1
|
Kim J, Kang M, Yoon J, Yang J, Jeong Y, Kim H, Lee DK, Hong Y. Improved Uniformity and Processability of Inkjet-Printed Single-Walled Carbon Nanotube Thin-Film Transistor by Introducing Cellulose Dispersant. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9606-9616. [PMID: 39893665 DOI: 10.1021/acsami.4c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Solution-processed thin-film transistors (TFTs) based on single-walled carbon nanotubes (SWCNTs) hold great potential for next-generation electronics owing to their remarkable electrical, mechanical, and optical characteristics. However, challenges in efficiently dispersing SWCNTs hinder scalable fabrication. Conventional methods using surfactants improve SWCNT dispersion but lead to degradation of device performance due to increased contact resistance between the SWCNTs. Furthermore, the surfactant removal process induces unexpected characteristic nonuniformity by residual surfactant and network impairment. Here, we propose a facile and effective strategy for achieving superior performance uniformity in inkjet-printed SWCNT TFTs by using cellulose as a dispersant for SWCNTs. Cellulose-based SWCNT ink exhibits excellent dispersibility and stability, preserving the intrinsic electronic properties of SWCNTs while enabling optimal droplet formation for inkjet printing by adjusting the cellulose concentration. Based on the thermal decomposition characteristics of cellulose, we form a uniform SWCNT random network channel without affecting the nanotube network by selectively removing cellulose through a simple annealing process. As a result, the SWCNT TFTs fabricated on a 4-in. wafer substrate show significant improvements in characteristic uniformity, with a reduction of over 35% in performance variation, and exhibit strengths in switching performance compared to conventional surfactant-based SWCNT TFT fabrication methods.
Collapse
Affiliation(s)
- Joonyoup Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Minkyun Kang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Jiwoo Yang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Yeeun Jeong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Hayun Kim
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Dong Keon Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Ling S, Wei X, Luo X, Li X, Li S, Xiong F, Zhou W, Xie S, Liu H. Surfactant Micelle-Driven High-Efficiency and High-Resolution Length Separation of Carbon Nanotubes for Electronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400303. [PMID: 38501842 DOI: 10.1002/smll.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Indexed: 03/20/2024]
Abstract
High-efficiency extraction of long single-wall carbon nanotubes (SWCNTs) with excellent optoelectronic properties from SWCNT solution is critical for enabling their application in high-performance optoelectronic devices. Here, a straightforward and high-efficiency method is reported for length separation of SWCNTs by modulating the concentrations of binary surfactants. The results demonstrate that long SWCNTs can spontaneously precipitate for binary-surfactant but not for single-surfactant systems. This effect is attributed to the formation of compound micelles by binary surfactants that squeeze the free space of long SWCNTs due to their large excluded volumes. With this technique, it can readily separate near-pure long (≥500 nm in length, 99% in content) and short (≤500 nm in length, 98% in content) SWCNTs with separation efficiencies of 26% and 64%, respectively, exhibiting markedly greater length resolution and separation efficiency than those of previously reported methods. Thin-film transistors fabricated from extracted semiconducting SWCNTs with lengths >500 nm exhibit significantly improved electrical properties, including a 10.5-fold on-state current and 14.7-fold mobility, compared with those with lengths <500 nm. The present length separation technique is perfectly compatible with various surfactant-based methods for structure separations of SWCNTs and is significant for fabrication of high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Ling
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Feibing Xiong
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
3
|
Li Y, Li L, Jiang H, Qian L, He M, Zhou D, Jiang K, Liu H, Qin X, Gao Y, Wu Q, Chi X, Li Z, Zhang J. An efficient approach toward production of near-zigzag single-chirality carbon nanotubes. SCIENCE ADVANCES 2024; 10:eadn6519. [PMID: 38569036 PMCID: PMC10990264 DOI: 10.1126/sciadv.adn6519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Synthesizing single-walled carbon nanotubes (SWCNTs) with a narrow chirality distribution is essential for obtaining pure chirality materials through postgrowth sorting techniques. Using carbon monoxide chemical vapor deposition, we devise a ruthenium (Ru) catalyst supported by silica for the bulk production of SWCNTs containing only a few (n, m) species. The result is attributed to the limited carbon dissociation on the supported Ru clusters, favoring the growth of only small-diameter SWCNTs at comparable growth rates. The resulting materials expedite high-purity single chirality separation using gel chromatography, leading to unprecedented yields of 3.5% for (9, 1) and 5.2% for (9, 2) nanotubes, which surpass those separated from HiPco SWCNTs by two orders of magnitude. This work sheds light on the large-quantity synthesis of SWCNTs with enriched species beyond near-armchair ones for their high-yield separation.
