1
|
Cai X, Li X, Shi J, Tang L, Yang J, Yu R, Wang Z, Wang D. S100A8/A9 high-expression macrophages mediate renal tubular epithelial cell damage in acute kidney injury following acute type A aortic dissection surgery. Front Mol Biosci 2025; 12:1530741. [PMID: 40270593 PMCID: PMC12015165 DOI: 10.3389/fmolb.2025.1530741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Background Acute kidney injury (AKI) is a major complication after acute type A aortic dissection (ATAAD), with an incidence rate of 20-66.7%. Many patients with AKI after ATAAD surgery show no clear signs of ischemia-reperfusion injury. In our previous study, S100A8 and S100A9 were identified as predictive biomarkers of AKI after ATAAD surgery. These proteins are primarily expressed in neutrophils and macrophages, where they contribute to cell damage and immune cell activation. However, the roles of S100A8/A9 in ATAAD-associated AKI remain unclear. Methods In this study, transcriptomics sequence was applied to identify differentially expressed genes in renal tubular epithelial cells (TCMK-1), stimulated by culture supernatant of S100A8/A9 overexpressed and downregulated RAW264.7 cells. Single-cell sequencing data were used to identify cell clusters with high S100A8/A9 expression. Cross-analysis between RNA sequencing datasets was used to investigate common pathways enrichment in both in vitro and in vivo models. Molecular biology experiments were used to explore the downstream signaling pathways of S100A8/S100A9. Results We found that S100A8/S100A9 expression levels were increased and co-localized primarily with macrophages in the kidneys of AKI mice. Marker genes of M1-type macrophages, like Nos2 and Il1b, were upregulated in S100A8/A9 overexpressed M1-type macrophages, while the opposite was observed in the downregulated group. In transcription sequencing results, TCMK-1 cells stimulated by the supernatant from S100A8/A9 overexpressed and downregulated RAW264.7 cells can activate the TNF and PPAR pathway respectively. Cross-analysis revealed that the TNF signaling, IL-17 signaling, and other inflammatory pathways were enriched in both S100A8/A9-related renal tubular epithelial cell impairment and other AKI sequencing datasets. Finally, recombinant protein S100A8/A9 activated the TNF signaling pathway in renal tubular epithelial cells. Conclusion These findings suggested that S100A8/A9 were promising predictive biomarkers for AKI after surgery for ATAAD. S100A8/A9 were upregulated and primarily localized in renal macrophages, where they promoted the transformation of macrophages into the M1 phenotype. S100A8/A9 overexpressed macrophages activated the TNF signaling pathway through secretion and direct interaction with renal tubular epithelial cells, highlighting the critical role of TNF signaling in AKI after ATAAD surgery.
Collapse
Affiliation(s)
- Xiujuan Cai
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Li
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jian Shi
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Tang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ronghuang Yu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhigang Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Chen C, Sun B, Chen K, Bao H, Tao Y, Zhou J, Yuan X, He L, Lu Z, Chen K, Li Y, Yu C, Chen Y, Zhang Y. Atractylenolide-I restore intestinal barrier function by targeting the S100A9/AMPK/mTOR signaling pathway. Front Pharmacol 2025; 16:1530109. [PMID: 40196359 PMCID: PMC11973269 DOI: 10.3389/fphar.2025.1530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Impaired intestinal epithelial barrier function is closely associated with the pathogenesis of ulcerative colitis (UC). Atractylenolide-I (AT-I), a major sesquiterpene derived from the herb Atractylodes macrocephala Koidz., has been reported to alleviate DSS-induced colitis in mice. This study aims to investigated the protective effects of AT-1 on intestinal epithelial barrier function and elucidate it's underlying mechanisms. In vivo, an acute colitis model was established in mice, and transcriptomic analysis to identify differentially expressed genes. In vitro, overexpression plasmids and recombinant protein were used to evaluate their effects on intestinal barrier function, and further analysis of its potential mechanisms.The study found that AT-1 ameliorate DSS-induced acute ulcerative colitis, exhibiting protective effects on the intestinal barrier. Transcriptomic analysis revealed that AT-1 significantly modulated the expression of S100A8 and S100A9. Further investigations indicated that S100A9, rather than S100A8, mediated the expression of tight junction proteins, meanwhile, AT-1 reduces neutrophil activation and subsequent release of S100A9. Mechanistically, recombinant human S100A9 protein was found to induce a decrease in intracellular Ca2+ concentration, while AT-1 regulated the expression of tight junction proteins via modulation of the AMPK/mTOR signaling pathway. AT-1 enhances the recovery of DSS-induced intestinal barrier dysfunction by regulating the recombinant human S100A9 protein-mediated AMPK/mTOR signaling pathway. This study provides new insights into the pathogenesis of ulcerative colitis and suggests potential therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingjie Sun
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Keming Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Bao
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Xuzhou City Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Yuan
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Linhai He
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhihua Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kaidi Chen
- Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Li
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengli Yu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinan Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Meng L, Wang J, Chen H, Zhu J, Kong F, Chen G, Dong R, Zheng S. LncRNA MEG9 Promotes Inflammation and Liver Fibrosis Through S100A9 in Biliary Atresia. J Pediatr Surg 2025; 60:161633. [PMID: 39127593 DOI: 10.1016/j.jpedsurg.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The pathogenesis of biliary atresia (BA) remains elusive. We aimed to investigate the role of long noncoding RNA (lncRNA) MEG9 in BA. METHODS LncRNA microarray was conducted to identify differentially expressed lncRNAs in three BA and three para-hepatoblastoma liver tissues. RT-qPCR validated the results. Human intrahepatic bile duct epithelial cells (HIBECs) were stably transfected with lncRNA MEG9 knockdown/overexpression to investigate its cellular localization and function. RNA sequencing (RNA-seq), differentially expressed genes (DEGs) analysis and gene set enrichment analysis were applied to MEG9-overexpresed HIBECs. RNA pull-down and mass spectrometry explored the interacting protein of MEG9, while clinical information was reviewed. RESULTS 436 differentially expressed lncRNAs were identified, with MEG9 highly upregulated in BA. RT-qPCR further confirmed MEG9's overexpression in BA and diagnostic potential (AUC = 0.9691). MEG9 was predominantly located in the nucleus and significantly promoted cell proliferation and migration. RNA-seq revealed inflammation- and extracellular matrix-related pathways enriched in MEG9-overexpressing HIBECs, with upregulated cytokine genes like CXCL6 and IL6. MMP-7 and collagen I were also overexpressed. Furthermore, 38 proteins were identified to specifically interact with MEG9, and S100A9 was highly expressed in cell models. S100A9 was also significantly upregulated in BA liver tissue and correlated with MEG9 expression (r = 0.313, p < 0.05), albumin level (r = -0.349, p < 0.05), and platelet level (r = -0.324, p < 0.05). CONCLUSION MEG9 influences cholangiocyte proliferation, migration, and cytokine production, potentially regulating BA inflammation and fibrosis via S100A9 interaction.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Junfeng Wang
- Department of Pediatric Orthopedics, Children's Hospital of Fudan University, Shanghai, China
| | - Huifen Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Jiajie Zhu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Fanyang Kong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China.
