1
|
Melleu FF, Canteras NS. Neural Circuits of Fear and Anxiety: Insights from a Neuroethological Perspective. Physiology (Bethesda) 2025; 40:0. [PMID: 39661324 DOI: 10.1152/physiol.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
The predatory imminence continuum (PIC) of antipredator defensive behavior has been a helpful strategy for modeling anxiety and fear-related disorders in nonclinical research. The PIC is divided into three different sequential stages that reflect defensive behavioral strategy in response to predatory imminence. However, the PIC was experimentally addressed with a series of shock-based fear conditioning experiments rather than predatory threats. In this article, we consider the PIC in a more naturalistic behavioral setting, focusing on analyzing the neural systems of animals responding to terrestrial and aerial predators. Of relevance, there is a sequential engagement of the distinct neural circuits along each phase of the PIC. In the preencounter phase, prefrontal cortical networks are particularly involved in planning and organizing behavioral responses to ambiguous threats. As the predatory cues or the real predator is detected, there is an engagement of amygdalar and hippocampal > hypothalamic pathways in conjunction with the periaqueductal gray, which organize fear responses. This dynamic particularly reveals how specific neural circuits are set into action to subserve distinct defensive responses. Moreover, we further explore the neural circuits governing other fearful situations outside the context of the PIC, including agonistic social encounters and interoceptive challenges. This analysis reveals an interesting overlap between the neural systems responding to these threats and those involved in response to predatory threats. The present review clarifies how defensive circuits respond to natural threats and provides a more realistic view of the neural systems underlying anxiety and fear responses.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical SciencesUniversity of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Liu Y, Zhou ZX, Lv Q, Huang G, Zhang H, Wang YQ, Chen JG, Wang F. A superior colliculus-originating circuit prevents cocaine reinstatement via VR-based eye movement desensitization treatment. Natl Sci Rev 2025; 12:nwae467. [PMID: 40160681 PMCID: PMC11951104 DOI: 10.1093/nsr/nwae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/26/2024] [Indexed: 04/02/2025] Open
Abstract
While Virtual Reality (VR) technology shows promise in the management of substance use disorders, the development of an effective VR-based extinction procedure remains lacking. In this study, we developed a VR-based eye movement desensitization and reprocessing extinction training program tailored for mice. We found that this VR treatment during cocaine extinction prevents reinstatement by suppressing the hyperactivation of glutamatergic excitatory neurons in the intermediate layers of the superior colliculus (SCiCaMKIIα) during exposure to environmental cues. Additionally, SCiCaMKIIα neurons innervate tyrosine hydroxylase-positive neurons in the locus coeruleus (LCTH). Environmental cues trigger stronger phasic activation of LCTH neurons through this SCiCaMKIIα→LCTH projection, leading to increased dopamine release onto the dorsal CA3 (dCA3) region, thereby facilitating reinstatement. Furthermore, we demonstrate that VR treatment effectively inhibits the neural circuitry involving SCiCaMKIIα→LCTH→dCA3 in response to environmental cues, thus preventing cocaine reinstatement. Our findings suggest that VR treatment may represent a promising strategy for achieving drug abstinence.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Xiang Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guan Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye-Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Shizhen Laboratory, Wuhan 430030, China
| |
Collapse
|
3
|
Soya S, Toda K, Sakurai K, Cherasse Y, Saito YC, Abe M, Sakimura K, Sakurai T. Central amygdala NPBWR1 neurons facilitate social novelty seeking and new social interactions. SCIENCE ADVANCES 2025; 11:eadn1335. [PMID: 39813346 PMCID: PMC11734711 DOI: 10.1126/sciadv.adn1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeANpbwr1 neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeANpbwr1 neurons were activated during encounters with unfamiliar, but not with familiar, mice. Manipulations of CeANpbwr1 neurons showed that their excitation is essential for maintaining physical interactions with novel conspecifics. Activation of CeANpbwr1 neurons alleviated social deficits induced by chronic social defeat stress, suggesting therapeutic potential. Conversely, overexpression of human NPBWR1 in CeANpbwr1 neurons reduced activity of these neurons and impaired social interactions with unfamiliar mice. This effect was absent in a polymorphic variant of the human NPBWR1 gene (404A>T). These findings highlight how CeANpbwr1 neurons promote social novelty seeking and reveal a complex interplay between NPBWR1 genetic variations and social behavior.