Collapse
Affiliation(s)
- Yahan Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Jiang
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maoshuai He
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Duanliang Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Kaili Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofan Qin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Gao
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qianru Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinyan Chi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Sims CM, Fagan JA. An Automated Gradient Titration Fluorescence Methodology for High-Resolution Identification of Aqueous Two-Polymer Phase Extraction Conditions for Single-Wall Carbon Nanotubes. CARBON 2024; 219:10.1016/j.carbon.2024.118813. [PMID: 38882683 PMCID: PMC11177791 DOI: 10.1016/j.carbon.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A significant advance in rate and precision of identifying the co-surfactant concentrations leading to differential extraction of specific single-wall carbon nanotube (SWCNT) species in aqueous two-polymer phase extraction experiments is reported. These gains are achieved through continuous titration of co-surfactant and other solution components during automated fluorescence measurements on SWCNT dispersions. The resulting fluorescence versus concentration curves display intensity and wavelength shift transitions traceable to the nature of the adsorbed surfactant layer on specific SWCNT structures at the (n,m) species and enantiomer level at high resolution. The increased precision and speed of the titration method resolve previously invisible complexity in the SWCNT fluorescence during the transition from one surfactant dominating the SWCNT interface to the other, offering insight into the fine details of the competitive exchange process. For the first time, we additionally demonstrate that the competitive process of the surfactant switch is direction independent (reversible) and hysteresis-free; the latter data effectively specifies an upper bound for the time scale of the exchange process. Titration curves are compared to literature results and initial advanced parameter variation is conducted for previously unreasonable to investigate solution conditions.
Collapse
Affiliation(s)
- Christopher M. Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| |
Collapse
|
5
|
Li Y, Liu Y, Jin F, Cao L, Jin H, Qiu S, Li Q. Polymer removal and dispersion exchange of (10,5) chiral carbon nanotubes with enhanced 1.5 μm photoluminescence. NANOSCALE ADVANCES 2024; 6:792-797. [PMID: 38298584 PMCID: PMC10825900 DOI: 10.1039/d3na01041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Singe-chirality single-walled carbon nanotubes (SWCNTs) produced by selective polymer extraction have been actively investigated for their semiconductor applications. However, to fulfil the needs of biocompatible applications, the organic solvents in polymer-sorted SWCNTs impose a limitation. In this study, we developed a novel strategy for organic-to-aqueous phase exchange, which involves thoroughly removing polymers from the sorted SWCNTs, followed by surfactant covering and redispersing of the cleaned SWCNTs in water. Importantly, the obtained aqueous system allows us to perform sp3 functionalization of the SWCNTs, leading to a strong photoluminescence emission at 1550 nm from the defect sites of (10,5) SWCNTs. These functionalized SWCNTs as infrared light emitters show considerable potential for bioimaging applications. This exchange-and-functionalization strategy opens the door for future biocompatible applications of polymer-sorted SWCNTs.