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China.
| |
Collapse
|
4
|
Van Linthout S. Shared Mechanisms in Cancer and Cardiovascular Disease: S100A8/9 and the NLRP3 Inflammasome: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024:S2666-0873(24)00370-3. [PMID: 40260700 DOI: 10.1016/j.jaccao.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 04/24/2025] Open
Abstract
Inflammation and a dysregulated immune system are common denominators in cancer and cardiovascular disease (CVD). The Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS) highlighted the convergence of interleukin (IL)-1β biology in cancer and CVD, and the potential of anti-IL-1β drugs for the treatment of both disease entities. Accumulating evidence further supports the role of the innate immunity members and IL-1β activators, S100A8/9 and the NLRP3 inflammasome, in both cancer and CVD. This review outlines the common involvement of S100A8/9 and the NLRP3 inflammasome, in cancer and CVD. Specifically, their time-, cell-, and context-dependent actions and hereto-related dichotomous role in different cancers and CVD are addressed, highlighting the need for further insights to allow tailored therapies.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Kneuer JM, Grajek IA, Winkler M, Erbe S, Meinecke T, Weiss R, Garfias-Veitl T, Sheikh BN, König AC, Möbius-Winkler MN, Kogel A, Kresoja KP, Rosch S, Kokot KE, Filipova V, Gaul S, Thiele H, Lurz P, von Haehling S, Speer T, Laufs U, Boeckel JN. Novel Long Noncoding RNA HEAT4 Affects Monocyte Subtypes, Reducing Inflammation and Promoting Vascular Healing. Circulation 2024; 150:1101-1120. [PMID: 39005211 PMCID: PMC11444369 DOI: 10.1161/circulationaha.124.069315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.
Collapse
Affiliation(s)
- Jasmin M. Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ignacy A. Grajek
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Melanie Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Tim Meinecke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ronald Weiss
- Institute of Clinical Immunology, University of Leipzig, Germany (R.W.)
| | - Tania Garfias-Veitl
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Bilal N. Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany (B.N.S.)
| | - Ann-Christine König
- German Research Center for Environmental Health (GmbH), Metabolomics and Proteomics Core, Helmholtz Zentrum München, Germany (A.-C.K.)
| | - Maximilian N. Möbius-Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Karl-Patrik Kresoja
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Sebastian Rosch
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Karoline E. Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Vanina Filipova
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Holger Thiele
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
| | - Philipp Lurz
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Thimoteus Speer
- Medizinische Klinik 4: Nephrologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany (T.S.)
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University, Frankfurt, Germany (T.S.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| |
Collapse
|
6
|
Sala-Hamrick KE, Tapaswi A, Polemi KM, Nguyen VK, Colacino JA. High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47002. [PMID: 38568856 PMCID: PMC10990114 DOI: 10.1289/ehp12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND There is a suite of chemicals, including metals, pesticides, and personal care product compounds, which are commonly detected at high levels in US Center for Disease Control's National Health and Nutrition Examination Survey (NHANES) chemical biomarker screens. Whether these chemicals influence development of breast cancer is not well understood. OBJECTIVES The objectives were to perform an unbiased concentration-dependent assessment of these chemicals, to quantify differences in cancer-specific genes and pathways, to describe if these differences occur at human population-relevant concentrations, and to specifically test for differences in markers of stemness and cellular plasticity. METHODS We treated nontumorigenic mammary epithelial cells, MCF10A, with 21 chemicals at four concentrations (25 nM , 250 nM , 2.5 μ M , and 25 μ M ) for 48 h. We conducted RNA-sequencing for these 408 samples, adapting the plexWell plate-based RNA-sequencing method to analyze differences in gene expression. We calculated gene and biological pathway-specific benchmark concentrations (BMCs) using BMDExpress3, identifying differentially expressed genes and generating the best fit benchmark concentration models for each chemical across all genes. We identified enriched biological processes and pathways for each chemical and tested whether chemical exposures change predicted cell type distributions. We contextualized benchmark concentrations relative to human population biomarker concentrations in NHANES. RESULTS We detected chemical concentration-dependent differences in gene expression for thousands of genes. Enrichment and cell type distribution analyses showed benchmark concentration responses correlated with differences in breast cancer-related pathways, including induction of basal-like characteristics for some chemicals, including arsenic, lead, copper, and methyl paraben. Comparison of benchmark data to NHANES chemical biomarker (urine or blood) concentrations indicated an overlap between exposure levels and levels sufficient to cause a gene expression response. DISCUSSION These analyses revealed that many of these 21 chemicals resulted in differences in genes and pathways involved in breast cancer in vitro at human exposure-relevant concentrations. https://doi.org/10.1289/EHP12886.