Collapse
Affiliation(s)
- Shingo Soya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Toda
- Department of Psychology, Keio University, 2-15-45, Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Katsuyasu Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
| | - Yuki C. Saito
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Asahimachi, Chuoku, Niigata 951-8585 Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Asahimachi, Chuoku, Niigata 951-8585 Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Gong H, Lu Y, Deng SL, Lv KY, Luo J, Luo Y, Du ZL, Wu LF, Liu TY, Wang XQ, Zhao JH, Wang L, Xia ML, Zhu DM, Wang LW, Fan XT. Targeting S100A9 attenuates social dysfunction by modulating neuroinflammation and myelination in a mouse model of autism. Pharmacol Res 2025; 211:107568. [PMID: 39733843 DOI: 10.1016/j.phrs.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Growing evidence supports a role for dysregulated neuroinflammation in autism. However, the underlying mechanisms of microglia-evoked neuroinflammation in the development of autistic phenotypes have not been elucidated. This study aimed to investigate the role and underlying mechanisms of microglial S100 calcium-binding protein A9 (S100A9) in autistic phenotypes. We utilized the BTBR T + tf/J (BTBR) mouse, a reliable preclinical model for autism that displays core behavioral features of autism as well as persistent immune dysregulation. A combination of behavioral, pharmacological, immunological, genetic, molecular, and transcriptomics approaches were used to uncover the potential role of S100A9 in autism. Significant overexpression of microglial S100A9 was observed in the hippocampus of BTBR mice. BTBR mice displayed decreased social communication and increased repetitive behaviors compared to C57BL/6 mice. Interestingly, the above social dysfunction was attenuated by a pharmacological inhibitor of S100A9, accompanied by a significant reduction in the activated microglia morphological phenotype, inflammatory receptors, and proinflammatory cytokines. Notably, S100A9 inhibition decreased c-Fos+ cells and promoted myelination in the cornu ammonis 3 of BTBR mice. Furthermore, the promyelinating compound administration ameliorated the autism-relevant behaviors in BTBR mice. Our findings indicate that microglia-derived S100A9 triggers the neuroinflammation cascade, myelination deficits, and social dysfunction. Targeting S100A9 could, therefore, be a promising therapeutic strategy for neuroinflammation-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yao Lu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 22100, China
| | - Shi-Long Deng
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Nursing Department, The Affiliated Hospital of Southwest Medical University, Sichuan Province, Luzhou 646000, China
| | - Ke-Yi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhu-Lin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Ling-Feng Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Battalion 7 of the Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Tian-Yao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Xia-Qing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Jing-Hui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Mei-Ling Xia
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dong-Mei Zhu
- Department of Hospital Infection Control, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Hospital Infection Control, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou 221009, China; Department of Anesthesiology, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou 221009, China.
| | - Xiao-Tang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
5
|
Xing J, Li Y, Hu J, Gu L, Sun G, Li X. Lateral periaqueductal gray participate in the regulation of irritable bowel syndrome induced by chronic restraint stress. Neurobiol Dis 2025; 204:106758. [PMID: 39638155 DOI: 10.1016/j.nbd.2024.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder defined by recurrent abdominal pain, coupled with irregular bowel habits and alterations in the frequency as well as the consistency of stool. At present, IBS is considered as a disease of gut-brain interaction, and an increasing number of studies are focusing on the brain-gut axis. However, the brain regions associated with IBS have not been fully studied yet. In this study, we utilized the chronic restraint stress (CRS) model to evoke IBS-like symptoms in mice, which were accompanied by anxiety-like behaviors and hyperalgesia. Through cFOS staining, we observed the activation of the lateral periaqueductal gray (LPAG) in the mice after CRS. By inhibiting the activity of the LPAG through tetanus toxin or chemogenetics, we found that IBS-like symptoms could be relieved, whereas chemogenetic activation of the LPAG induced IBS-like symptoms. Finally, we utilized the classic analgesic drug sufentanil and found that it could alleviate CRS-induced IBS-like symptoms.
Collapse
Affiliation(s)
- Jiaotao Xing
- Department of Anorectal, Affiliated Nanhua Hospital, University of south China, Hengyang 421200, Hunan, China
| | - Ying Li
- Department of Anorectal, Affiliated Nanhua Hospital, University of south China, Hengyang 421200, Hunan, China
| | - Jiali Hu
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China
| | - Liyao Gu
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China
| | - Guanghua Sun
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang 421200, Hunan, China
| | - Xiangle Li
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China.