Collapse
Affiliation(s)
- Yahui Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Ye Liu
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Feng Jin
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Leitao Cao
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Hehua Jin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Song Qiu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science 398 Ruoshui Road Suzhou 215123 China
| | - Qingwen Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 China
| |
Collapse
|
6
|
Cao L, Li Y, Liu Y, Zhao J, Nan Z, Xiao W, Qiu S, Kang L, Jin H, Li Q. Iterative Strategy for Sorting Single-Chirality Single-Walled Carbon Nanotubes from Aqueous to Organic Systems. ACS NANO 2024; 18:3783-3790. [PMID: 38236194 DOI: 10.1021/acsnano.3c11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Significant advancements in electronic devices and integrated circuits have been facilitated by semiconducting single-walled carbon nanotubes (SWCNTs) sorted by conjugated polymers (CPs). However, the variety of CPs with single-chirality selectivity is limited, and the sorting results are strongly dependent on the chiral distribution of the starting materials. To address this, we develop an iterative strategy to achieve single-chirality SWCNT separation from aqueous to organic systems, based on a multistep tandem extraction technique that allows a gentle and nondestructive separation of surfactants from SWCNTs, ensuring an efficient system transfer. In parallel, we refined the iterative sorting process between CPs. Employing two starting materials with narrow diameter distributions, using three CPs, we successfully sorted out five single-chirality SWCNTs of the (9,5), (8,6), (10,5), (8,7), and (11,3) species in organic systems. This strategy bridges the gap between aqueous and organic separation systems, achieving efficient complementarity between them.
Collapse
Affiliation(s)
- Leitao Cao
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Yahui Li
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Ye Liu
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Jintao Zhao
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Zeyuan Nan
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Wenxin Xiao
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Song Qiu
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Lixing Kang
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Hehua Jin
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Qingwen Li
- Division of Advanced Nano-Materials, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| |
Collapse
|
7
|
Zhao X, Wang K, Yang G, Wang X, Qiu C, Huang J, Long Y, Yang X, Yu B, Jia G, Yang F. Sorting of Cluster-Confined Metallic Single-Walled Carbon Nanotubes for Fabricating Atomically Vacant Uranium Oxide. J Am Chem Soc 2023; 145:25242-25251. [PMID: 37767700 DOI: 10.1021/jacs.3c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Single-walled carbon nanotube (SWCNT) heterostructures have shown great potential in catalysis, magnetism, and nanofluidics, in which host SWCNTs with certain conductivity (metallic or semiconducting) are highly required. Herein, inspired by the large molecular weight and redox properties of polyoxometalate (POM) clusters, we reported the selective separation of POM encapsulated metallic SWCNTs (POM@m-SWCNTs) with a uniform diameter through density gradient ultracentrifugation (DGU). The confined POMs increased the SWCNT density and amplified the nanotubes' density difference, thus greatly lowering the centrifugal force (70,000g) of DGU. With this strategy, a series of POM@m-SWCNTs of ∼1.2 nm with high purity were sorted. The mechanism supported by theoretical and experimental evidence showed that the separation of m-SWCNTs depended on not only nanotube/cluster size but also the conductivity of SWCNTs. The smallest 1.2 nm m-SWCNT that can exactly accommodate a 0.9 nm-{Mo6} cluster exhibited the maximum electron transfer to inner clusters; thus, intertube π-π stacking of such m-SWCNTs was greatly loosened, leading to the preferential dispersion into individual ones and partitioning in the uppermost layer after DGU. As a proof-of-concept application, this sorting strategy was extended to separate heavy-element 238U-encapsulated m-SWCNTs. The phase-pure, tiny (1-2.5 nm) U4O9 crystals with atomic vacancy clusters were fabricated on m-SWCNTs through growth kinetic control. This work may provide a general way to construct desired actinide materials on specific SWCNTs.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Jian Huang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
| | - Yanglin Long
- Department of Electronics, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guodong Jia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Dzienia A, Just D, Taborowska P, Mielanczyk A, Milowska KZ, Yorozuya S, Naka S, Shiraki T, Janas D. Mixed-Solvent Engineering as a Way around the Trade-Off between Yield and Purity of (7,3) Single-Walled Carbon Nanotubes Obtained Using Conjugated Polymer Extraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304211. [PMID: 37467281 DOI: 10.1002/smll.202304211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Indexed: 07/21/2023]
Abstract
The inability to purify nanomaterials such as single-walled carbon nanotubes (SWCNTs) to the desired extent hampers the progress in nanoscience. Various SWCNT types can be purified by extraction, but it is challenging to establish conditions giving rise to the isolation of high-purity fractions. The problem stems from the fact that common organic solvents or water cannot provide an optimal environment for purification. Consequently, one must often decide between the separation yield and purity of the product. This article reports how through the self-synthesis of poly(9,9-dioctylfluorene-alt-benzothiadiazole) with tailored characteristics, in-depth elucidation of the extraction process, and mixed-solvent engineering, a high-yield isolation of monochiral (7,3) SWCNTs is developed. The combination of toluene and tetralin affords a separation medium of unique properties, wherein both high yield and exceptional purity can be attained simultaneously. The reported results pave the way for further research on this rare chirality, which, as illustrated herein, is much more reactive than any of the previously separated SWCNTs.