Collapse
Affiliation(s)
| | - Anagha Tapaswi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M. Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Vy K. Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in the Environment, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Tu X, Chen L, Zheng Y, Mu C, Zhang Z, Wang F, Ren Y, Duan Y, Zhang H, Tong Z, Liu L, Sun X, Zhao P, Wang L, Feng X, Fang W, Liu X. S100A9 +CD14 + monocytes contribute to anti-PD-1 immunotherapy resistance in advanced hepatocellular carcinoma by attenuating T cell-mediated antitumor function. J Exp Clin Cancer Res 2024; 43:72. [PMID: 38454445 PMCID: PMC10921725 DOI: 10.1186/s13046-024-02985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The paucity of reliable biomarkers for predicting immunotherapy efficacy in patients with advanced hepatocellular carcinoma (HCC) has emerged as a burgeoning concern with the expanding use of immunotherapy. This study endeavors to delve into the potential peripheral biomarkers capable of prognosticating efficacy in HCC patients who are poised to receive anti-PD-1 monotherapy within the phase III clinical trial, KEYNOTE394. Additionally, we sought to elucidate the underlying molecular mechanisms for resistance to immune checkpoint blockade (ICB) and propose innovative combination immunotherapy strategies for future clinical application. METHODS Patient blood samples were collected for single-cell RNA sequencing to evaluate the immune cell signature before receiving ICB therapy. Subsequently, in vitro assays and in vivo murine model experiments were conducted to validate the mechanism that S100A9+CD14+ monocytes play a role in ICB resistance. RESULTS Our study demonstrates a notable enrichment of S100A9+CD14+ monocytes in the peripheral blood of patients exhibiting suboptimal responses to anti-PD-1 therapy. Moreover, we identified the Mono_S100A9 signature as a predictive biomarker, indicative of reduced efficacy in immunotherapy and decreased survival benefits across various tumor types. Mechanistically, S100A9 activates PD-L1 transcription by directly binding to the CD274 (PD-L1) gene promoter, thereby suppressing T-cell proliferation and cytotoxicity via the PD-1/PD-L1 axis, consequently diminishing the therapeutic effectiveness of subsequent anti-PD-1 treatments. Furthermore, our in vivo studies revealed that inhibiting S100A9 can synergistically enhance the efficacy of anti-PD-1 drugs in the eradication of hepatocellular carcinoma. CONCLUSIONS Our study underscores the significance of S100A9+CD14+ monocytes in predicting inadequate response to ICB treatment and provides insights into the monocyte cell-intrinsic mechanisms of resistance to ICB therapy. We also propose a combined therapeutic approach to enhance ICB efficacy by targeting S100A9.
Collapse
Affiliation(s)
- Xiaoxuan Tu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Longxian Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Chenglin Mu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
| | - Zhiwei Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Feiyu Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yiqing Ren
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Yingxin Duan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hangyu Zhang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lulu Liu
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Xunqi Sun
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Lie Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, People's Republic of China
| | - Xinhua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, 321000, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
8
|
Fan R, Satilmis H, Vandewalle N, Verheye E, De Bruyne E, Menu E, De Beule N, De Becker A, Ates G, Massie A, Kerre T, Törngren M, Eriksson H, Vanderkerken K, Breckpot K, Maes K, De Veirman K. Targeting S100A9 protein affects mTOR-ER stress signaling and increases venetoclax sensitivity in Acute Myeloid Leukemia. Blood Cancer J 2023; 13:188. [PMID: 38110349 PMCID: PMC10728073 DOI: 10.1038/s41408-023-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.
Collapse
Affiliation(s)
- Rong Fan
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Hatice Satilmis
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Niels Vandewalle
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Emma Verheye
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elke De Bruyne
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Eline Menu
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Ann De Becker
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Gamze Ates
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium
| | - Marie Törngren
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Helena Eriksson
- Active Biotech AB, Lund, Sweden. Scheelevägen 22, 22363, Lund, Sweden
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, 1090, Brussel, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Building D, 1090, Brussel, Belgium.
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium. Laarbeeklaan 101, 1090, Brussel, Belgium.
