was scaled up to produce routinely 29 gram per day of biobased building block hydroxybutenolide, a precursor to acrylate alternatives.
Collapse
Affiliation(s)
- Johannes G H Hermens
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mathieu L Lepage
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Arjan Kloekhorst
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Erik Keller
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Robin Bloem
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Maurice Meijer
- Hanze University of Applied Sciences Zernikeplein 11 9747 AS Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
20
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209100. [PMID: 35922379 DOI: 10.1002/anie.202209100] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/07/2023]
Abstract
Chemical recycling of synthetic polymers offers a solution for developing sustainable plastics and materials. Here we show that two types of dynamic covalent chemistry can be orthogonalized in a solvent-free polymer network and thus enable a chemically recyclable crosslinked material. Using a simple acylhydrazine-based 1,2-dithiolane as the starting material, the disulfide-mediated reversible polymerization and acylhydrazone-based dynamic covalent crosslinking can be combined in a one-pot solvent-free reaction, resulting in mechanically robust, tough, and processable crosslinked materials. The dynamic covalent bonds in both backbones and crosslinkers endow the network with depolymerization capability under mild conditions and, importantly, virgin-quality monomers can be recovered and separated. This proof-of-concept study show opportunities to design chemically recyclable materials based on the dynamic chemistry toolbox.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
21
|
Masson TM, Zondag SDA, Debije MG, Noël T. Rapid and Replaceable Luminescent Coating for Silicon-Based Microreactors Enabling Energy-Efficient Solar Photochemistry. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10712-10717. [PMID: 35991758 PMCID: PMC9382670 DOI: 10.1021/acssuschemeng.2c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The sun is the most sustainable source of photons on the earth but is rarely used in photochemical transformations due its relatively low and variable intensity, broad wavelength range, and lack of focus. Luminescent solar concentrator-based photomicroreactors (LSC-PMs) can be an answer to all these issues, but widespread adoption is plagued by challenges associated with their complicated manufacturing. Herein, we developed a new strategy to accelerate and ease the production of LSC-PMs by depositing a thin luminescent film on commercially and widely available silicon-based microreactors. The protocol is fast and operationally simple, and the luminescent coating can be easily removed and replaced. This enables rapid tuning of the luminescent coating to fit the requirements of the photocatalytic system and to increase the photon flux inside the microreactor channels.
Collapse
Affiliation(s)
- Tom M. Masson
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michael G. Debije
- Department
of Chemical Engineering and Chemistry, Stimuli-Responsive Functional
Materials & Devices, Eindhoven University
of Technology, Groene Loper 3, Bldg 14-Helix, 5600
MB Eindhoven, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
22
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanxin Deng
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Qi Zhang
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Da-Hui Qu
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
23
|
Barkane A, Platnieks O, Grase L, Gaidukovs S. Simultaneous wettability and stiffness control of UV-curing vegetable oil resin composites by lignocellulosic components. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Hermens JGH, Jensma A, Feringa BL. Highly Efficient Biobased Synthesis of Acrylic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johannes G. H. Hermens
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andries Jensma
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
26
|
Hermens JGH, Jensma A, Feringa BL. Highly Efficient Biobased Synthesis of Acrylic Acid. Angew Chem Int Ed Engl 2022; 61:e202112618. [PMID: 34783426 PMCID: PMC9299676 DOI: 10.1002/anie.202112618] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/02/2022]
Abstract
Petrochemical based polymers, paints and coatings are cornerstones of modern industry but our future sustainable society demands greener processes and renewable feedstock materials. A challenge is to access platform monomers from biomass resources while integrating the principles of green chemistry in their chemical synthesis. We present a synthesis route starting from biomass-derived furfural towards the commonly used monomers maleic anhydride and acrylic acid, implementing environmentally benign photooxygenation, aerobic oxidation and ethenolysis reactions. Maleic anhydride and acrylic acid, transformed into sodium acrylate, were isolated in yields of 85 % (2 steps) and 81 % (4 steps), respectively. With minimal waste and high atom efficiency, this biobased route provides a viable alternative to access key monomers.
Collapse
Affiliation(s)
- Johannes G. H. Hermens
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Andries Jensma
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
27
|
Yuan L, Hu Y, Zhao Z, Li G, Wang A, Cong Y, Wang F, Zhang T, Li N. Production of Copolyester Monomers from Plant‐Based Acrylate and Acetaldehyde. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Yancheng Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zhitong Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
28
|
Guo W, Bruining HC, Heeres HJ, Yue J. Efficient synthesis of furfural from xylose over
HCl
catalyst in slug flow microreactors promoted by
NaCl
addition. AIChE J 2022. [DOI: 10.1002/aic.17606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenze Guo
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Herman Carolus Bruining
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Hero Jan Heeres
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| | - Jun Yue
- Department of Chemical Engineering Engineering and Technology Institute Groningen, University of Groningen Groningen The Netherlands
| |
Collapse
|
29
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
30
|
Yuan L, Hu Y, Zhao Z, Li G, Wang A, Cong Y, Wang F, Zhang T, Li N. Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde. Angew Chem Int Ed Engl 2021; 61:e202113471. [PMID: 34850519 DOI: 10.1002/anie.202113471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/28/2022]
Abstract
PCTA is an important copolyester that has been widely used in our daily necessities. Currently, its monomers are industrially produced from petroleum-derived xylene. To reduce the reliance on fossil energy, we herein disclose an alternative route to access PCTA monomer (terephthalate/isophthalate=2.4/1) in 61 % overall yield using plant-based acrylate and acetaldehyde as the feedstocks. The process includes Morita-Baylis-Hillman (MBH) reaction of acetaldehyde with acrylate, subsequent one-step dehydration/Diels-Alder reaction with acrylate over H2 SO4 /SiO2 catalyst, and final Pd/C-catalyzed dehydrogenation. Besides, when varying the final step to hydrogenation, another important monomer UNOXOL™ diol (1,4-trans/1,4-cis/1,3-trans/1,3-cis=5.2/2/2.5/1) can be produced in 67 % overall yield.
Collapse
Affiliation(s)
- Lin Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yancheng Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhitong Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
31
|
Stamm A, Öhlin J, Mosbech C, Olsén P, Guo B, Söderberg E, Biundo A, Fogelström L, Bhattacharyya S, Bornscheuer UT, Malmström E, Syrén PO. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS AU 2021; 1:1949-1960. [PMID: 34849510 PMCID: PMC8620555 DOI: 10.1021/jacsau.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.
Collapse
Affiliation(s)
- Arne Stamm
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Johannes Öhlin
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Caroline Mosbech
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Boyang Guo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Elisabeth Söderberg
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Linda Fogelström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | | | - Uwe T. Bornscheuer
- Department
of Biotechnology and Enzyme Catalysis, University
of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Eva Malmström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| |
Collapse
|
32
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|