Collapse
Affiliation(s)
- Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
- Institute of Materials Engineering, University of Silesia in Katowice, Bankowa 12, Katowice, 40-007, Poland
| | - Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Anna Mielanczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shunji Yorozuya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
9
|
Zhang J, Tang X, Wei J, Cong S, Zhu S, Li Y, Yao J, Lyu W, Jin H, Zhao M, Zhao Z, Li Q. Rainbow-Colored Carbon Nanotubes via Rational Surface Engineering for Smart Visualized Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303593. [PMID: 37635182 PMCID: PMC10582442 DOI: 10.1002/advs.202303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Surface engineering is effective for developing materials with novel properties, multifunctionality, and smart features that can enable their use in emerging applications. However, surface engineering of carbon nanotubes (CNTs) to add color properties and functionalities has not been well established. Herein, a new surface engineering strategy is developed to achieve rainbow-colored CNTs with high chroma, high brightness, and strong color travel for visual hydrogen sensing. This approach involved constructing a bilayer structure of W and WO3 on CNTs (CNT/W/WO3 ) and a trilayer structure of W, WO3 , and Pd on CNTs (CNT/W/WO3 /Pd) with tunable thicknesses. The resulting CNT/W/WO3 composite film exhibits a wide range of visible colors, including yellow, orange, magenta, violet, blue, cyan, and green, owing to strong thin-film interference. This coloring method outperforms other structural coloring methods in both brightness and chroma. The smart CNT/W/WO3 /Pd films with porous characteristics quickly and precisely detect the hydrogen leakage site. Furthermore, the smart CNT/W/WO3 /Pd films allow a concentration as low as 0.6% H2 /air to be detected by the naked eye in 58 s, offering a very practical and safe approach for the detection and localization of leaks in onboard hydrogen tanks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xueqing Tang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Shan Cong
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Siqi Zhu
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yaowu Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jian Yao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Weibang Lyu
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Hehua Jin
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Zhigang Zhao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qingwen Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| |
Collapse
|
10
|
Maeda Y, Morooka R, Zhao P, Yamada M, Ehara M. Control of functionalized single-walled carbon nanotube photoluminescence via competition between thermal rearrangement and elimination. Chem Commun (Camb) 2023; 59:11648-11651. [PMID: 37655792 DOI: 10.1039/d3cc02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We conducted the chiral separation of functionalized single-walled carbon nanotubes (SWNTs) with dibromopropane derivatives. Depending on their chirality and diameter, the thermal treatment of functionalized SWNTs leads to a shift in the emission radiation to longer wavelengths owing to rearrangement reaction in competition with elimination reaction.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Rina Morooka
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| |
Collapse
|
11
|
Maeda Y, Suzuki Y, Konno Y, Zhao P, Kikuchi N, Yamada M, Mitsuishi M, Dao ATN, Kasai H, Ehara M. Selective emergence of photoluminescence at telecommunication wavelengths from cyclic perfluoroalkylated carbon nanotubes. Commun Chem 2023; 6:159. [PMID: 37524908 PMCID: PMC10390534 DOI: 10.1038/s42004-023-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
Chemical functionalisation of semiconducting single-walled carbon nanotubes (SWNTs) can tune their local band gaps to induce near-infrared (NIR) photoluminescence (PL). However, tuning the PL to telecommunication wavelengths (>1300 nm) remains challenging. The selective emergence of NIR PL at the longest emission wavelength of 1320 nm was successfully achieved in (6,5) SWNTs via cyclic perfluoroalkylation. Chiral separation of the functionalised SWNTs showed that this functionalisation was also effective in SWNTs with five different chiral angles. The local band gap modulation mechanism was also studied using density functional theory calculations, which suggested the effects of the addenda and addition positions on the emergence of the longest-wavelength PL. These findings increase our understanding of the functionalised SWNT structure and methods for controlling the local band gap, which will contribute to the development and application of NIR light-emitting materials with widely extended emission and excitation wavelengths.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan.