| |
Collapse
|
9
|
Zhang X, Niu M, Li T, Wu Y, Gao J, Yi M, Wu K. S100A8/A9 as a risk factor for breast cancer negatively regulated by DACH1. Biomark Res 2023; 11:106. [PMID: 38093319 PMCID: PMC10720252 DOI: 10.1186/s40364-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND S100A8 and S100A9 are members of Ca2+-binding EF-hand superfamily, mainly expressed by macrophages and neutrophils. Limited by the poor stability of homodimers, they commonly exist as heterodimers. Beyond acting as antibacterial cytokines, S100A8/A9 is also associated with metabolic and autoimmune diseases such as obesity, diabetes, and rheumatoid arthritis. While the involvement of S100A8/A9 in breast cancer development has been documented, its prognostic significance and the precise regulatory mechanisms remain unclear. METHODS S100A8/A9 protein in breast cancer samples was evaluated by immunohistochemistry staining with tumor tissue microarrays. The serum S100A8 concentration in patients was measured by enzyme-linked immunosorbent assay (ELISA). The S100A8 secreted by breast cancer cells was detected by ELISA as well. Pooled analyses were conducted to explore the relationships between S100A8/A9 mRNA level and clinicopathological features of breast cancer patients. Besides, the effects of S100A8/A9 and DACH1 on patient outcomes were analyzed by tissue assays. Finally, xenograft tumor assays were adopted to validate the effects of DACH1 on tumor growth and S100A8/A9 expression. RESULTS The level of S100A8/A9 was higher in breast cancer, relative to normal tissue. Increased S100A8/A9 was related to poor differentiation grade, loss of hormone receptors, and Her2 positive. Moreover, elevated S100A8/A9 predicted a worse prognosis for breast cancer patients. Meanwhile, serum S100A8 concentration was upregulated in Grade 3, basal-like, and Her2-overexpressed subtypes. Additionally, the results of public databases showed S100A8/A9 mRNA level was negatively correlated to DACH1. Stable overexpressing DACH1 in breast cancer cells significantly decreased the generation of S100A8. The survival analysis demonstrated that patients with high S100A8/A9 and low DACH1 achieved the shortest overall survival. The xenograft models indicated that DACH1 expression significantly retarded tumor growth and downregulated S100A8/A9 protein abundance. CONCLUSION S100A8/A9 is remarkedly increased in basal-like and Her2-overexpressed subtypes, predicting poor prognosis of breast cancer patients. Tumor suppressor DACH1 inhibits S100A8/A9 expression. The combination of S100A8/A9 and DACH1 predicted the overall survival of breast cancer patients more preciously.
Collapse
Affiliation(s)
- Xiaojun Zhang
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinnan Gao
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Kongming Wu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Jin L, Chen Y, Muzaffar S, Li C, Mier-Aguilar CA, Khan J, Kashyap MP, Liu S, Srivastava R, Deshane JS, Townes TM, Elewski BE, Elmets CA, Crossman DK, Raman C, Athar M. Epigenetic switch reshapes epithelial progenitor cell signatures and drives inflammatory pathogenesis in hidradenitis suppurativa. Proc Natl Acad Sci U S A 2023; 120:e2315096120. [PMID: 38011564 PMCID: PMC10710069 DOI: 10.1073/pnas.2315096120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a complex inflammatory skin disease with undefined mechanistic underpinnings. Here, we investigated HS epithelial cells and demonstrated that HS basal progenitors modulate their lineage restriction and give rise to pathogenic keratinocyte clones, resulting in epidermal hyperproliferation and dysregulated inflammation in HS. When comparing to healthy epithelial stem/progenitor cells, in HS, we identified changes in gene signatures that revolve around the mitotic cell cycle, DNA damage response and repair, as well as cell-cell adhesion and chromatin remodeling. By reconstructing cell differentiation trajectory and CellChat modeling, we identified a keratinocyte population specific to HS. This population is marked by S100A7/8/9 and KRT6 family members, triggering IL1, IL10, and complement inflammatory cascades. These signals, along with HS-specific proinflammatory cytokines and chemokines, contribute to the recruitment of certain immune cells during the disease progression. Furthermore, we revealed a previously uncharacterized role of S100A8 in regulating the local chromatin environment of target loci in HS keratinocytes. Through the integration of genomic and epigenomic datasets, we identified genome-wide chromatin rewiring alongside the switch of transcription factors (TFs), which mediated HS transcriptional profiles. Importantly, we identified numerous clinically relevant inflammatory enhancers and their coordinated TFs in HS basal CD49fhigh cells. The disruption of the S100A enhancer using the CRISPR/Cas9-mediated approach or the pharmacological inhibition of the interferon regulatory transcription factor 3 (IRF3) efficiently reduced the production of HS-associated inflammatory regulators. Our study not only uncovers the plasticity of epidermal progenitor cells in HS but also elucidates the epigenetic mechanisms underlying HS pathogenesis.
Collapse
Affiliation(s)
- Lin Jin
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Suhail Muzaffar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chao Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Carlos A. Mier-Aguilar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Jasim Khan
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Mahendra P. Kashyap
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Shanrun Liu
- Institutional Research Core Program, Flow Cytometry and Singe Cell Core, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Ritesh Srivastava
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Boni E. Elewski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Craig A. Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL35294
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
| | - Mohammad Athar
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL35294
- Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL35294
| |
Collapse
|
11
|
Chatterjee P, Banerjee S. Unveiling the mechanistic role of the Aryl hydrocarbon receptor in environmentally induced Breast cancer. Biochem Pharmacol 2023; 218:115866. [PMID: 37863327 DOI: 10.1016/j.bcp.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.