| |
Collapse
|
6
|
Seo K, Won S, Lee HY, Sin Y, Lee S, Park H, Kim YG, Yang SY, Kim DJ, Suk K, Koo JW, Baek M, Choi SY, Lee H. Astrocytic inhibition of lateral septal neurons promotes diverse stress responses. Nat Commun 2024; 15:10091. [PMID: 39572547 PMCID: PMC11582824 DOI: 10.1038/s41467-024-54376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Inhibitory neuronal circuits within the lateral septum (LS) play a key role in regulating mood and stress responses. Even though glial cells can modulate these circuits, the impact of astrocytes on LS neural circuits and their functional interactions remains largely unexplored. Here, we demonstrate that astrocytes exhibit increased intracellular Ca²⁺ levels in response to aversive sensory and social stimuli in both male and female mice. This astrocytic Ca²⁺ elevation inhibits neighboring LS neurons by reducing excitatory synaptic transmissions through A1R-mediated signaling in both the dorsal (LSd) and intermediate LS (LSi) and enhancing inhibitory synaptic transmission via A2AR-mediated signaling in the LSi. At the same time, astrocytes reduce inhibitory tone on distant LS neurons. In the LSd, astrocytes promote social avoidance and anxiety, as well as increased heart rate in socially stressed male mice. In contrast, astrocytes in the LSi contribute to elevated heart rate and heightened blood corticosterone levels in unstressed male mice. These results suggest that the dynamic interactions between astrocytes and neurons within the LS modulate physiological and behavioral responses to stressful experiences.
Collapse
Affiliation(s)
- Kain Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sanghyun Won
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hee-Yoon Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yeonju Sin
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sangho Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hyejin Park
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Yong Geon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Myungin Baek
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Hyosang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
7
|
Fallahi MS, Sahebekhtiari K, Hosseini H, Aliasin MM, Noroozi M, Moghadam Fard A, Aarabi MH, Gulisashvili D, Shafie M, Mayeli M. Distinct patterns of hippocampal subfield volumes predict coping strategies, emotion regulation, and impulsivity in healthy adults. Brain Imaging Behav 2024; 18:1100-1120. [PMID: 39103671 DOI: 10.1007/s11682-024-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Recent studies have suggested that the hippocampus (HC) is involved in cognitive and behavioral functions beyond memory. We aimed to investigate how the volume of each subfield of the HC is associated with distinct patterns of coping strategies, emotion regulation, and impulsivity in a healthy population. METHODS We studied a total of 218 healthy subjects using the Leipzig mind-brain-body dataset. Participants were assessed for coping strategies, emotion regulation, and impulsivity using the Cognitive Emotion Regulation Questionnaire (CERQ), Coping Orientations to Problems Experienced (COPE), Impulsive Behavior Scale (UPPS), and Behavioral Activation and Inhibition System (BAS/BIS). The associations between HC subfield volumes including CA1, CA2/3, CA4/DG, SR-SL-SM, and subiculum, and behavioral scores were examined using multiple linear regression models adjusted for possible confounders, including age, sex, years of education, handedness, total intracranial volume (ICV), and HC volume. RESULTS The use of emotional support, venting, and positive reframing coping strategies were significantly and positively correlated with total, total right, and total left HC volumes. Venting was significantly associated with CA1 after adjusting for age, sex, handedness, and education (P=0.001, B = 0.265, P-FDR = 0.005). No significant association was observed between CERQ subscales and HC subfield volumes after controlling for confounders and multiple analyses. However, sensation-seeking subscale of the UPPS-P was positively correlated with total and right CA2-CA3 volumes after adjustments for age, sex, handedness, ICV, and HC volumes (P=0.002, B = 0.266, P-FDR = 0.035). BAS and BIS subscales did not show significant relationship with HC subfield volumes. CONCLUSION Patterns of HC subfields volumes are associated with coping strategies, impulsivity, and emotion regulation. In particular, using emotional support, positive reframing, venting, and sensation seeking are significantly associated with certain HC subfield volumes. These findings suggest that the hippocampus may play a crucial role in modulating emotional responses and behavioral adaptations, offering potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mohammad Sadegh Fallahi
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kianoosh Sahebekhtiari
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Helia Hosseini
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aliasin
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Noroozi
- NeuroTRACT International Association, Tehran, Iran
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Atousa Moghadam Fard
- NeuroTRACT International Association, Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| | - David Gulisashvili
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahan Shafie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Mayeli
- NeuroTRACT International Association, Tehran, Iran.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Mușat MI, Cătălin B, Hadjiargyrou M, Popa-Wagner A, Greșiță A. Advancing Post-Stroke Depression Research: Insights from Murine Models and Behavioral Analyses. Life (Basel) 2024; 14:1110. [PMID: 39337894 PMCID: PMC11433193 DOI: 10.3390/life14091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Post-stroke depression (PSD) represents a significant neuropsychiatric complication that affects between 39% and 52% of stroke survivors, leading to impaired recovery, decreased quality of life, and increased mortality. This comprehensive review synthesizes our current knowledge of PSD, encompassing its epidemiology, risk factors, underlying neurochemical mechanisms, and the existing tools for preclinical investigation, including animal models and behavioral analyses. Despite the high prevalence and severe impact of PSD, challenges persist in accurately modeling its complex symptomatology in preclinical settings, underscoring the need for robust and valid animal models to better understand and treat PSD. This review also highlights the multidimensional nature of PSD, where both biological and psychosocial factors interplay to influence its onset and course. Further, we examine the efficacy and limitations of the current animal models in mimicking the human PSD condition, along with behavioral tests used to evaluate depressive-like behaviors in rodents. This review also sets a new precedent by integrating the latest findings across multidisciplinary studies, thereby offering a unique and comprehensive perspective of existing knowledge. Finally, the development of more sophisticated models that closely replicate the clinical features of PSD is crucial in order to advance translational research and facilitate the discovery of future effective therapies.