| | - Yasuhiro Suzuki
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Yui Konno
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| | - Nobuhiro Kikuchi
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Masaya Mitsuishi
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Anh T N Dao
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
12
|
Yang D, Li L, Li X, Xi W, Zhang Y, Liu Y, Wei X, Zhou W, Wei F, Xie S, Liu H. Preparing high-concentration individualized carbon nanotubes for industrial separation of multiple single-chirality species. Nat Commun 2023; 14:2491. [PMID: 37120644 PMCID: PMC10148823 DOI: 10.1038/s41467-023-38133-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
Industrial production of single-chirality carbon nanotubes is critical for their applications in high-speed and low-power nanoelectronic devices, but both their growth and separation have been major challenges. Here, we report a method for industrial separation of single-chirality carbon nanotubes from a variety of raw materials with gel chromatography by increasing the concentration of carbon nanotube solution. The high-concentration individualized carbon nanotube solution is prepared by ultrasonic dispersion followed by centrifugation and ultrasonic redispersion. With this technique, the concentration of the as-prepared individualized carbon nanotubes is increased from about 0.19 mg/mL to approximately 1 mg/mL, and the separation yield of multiple single-chirality species is increased by approximately six times to the milligram scale in one separation run with gel chromatography. When the dispersion technique is applied to an inexpensive hybrid of graphene and carbon nanotubes with a wide diameter range of 0.8-2.0 nm, and the separation yield of single-chirality species is increased by more than an order of magnitude to the sub-milligram scale. Moreover, with present separation technique, the environmental impact and cost of producing single-chirality species are greatly reduced. We anticipate that this method promotes industrial production and practical applications of single-chirality carbon nanotubes in carbon-based integration circuits.
Collapse
Affiliation(s)
- Dehua Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Advanced Passivation Technology Lab, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Xiao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Wei Xi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuejuan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Yumin Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Fei Wei
- Department of Chemical Engineering, Tsinghua University, Beijing, 10084, China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
13
|
Su W, Li X, Li L, Yang D, Wang F, Wei X, Zhou W, Kataura H, Xie S, Liu H. Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement. Nat Commun 2023; 14:1672. [PMID: 36966164 PMCID: PMC10039901 DOI: 10.1038/s41467-023-37443-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
Establishing the relationship between the electrical transport properties of single-wall carbon nanotubes (SWCNTs) and their structures is critical for the design of high-performance SWCNT-based electronic and optoelectronic devices. Here, we systematically investigated the effect of the chiral structures of SWCNTs on their electrical transport properties by measuring the performance of thin-film transistors constructed by eleven distinct (n, m) single-chirality SWCNT films. The results show that, even for SWCNTs with the same diameters but different chiral angles, the difference in the on-state current or carrier mobility could reach an order of magnitude. Further analysis indicates that the electrical transport properties of SWCNTs have strong type and family dependence. With increasing chiral angle for the same-family SWCNTs, Type I SWCNTs exhibit increasing on-state current and mobility, while Type II SWCNTs show the reverse trend. The differences in the electrical properties of the same-family SWCNTs with different chiralities can be attributed to their different electronic band structures, which determine the contact barrier between electrodes and SWCNTs, intrinsic resistance and intertube contact resistance. Our present findings provide an important physical basis for performance optimization and application expansion of SWCNT-based devices.