Collapse
Affiliation(s)
- Prarthana Chatterjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A 2023; 120:e2221859120. [PMID: 37844250 PMCID: PMC10614828 DOI: 10.1073/pnas.2221859120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023] Open
Abstract
Metastatic cancer accounts for 90% of all cancer-related deaths and continues to be one of the toughest challenges in cancer treatment. A growing body of data indicates that S100A9, a major regulator of inflammation, plays a central role in cancer progression and metastasis, particularly in the lungs, where S100A9 forms a premetastatic niche. Thus, we developed a vaccine against S100A9 derived from plant viruses and virus-like particles. Using multiple tumor mouse models, we demonstrate the effectiveness of the S100A9 vaccine candidates in preventing tumor seeding within the lungs and outgrowth of metastatic disease. The elicited antibodies showed high specificity toward S100A9 without cross-reactivity toward S100A8, another member of the S100A family. When tested in metastatic mouse models of breast cancer and melanoma, the vaccines significantly reduced lung tumor nodules after intravenous challenge or postsurgical removal of the primary tumor. Mechanistically, the vaccines reduce the levels of S100A9 within the lungs and sera, thereby increasing the expression of immunostimulatory cytokines with antitumor function [(interleukin) IL-12 and interferonγ] while reducing levels of immunosuppressive cytokines (IL-10 and transforming growth factorβ). This also correlated with decreased myeloid-derived suppressor cell populations within the lungs. This work has wide-ranging impact, as S100A9 is overexpressed in multiple cancers and linked with poor prognosis in cancer patients. The data presented lay the foundation for the development of therapies and vaccines targeting S100A9 to prevent metastasis.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
| | | | | | - Eunkyeong Jung
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Zhongchao Zhao
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
| | - Nicole F. Steinmetz
- Department of Bioengineering, University of California, San Diego, CA92093
- Moores Cancer Center, University of California, San Diego, CA92093
- Department of NanoEngineering, University of California, San Diego, CA92093
- Department of Radiology, University of California, San Diego, CA92093
- Institute for Materials Discovery and Design, University of California, San Diego, CA92093
- Center for Nano-ImmunoEngineering, University of California, San Diego, CA92093
- Center for Engineering in Cancer, University of California, San Diego, CA92093
| |
Collapse
|
13
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
14
|
Mori S, Ishii Y, Takeuchi T, Kukimoto I. Nuclear proinflammatory cytokine S100A9 enhances expression of human papillomavirus oncogenes via transcription factor TEAD1. J Virol 2023; 97:e0081523. [PMID: 37578237 PMCID: PMC10506480 DOI: 10.1128/jvi.00815-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription of the human papillomavirus (HPV) oncogenes, E6 and E7, is regulated by the long control region (LCR) of the viral genome. Although various transcription factors have been reported to bind to the LCR, little is known about the transcriptional cofactors that modulate HPV oncogene expression in association with these transcription factors. Here, we performed in vitro DNA-pulldown purification of nuclear proteins in cervical cancer cells, followed by proteomic analyses to identify transcriptional cofactors that bind to the HPV16 LCR via the transcription factor TEAD1. We detected the proinflammatory cytokine S100A9 that localized to the nucleus of cervical cancer cells and associated with the LCR via direct interaction with TEAD1. Nuclear S100A9 levels and its association with the LCR were increased in cervical cancer cells by treatment with a proinflammatory phorbol ester. Knockdown of S100A9 decreased HPV oncogene expression and reduced the growth of cervical cancer cells and their susceptibility to cisplatin, whereas forced nuclear expression of S100A9 using nuclear localization signals exerted opposite effects. Thus, we conclude that nuclear S100A9 binds to the HPV LCR via TEAD1 and enhances viral oncogene expression by acting as a transcriptional coactivator. IMPORTANCE Human papillomavirus (HPV) infection is the primary cause of cervical cancer, and the viral oncogenes E6 and E7 play crucial roles in carcinogenesis. Although cervical inflammation contributes to the development of cervical cancer, the molecular mechanisms underlying the role of these inflammatory responses in HPV carcinogenesis are not fully understood. Our study shows that S100A9, a proinflammatory cytokine, is induced in the nucleus of cervical cancer cells by inflammatory stimuli, and it enhances HPV oncogene expression by acting as a transcriptional coactivator of TEAD1. These findings provide new molecular insights into the relationship between inflammation and viral carcinogenesis.
Collapse
Affiliation(s)
- Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
15
|
Razmkhah F, Kim S, Lim S, Dania AJ, Choi J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. Int J Mol Sci 2023; 24:13382. [PMID: 37686186 PMCID: PMC10488294 DOI: 10.3390/ijms241713382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (F.R.); (S.K.); (S.L.); (A.-J.D.)
| |
Collapse
|
16
|
Børkja MLB, Giambelluca MS, Ytterhus B, Prestvik WS, Bjørkøy G, Bofin AM. S100A8 gene copy number and protein expression in breast cancer: associations with proliferation, histopathological grade and molecular subtypes. Breast Cancer Res Treat 2023:10.1007/s10549-023-07019-6. [PMID: 37450087 PMCID: PMC10361851 DOI: 10.1007/s10549-023-07019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Amplification of S100A8 occurs in 10-30% of all breast cancers and has been linked to poorer prognosis. Similarly, the protein S100A8 is overexpressed in a roughly comparable proportion of breast cancers and is also found in infiltrating myeloid-lineage cells, again linked to poorer prognosis. We explore the relationship between these findings. METHODS We examined S100A8 copy number (CN) alterations using fluorescence in situ hybridization in 475 primary breast cancers and 117 corresponding lymph nodes. In addition, we studied S100A8 protein expression using immunohistochemistry in 498 primary breast cancers from the same cohort. RESULTS We found increased S100A8 CN (≥ 4) in tumor epithelial cells in 20% of the tumors, increased S100A8 protein expression in 15%, and ≥ 10 infiltrating S100A8 + polymorphonuclear cells in 19%. Both increased S100A8 CN and protein expression in cancer cells were associated with high Ki67 status, high mitotic count and high histopathological grade. We observed no association between increased S100A8 CN and S100A8 protein expression, and only a weak association (p = 0.09) between increased CN and number of infiltrating S100A8 + immune cells. Only S100A8 protein expression in cancer cells was associated with significantly worse prognosis. CONCLUSIONS Amplification of S100A8 does not appear to be associated with S100A8 protein expression in breast cancer. S100A8 protein expression in tumor epithelial cells identifies a subgroup of predominantly non-luminal tumors with a high mean age at diagnosis and significantly worse prognosis. Finally, S100A8 alone is not a sufficient marker to identify infiltrating immune cells linked to worse prognosis.
Collapse
Affiliation(s)
- Mathieu Le Boulvais Børkja
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Miriam S Giambelluca
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche S Prestvik
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bjørkøy
- Centre of Molecular Inflammation Research (CEMIR), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biomedical Laboraxtory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Science Centre Nordland, Midtre gate 1, Mo i Rana, 8624, Norway
| | - Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
17
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
18
|
Mizutani T, Ano T, Yoshioka Y, Mizuta S, Takemoto K, Ouchi Y, Morita D, Kitano S, Miyachi H, Tsuruyama T, Fujiwara N, Sugita M. Neutrophil S100A9 supports M2 macrophage niche formation in granulomas. iScience 2023; 26:106081. [PMID: 36843852 PMCID: PMC9947307 DOI: 10.1016/j.isci.2023.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/02/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Mycobacterium infection gives rise to granulomas predominantly composed of inflammatory M1-like macrophages, with bacteria-permissive M2 macrophages also detected in deep granulomas. Our histological analysis of Mycobacterium bovis bacillus Calmette-Guerin-elicited granulomas in guinea pigs revealed that S100A9-expressing neutrophils bordered a unique M2 niche within the inner circle of concentrically multilayered granulomas. We evaluated the effect of S100A9 on macrophage M2 polarization based on guinea pig studies. S100A9-deficient mouse neutrophils abrogated M2 polarization, which was critically dependent on COX-2 signaling in neutrophils. Mechanistic evidence suggested that nuclear S100A9 interacts with C/EBPβ, which cooperatively activates the Cox-2 promoter and amplifies prostaglandin E2 production, followed by M2 polarization in proximal macrophages. Because the M2 populations in guinea pig granulomas were abolished via treatment with celecoxib, a selective COX-2 inhibitor, we propose the S100A9/Cox-2 axis as a major pathway driving M2 niche formation in granulomas.
Collapse
Affiliation(s)
- Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan,Corresponding author
| | - Toshiaki Ano
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuya Yoshioka
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keiko Takemoto
- Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Ouchi
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan,Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
20
|
Sweeney C, Lazennec G, Vogel CFA. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol 2022; 13:1095289. [PMID: 36588678 PMCID: PMC9797527 DOI: 10.3389/fphar.2022.1095289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to chemicals including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins (PCDDs) can lead to severe adverse health effects and increase the risk of breast cancer. This review considers several mechanisms which link the tumor promoting effects of environmental pollutants with the AhR signaling pathway, contributing to the development and progression of breast cancer. We explore AhR's function in shaping the tumor microenvironment, modifying immune tolerance, and regulating cancer stemness, driving breast cancer chemoresistance and metastasis. The complexity of AhR, with evidence for both oncogenic and tumor suppressor roles is discussed. We propose that AhR functions as a "molecular bridge", linking disproportionate toxin exposure and policies which underlie environmental injustice with tumor cell behaviors which drive poor patient outcomes.
Collapse
Affiliation(s)
- Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Gwendal Lazennec
- Centre National de la Recherche Scientifique, SYS2DIAG-ALCEN, Cap Delta, Montpellier, France
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| |
Collapse
|
21
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
22
|
Zhang J, Wu X, Wei S, Liu C, Wang X, Dong W. Identified potential biomarkers may predict primary nonresponse to infliximab in patients with ulcerative colitis. Autoimmunity 2022; 55:538-548. [PMID: 35876170 DOI: 10.1080/08916934.2022.2103803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Adame-Garcia SR, Arang N, Lubrano S, De Francesco EM, Belfiore A, Gutkind JS, Maggiolini M. Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:193. [PMID: 35655319 PMCID: PMC9164429 DOI: 10.1186/s13046-022-02396-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the intricate signaling network involved in triple-negative breast cancer (TNBC) represents a challenge for developing novel therapeutic approaches. Here, we aim to provide novel mechanistic insights on the function of the S100A8/A9-RAGE system in TNBC. METHODS TNM plot analyzer, Kaplan-Meier plotter, Meta-analysis, GEPIA2 and GOBO publicly available datasets were used to evaluate the clinical significance of S100A8/A9 and expression levels of S100A8/A9, RAGE and Filamin family members in breast cancer (BC) subtypes. METABRIC database and Cox proportional hazard model defined the clinical impact of high RAGE expression in BC patients. Multiple bioinformatics programs identified the main enriched pathways within high RAGE expression BC cohorts. By lentiviral system, TNBC cells were engineered to overexpress RAGE. Western blotting, immunofluorescence, nucleus/cytoplasm fractionation, qRT-PCR, gene silencing and luciferase experiments were performed to identify signal transduction mediators engaged by RAGE upon stimulation with S100A8/A9 in TNBC cells. Proliferation, colony formation and transwell migration assays were carried out to evaluate the growth and migratory capacity of TNBC cells. Statistical analysis was performed by ANOVA and independent t-tests. RESULTS We found a remarkable high expression of S100A8 and S100A9 in BC, particularly in HER2-positive and TNBC, with the latter associated to worst clinical outcomes. In addition, high RAGE expression correlated with a poor overall survival in BC. Next, we determined that the S100A8/A9-RAGE system triggers FAK activation by engaging a cytoskeleton mechanosensing complex in TNBC cells. Through bioinformatics analysis, we identified the Hippo pathway as the most enriched in BC patients expressing high RAGE levels. In accordance with these data, we demonstrated the involvement of S100A8/A9-RAGE-FAK signaling in the control of Hippo/YAP activities, and we established the crucial contribution of RAGE-FAK-YAP circuitry in the growth and migratory effects initiated by S100A8/A9 in TNBC cells. CONCLUSIONS The present study provides novel mechanistic insights on RAGE actions in TNBC. Moreover, our findings suggest that RAGE-FAK-YAP transduction pathway could be exploited as a druggable system halting the aggressive TNBC subtype.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