Collapse
Affiliation(s)
- Wei Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Xiao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Dehua Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Futian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
14
|
Rust C, Shapturenka P, Spari M, Jin Q, Li H, Bacher A, Guttmann M, Zheng M, Adel T, Walker ARH, Fagan JA, Flavel BS. The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206774. [PMID: 36549899 DOI: 10.1002/smll.202206774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.
Collapse
Affiliation(s)
- Christian Rust
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Manuel Spari
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Qihao Jin
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstraße 13, 76131, Karlsruhe, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Bacher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Tehseen Adel
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Angela R Hight Walker
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Su J, Li X, Xu M, Zhang J, Liu X, Zheng X, Shi Y, Zhang Q. Enhancing Photodetection Ability of MoS 2 Nanoscrolls via Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3307-3316. [PMID: 36596237 DOI: 10.1021/acsami.2c18537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Jun Su
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Jian Zhang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xiaolian Liu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Zheng
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| |
Collapse
|
16
|
Kalachikova PM, Goldt AE, Khabushev EM, Eremin TV, Zatsepin TS, Obraztsova ED, Larionov KV, Antipina LY, Sorokin PB, Nasibulin AG. Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1564-1571. [PMID: 36628112 PMCID: PMC9795860 DOI: 10.3762/bjnano.13.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
We propose a novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water. During the SWCNT extraction, specific adsorption of riboflavin to SWCNTs leads to the minimization of interactions between the SWCNTs and gel media. Our experimental findings are supported by ab initio calculations demonstrating the impact of the riboflavin wrapping pattern around the SWCNTs on their interaction with the allyl dextran gel.
Collapse
Affiliation(s)
- Polina M Kalachikova
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 121205, Russia
- Aalto University School of Chemical Engineering, Kemistintie 1, 02015, Espoo, Finland
| | - Anastasia E Goldt
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 121205, Russia
| | - Eldar M Khabushev
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 121205, Russia
- Aalto University School of Chemical Engineering, Kemistintie 1, 02015, Espoo, Finland
| | - Timofei V Eremin
- A. M. Prokhorov General Physics Institute of RAS, 38 Vavilov Street, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141701, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 121205, Russia
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Elena D Obraztsova
- A. M. Prokhorov General Physics Institute of RAS, 38 Vavilov Street, Moscow, 119991, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, 141701, Russia
| | - Konstantin V Larionov
- National University of Science and Technology "MISiS", 4 Leninsky prospect, Moscow, 119049, Russia
| | - Liubov Yu Antipina
- National University of Science and Technology "MISiS", 4 Leninsky prospect, Moscow, 119049, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow, 119334, Russia
| | - Pavel B Sorokin
- National University of Science and Technology "MISiS", 4 Leninsky prospect, Moscow, 119049, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow, 119334, Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow, 121205, Russia
- Aalto University School of Chemical Engineering, Kemistintie 1, 02015, Espoo, Finland
| |
Collapse
|
17
|
Chen Y, Lyu M, Zhang Z, Yang F, Li Y. Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS CENTRAL SCIENCE 2022; 8:1490-1505. [PMID: 36439305 PMCID: PMC9686200 DOI: 10.1021/acscentsci.2c01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.