24
|
McMullen JRW, Soto U. Newly identified breast luminal progenitor and gestational stem cell populations likely give rise to HER2-overexpressing and basal-like breast cancers. Discov Oncol 2022; 13:38. [PMID: 35633393 PMCID: PMC9148339 DOI: 10.1007/s12672-022-00500-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
Breast Cancer (BrC) is a common malignancy with genetically diverse subtypes. There is evidence that specific BrC subtypes originate from particular normal mammary cell populations. However, the cell populations that give rise to most BrC subtypes are unidentified. Several human breast scRNAseq datasets are available. In this research, we utilized a robust human scRNAseq dataset to identify population-specific marker genes and then identified the expression of these marker genes in specific BrC subtypes. In humans, several BrC subtypes, HER2-enriched, basal-like, and triple-negative (TN), are more common in women who have had children. This observation suggests that cell populations that originate during pregnancy give rise to these BrCs. The current human datasets have few normal parous samples, so we supplemented this research with mouse datasets, which contain mammary cells from various developmental stages. This research identified two novel normal breast cell populations that may be the origin of the basal-like and HER2-overexpressing subtypes, respectively. A stem cell-like population, SC, that expresses gestation-specific genes has similar gene expression patterns to basal-like BrCs. A novel luminal progenitor cell population and HER2-overexpressing BrCs are marked by S100A7, S100A8, and S100A9 expression. We bolstered our findings by examining SC gene expression in TN BrC scRNAseq datasets and S100A7-A9 gene expression in BrC cell lines. We discovered that several potential cancer stem cell populations highly express most of the SC genes in TN BrCs and confirmed S100A8 and A9 overexpression in a HER2-overexpressing BrC cell line. In summary, normal SC and the novel luminal progenitor cell population likely give rise to basal-like and HER2-overexpressing BrCs, respectively. Characterizing these normal cell populations may facilitate a better understanding of specific BrCs subtypes.
Collapse
Affiliation(s)
- James R W McMullen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Ubaldo Soto
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
25
|
He L, Gao M, Pratt H, Weng Z, Struhl K. MafB, WDR77, and ß-catenin interact with each other and have similar genome association profiles. PLoS One 2022; 17:e0264799. [PMID: 35482762 PMCID: PMC9049301 DOI: 10.1371/journal.pone.0264799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
MafB (a bZIP transcription factor), ß-catenin (the ultimate target of the Wnt signal transduction pathway that acts as a transcriptional co-activator of LEF/TCF proteins), and WDR77 (a transcriptional co-activator of multiple hormone receptors) are important for breast cellular transformation. Unexpectedly, these proteins interact directly with each other, and they have similar genomic binding profiles. Furthermore, while some of these common target sites coincide with those bound by LEF/TCF, the majority are located just downstream of transcription initiation sites at a position near paused RNA polymerase (Pol II) and the +1 nucleosome. Occupancy levels of these factors at these promoter-proximal sites are strongly correlated with the level of paused Pol II and transcriptional activity.
Collapse
Affiliation(s)
- Lizhi He
- Dept. Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United states of America
| | - Mingshi Gao
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United states of America
| | - Henry Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United states of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United states of America
| | - Kevin Struhl
- Dept. Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United states of America
| |
Collapse
|
26
|
Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, Shakri AR, Zhong TJ, Scholze H, Lagos GG, Mela A, Manova-Todorova K, de Stanchina E, Ferrando AA, Mendelsohn C, Canoll P, Yu HA, Paik PK, Saqi A, Shu CA, Kris MG, Massague J, Acharyya S. Targeting S100A9-ALDH1A1-retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov 2022; 12:1002-1021. [PMID: 35078784 PMCID: PMC8983473 DOI: 10.1158/2159-8290.cd-21-0910] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib has significantly prolonged progression-free survival (PFS) in EGFR-mutant lung cancer patients, including those with brain metastases. However, despite striking initial responses, osimertinib-treated patients eventually develop lethal metastatic relapse, often to the brain. Although osimertinib-refractory brain relapse is a major clinical challenge, its underlying mechanisms remain poorly understood. Using metastatic models of EGFR-mutant lung cancer, we show that cancer cells expressing high intracellular S100A9 escape osimertinib and initiate brain relapses. Mechanistically, S100A9 upregulates ALDH1A1 expression and activates the retinoic acid (RA) signaling pathway in osimertinib-refractory cancer cells. We demonstrate that the genetic repression of S100A9, ALDH1A1, or RA receptors (RAR) in cancer cells, or treatment with a pan-RAR antagonist, dramatically reduces brain metastasis. Importantly, S100A9 expression in cancer cells correlates with poor PFS in osimertinib-treated patients. Our study therefore identifies a novel, therapeutically targetable S100A9-ALDH1A1-RA axis that drives brain relapse.
Collapse
Affiliation(s)
| | | | | | - Wanchao Ma
- Pathology and Cell Biology, Columbia University
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University Medical Center
| | - S Aidan Quinn
- Pediatric Oncology, Dana-Farber/Harvard Cancer Center
| | | | | | | | | | - Angeliki Mela
- Pathology and Cell Biology, Columbia University Medical Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Paul K Paik
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Anjali Saqi
- Pathology and Cell Biology, Columbia University
| | | | | | - Joan Massague
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
27
|
Nguyen YTM, Fujisawa M, Nguyen TB, Suehara Y, Sakamoto T, Matsuoka R, Abe Y, Fukumoto K, Hattori K, Noguchi M, Matsubara D, Chiba S, Sakata-Yanagimoto M. Tet2 deficiency in immune cells exacerbates tumor progression by increasing angiogenesis in a lung cancer model. Cancer Sci 2021; 112:4931-4943. [PMID: 34657351 PMCID: PMC8645781 DOI: 10.1111/cas.15165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Immune cells harboring somatic mutations reportedly infiltrate cancer tissues in patients with solid cancers and accompanying clonal hematopoiesis. Loss‐of‐function TET2 mutations are frequently observed in clonal hematopoiesis in solid cancers. Here, using a mouse lung cancer model, we evaluated the activity of Tet2‐deficient immune cells in tumor tissues. Myeloid‐specific Tet2 deficiency enhanced tumor growth in mice relative to that seen in controls. Single‐cell sequencing analysis of immune cells infiltrating tumors showed relatively high expression of S100a8/S100a9 in Tet2‐deficient myeloid subclusters. In turn, treatment with S100a8/S100a9 promoted Vegfa production by cancer cells, leading to a marked increase in the tumor vasculature in Tet2‐deficient mice relative to controls. Finally, treatment of Tet2‐deficient mice with an antibody against Emmprin, a known S100a8/S100a9 receptor, suppressed tumor growth. These data suggest that immune cells derived from TET2‐mutated clonal hematopoiesis exacerbate lung cancer progression by promoting tumor angiogenesis and may provide a novel therapeutic target for lung cancer patients with TET2‐mutated clonal hematopoiesis.
Collapse
Affiliation(s)
- Yen T M Nguyen
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Manabu Fujisawa
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tran B Nguyen
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Ryota Matsuoka
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Abe
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kota Fukumoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Keiichiro Hattori
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Matsubara
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| |
Collapse
|
28
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Zhang Y, Liu T, Yuan F, Garcia-Martinez L, Lee KD, Stransky S, Sidoli S, Verdun RE, Zhang Y, Wang Z, Morey L. The Polycomb protein RING1B enables estrogen-mediated gene expression by promoting enhancer-promoter interaction and R-loop formation. Nucleic Acids Res 2021; 49:9768-9782. [PMID: 34428304 PMCID: PMC8464076 DOI: 10.1093/nar/gkab723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Polycomb complexes have traditionally been prescribed roles as transcriptional repressors, though increasing evidence demonstrate they can also activate gene expression. However, the mechanisms underlying positive gene regulation mediated by Polycomb proteins are poorly understood. Here, we show that RING1B, a core component of Polycomb Repressive Complex 1, regulates enhancer-promoter interaction of the bona fide estrogen-activated GREB1 gene. Systematic characterization of RNA:DNA hybrid formation (R-loops), nascent transcription and RNA Pol II activity upon estrogen administration revealed a key role of RING1B in gene activation by regulating R-loop formation and RNA Pol II elongation. We also found that the estrogen receptor alpha (ERα) and RNA are both necessary for full RING1B recruitment to estrogen-activated genes. Notably, RING1B recruitment was mostly unaffected upon RNA Pol II depletion. Our findings delineate the functional interplay between RING1B, RNA and ERα to safeguard chromatin architecture perturbations required for estrogen-mediated gene regulation and highlight the crosstalk between steroid hormones and Polycomb proteins to regulate oncogenic programs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, 1365 Memorial Drive, P.O. Box 248154, Coral Gables, FL 33124, USA
| | - Fenghua Yuan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kyutae D Lee
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramiro E Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1365 Memorial Drive, P.O. Box 248154, Coral Gables, FL 33124, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9:707198. [PMID: 34336860 PMCID: PMC8317971 DOI: 10.3389/fcell.2021.707198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes function as major players in antigen-mediated cytotoxicity and have become powerful tools for exploiting the immune system in tumor elimination. Several types of T cell-based immunotherapies have been prescribed to cancer patients with durable immunological response. Such strategies include immune checkpoint inhibitors, adoptive T cell therapy, cancer vaccines, oncolytic virus, and modulatory cytokines. However, the majority of cancer patients still failed to take the advantage of these kinds of treatments. Currently, extensive attempts are being made to uncover the potential mechanism of immunotherapy resistance, and myeloid-derived suppressor cells (MDSCs) have been identified as one of vital interpretable factors. Here, we discuss the immunosuppressive mechanism of MDSCs and their contributions to failures of T cell-based immunotherapy. Additionally, we summarize combination therapies to ameliorate the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Bulk and single-cell transcriptome profiling reveal the metabolic heterogeneity in human breast cancers. Mol Ther 2021; 29:2350-2365. [PMID: 33677091 DOI: 10.1016/j.ymthe.2021.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
An emerging view regarding cancer metabolism is that it is heterogeneous and context-specific, but it remains to be elucidated in breast cancers. In this study, we characterized the energy-related metabolic features of breast cancers through integrative analyses of multiple datasets with genomics, transcriptomics, metabolomics, and single-cell transcriptome profiling. Energy-related metabolic signatures were used to stratify breast tumors into two prognostic clusters: cluster 1 exhibits high glycolytic activity and decreased survival rate, and the signatures of cluster 2 are enriched in fatty acid oxidation and glutaminolysis. The intertumoral metabolic heterogeneity was reflected by the clustering among three independent large cohorts, and the complexity was further verified at the metabolite level. In addition, we found that the metabolic status of malignant cells rather than that of nonmalignant cells is the major contributor at the single-cell resolution, and its interactions with factors derived from the tumor microenvironment are unanticipated. Notably, among various immune cells and their clusters with distinguishable metabolic features, those with immunosuppressive function presented higher metabolic activities. Collectively, we uncovered the heterogeneity in energy metabolism using a classifier with prognostic and therapeutic value. Single-cell transcriptome profiling provided novel metabolic insights that could ultimately tailor therapeutic strategies based on patient- or cell type-specific cancer metabolism.
Collapse
|