Collapse
Affiliation(s)
- Yuguang Chen
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Min Lyu
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zeyao Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Feng Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- PKU-HKUST
ShenZhen-HongKong Institution, Shenzhen 518057, People’s
Republic of China
| |
Collapse
|
18
|
Yang X, Zhu C, Zeng L, Xue W, Zhang L, Zhang L, Zhao K, Lyu M, Wang L, Zhang YZ, Wang X, Li Y, Yang F. Polyoxometalate steric hindrance driven chirality-selective separation of subnanometer carbon nanotubes. Chem Sci 2022; 13:5920-5928. [PMID: 35685796 PMCID: PMC9132071 DOI: 10.1039/d2sc01160c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Subnanometer single-chirality single-walled carbon nanotubes (SWCNTs) are of particular interest in multiple applications. Inspired by the interdisciplinary combination of redox active polyoxometalates and SWCNTs, here we report a cluster steric hindrance strategy by assembling polyoxometalates on the outer surface of subnanometer SWCNTs via electron transfer and demonstrate the selective separation of monochiral (6,5) SWCNTs with a diameter of 0.75 nm by a commercially available conjugated polymer. The combined use of DFT calculations, TEM, and XPS unveils the mechanism that selective separation is associated with tube diameter-dependent interactions between the tube and clusters. Sonication drives the preferential detachment of polyoxometalate clusters from small-diameter (6,5) SWCNTs, attributable to weak tube-cluster interactions, which enables the polymer wrapping and separation of the released SWCNTs, while strong binding clusters with large-diameter SWCNTs provide steric hindrance and block the polymer wrapping. The polyoxometalate-assisted modulation, which can be rationally customized, provides a universal and robust pathway for the separation of SWCNTs.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lianduan Zeng
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute, University of Science and Technology of China Suzhou 215000 China
| | - Weiyang Xue
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kaitong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University Shenzhen Institute Shenzhen 518057 China
- PKU-HKUST ShenZhen-HongKong Institution Shenzhen 518057 China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
20
|
Sims CM, Fagan JA. Surfactant Chemistry and Polymer Choice Affect Single-Wall Carbon Nanotube Extraction Conditions in Aqueous Two-Polymer Phase Extraction. CARBON 2022; 191:10.1016/j.carbon.2022.01.062. [PMID: 36579357 PMCID: PMC9791978 DOI: 10.1016/j.carbon.2022.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantitative determination of the effects of surfactant chemistry and polymer chain length on the concentration conditions necessary to yield extraction of specific single-wall carbon nanotube (SWNCT) species in an aqueous two-polymer phase extraction (ATPE) separation are reported. In particular, the effects of polyethylene glycol (PEG) chain length, surfactant ratios, and systematic structural variations of alkyl surfactants and bile salts on the surfactant ratios necessary for extraction were investigated using a recently reported fluorescence-based method. Alkyl surfactant tail length was observed to strongly affect the amount of surfactant necessary to cause PEG-phase extraction of nanotube species in ATPE, while variation in the anionic sulfate/sulfonate head group chemistry has less impact on the concentration necessary for extraction. Substitution of different bile salts results in different surfactant packings on the SWCNTs, with substitution greatly affecting the alkyl surfactant concentrations required for (n,m) extraction. Finally, distinct alkyl-to-bile surfactant ratios were found to extract specific (n,m) SWCNTs across the whole effective window of absolute concentrations, supporting the hypothesized competitive adsorption mechanism model of SWCNT sorting. Altogether, these results provide valuable insights into the underlying mechanisms behind ATPE-based SWCNT separations, towards further development and optimization of the ATPE method for SWCNT chirality and handedness sorting.
Collapse
|
21
|
Wang J, Lei T. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes. NANOSCALE 2022; 14:1096-1106. [PMID: 34989744 DOI: 10.1039/d1nr06635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconducting single-walled carbon nanotubes SWCNTs (s-SWCNTs) are considered one of the most promising alternatives to traditional silicon-based semiconductors. In particular, large-diameter s-SWCNTs (>1.2 nm) exhibit more advantages over small-diameter ones in high-performance electronic applications because of their higher charge carrier mobility and reduced Schottky barrier height. Great efforts have been made to enriching large-diameter s-SWCNTs from mass-produced raw CNTs that contain both metallic SWCNTs and s-SWCNTs. Among separation technologies, the effective and scalable ones are conjugated polymer wrapping (CPW), gel permeation chromatography (GC), aqueous two-phase extraction (ATPE), and density gradient ultracentrifugation (DGU). In this review, we survey recent progress on enriching large-diameter s-SWCNTs using those methods and outline the strategies and challenges in the separation according to the electronic type and chirality of SWCNTs. Finally, we highlight some applications of the enriched large-diameter s-SWCNTs and outlook for the future of SWCNT-based electronic devices.
Collapse
Affiliation(s)
- Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics (MOE), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics (MOE), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Zhu A, Yang X, Zhang L, Wang K, Liu T, Zhao X, Zhang L, Wang L, Yang F. Selective separation of single-walled carbon nanotubes in aqueous solution by assembling redox nanoclusters. NANOSCALE 2022; 14:953-961. [PMID: 34989359 DOI: 10.1039/d1nr04019g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The selective separation of soluble and individual single-walled carbon nanotubes (SWCNTs) in aqueous solution is a key step for harnessing the extraordinary properties of these materials. Manipulating the strong van der Waals intertube interactions between the SWCNT bundles is very important in selective separation, which is a long-standing challenge. Here we reported the ability of redox polyoxometalate clusters to modulate the intertube π-π stacking interaction through electron transfer and achieved the diameter-selective separation of SWCNTs in a surfactant aqueous solution. The large-diameter SWCNTs concentrated at ∼1.3-1.4 nm were selectively separated when ∼1 nm clusters encapsulated within the tube cavity, and the dispersion of subnanometer ∼0.7-0.9 nm SWCNTs was boosted when clusters were adsorbed on the outer surface of small-diameter nanotubes. The mechanism of diameter-selective separation of SWCNTs associated with the size-dependent interaction between cluster-tubes and the steric hindrance effect of clusters was revealed by optical absorption and Raman spectroscopy. This simple method thus enables the selective separation of individual high-quality SWCNTs in aqueous solutions without harsh sonication with the potential for other separation applications.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tianhui Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xin Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
23
|
Zanoni S, Watts BP, Tvrdy K. Single-Walled Carbon Nanotube Chiral Selectivity Exhibited by Commercially Available Hydrogels of Varying Composition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33635-33643. [PMID: 34242015 DOI: 10.1021/acsami.1c06961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the commercial availability of many different hydrogel formulations, the effective gel-based purification of single-walled carbon nanotubes (SWNT) remains exclusive to the gel Sephacryl S-200. In this study, 12 commercially available gels and two custom-synthesized gels were investigated for their ability to effectively purify SWNT, as determined through quantification of SWNT adsorption, elution, chiral selectivity, and overall process efficiency. The ability of each gel to separate SWNT was found to correlate with physiochemical properties, such as hydrogel pore size, the presence of ionic ligands, and both polysaccharide backbone and cross-linker compositions. While Sephacryl S-200 demonstrated superior separation efficiency and chiral selectivity among the gels studied, Superose 6 was found to adsorb more SWNT than Sephacryl S-200 per cm2 of the gel surface area and exhibited a unique preference for the (7,3) and (7,5) SWNT chiralities, in contrast to the established selectivity of Sephacryl S-200 for the (6,5) chirality. Collectively, this work both identifies gels that exhibit unique SWNT chiral selectivity and provides insights into the rational design of gels tailored for SWNT purification.
Collapse
Affiliation(s)
- Sophia Zanoni
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Brennan P Watts
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
24
|
Yang X, Liu T, Li R, Yang X, Lyu M, Fang L, Zhang L, Wang K, Zhu A, Zhang L, Qiu C, Zhang YZ, Wang X, Peng LM, Yang F, Li Y. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J Am Chem Soc 2021; 143:10120-10130. [PMID: 34105955 DOI: 10.1021/jacs.1c02245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoming Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Fang
- Department of Electronics, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anquan Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lian-Mao Peng
- Department of Electronics, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University Shenzhen Institute, Shenzhen 518057, China.,PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518055, China
| |
Collapse
|