Collapse
Affiliation(s)
- Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Neurology, Vascular Neurology and Dementia, University of Medicine Essen, 45122 Essen, Germany
| | - Andrei Greșiță
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
9
|
Wang D, Zhao D, Wang W, Hu F, Cui M, Liu J, Meng F, Liu C, Qiu C, Liu D, Xu Z, Wang Y, Zhang Y, Li W, Li C. How do lateral septum projections to the ventral CA1 influence sociability? Neural Regen Res 2024; 19:1789-1801. [PMID: 38103246 PMCID: PMC10960288 DOI: 10.4103/1673-5374.389304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00033/figure1/v/2023-12-16T180322Z/r/image-tiff Social dysfunction is a risk factor for several neuropsychiatric illnesses. Previous studies have shown that the lateral septum (LS)-related pathway plays a critical role in mediating social behaviors. However, the role of the connections between the LS and its downstream brain regions in social behaviors remains unclear. In this study, we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1 (vCA1) influence sociability. Our results showed that gamma-aminobutyric acid (GABA)-ergic neurons were activated following social experience, and that social behaviors were enhanced by chemogenetic modulation of these neurons. Moreover, LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons, and regulating LSGABA→vCA1Glu neural projections affected social behaviors, which were impeded by suppressing LS-projecting vCA1 neuronal activity or inhibiting GABAA receptors in vCA1. These findings support the hypothesis that LS inputs to the vCA1 can control social preferences and social novelty behaviors. These findings provide new insights regarding the neural circuits that regulate sociability.
Collapse
Affiliation(s)
- Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fengai Hu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Minghu Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Changyun Qiu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Zhicheng Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yameng Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- College of Nursing, Binzhou Medical University, Binzhou, Shandong Province, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| |
Collapse
|
10
|
Zuo X, Zhang S, Bai H, Yu Q, Zhao Q, Sun M, Zhao X, Feng X. Effects of fluorene-9-bisphenol exposure on anxiety-like and social behavior in mice and protective potential of exogenous melatonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29385-29399. [PMID: 38573577 DOI: 10.1007/s11356-024-33148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is widely used in the manufacture of plastic products and potentially disrupts several physiological processes, but its biological effects on social behavior remain unknown. In this study, we investigated the effects of BHPF exposure on anxiety-like and social behavior in female mice and the potential mechanisms, thereby proposing a potential therapy strategy. We exposed female Balb/c mice to BHPF by oral gavage at different doses (0.5, 50 mg/kg bw/2-day) for 28 days, which were found BHPF (50 mg/kg) exposure affected motor activity in the open field test (OFT) and elevated cross maze (EPM), resulting in anxiety-like behaviors, as well as abnormal social behavioral deficits in the Social Interaction Test (SIT). Analysis of histopathological staining results showed that BHPF exposure caused damage to hippocampal neurons in the CA1/CA3/DG region and decreased Nissl pyramidal neurons in the CA1/CA3 regions of the hippocampus, as well as a decrease in parvalbumin neuron expression. In addition, BHPF exposure upregulated the expression of excitatory and inhibitory (E/I) vesicle transporter genes (Vglut1, Vglut2, VGAT, GAD67, Gabra) and axon growth gene (Dcc) in the mouse hippocampus. Interestingly, behavioral disturbances and E/I balance could be alleviated by exogenous melatonin (15 mg/kg bw/2-day) therapy. Our findings suggest that exogenous melatonin may be a potential therapy with protective potential for ameliorating or preventing BHPF-induced hippocampal neuronal damage and behavioral disturbances. This study provided new insight into the neurotoxicological effects on organisms exposed to endocrine-disrupting chemicals and aroused our vigilance in current environmental safety about chemical use.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qian Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China.
| |
Collapse
|
11
|
Zhang Q, Xue Y, Wei K, Wang H, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu F, Ding X, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303503. [PMID: 38155473 PMCID: PMC10933643 DOI: 10.1002/advs.202303503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Locus coeruleus (LC) dysfunction is involved in the pathophysiology of depression; however, the neural circuits and specific molecular mechanisms responsible for this dysfunction remain unclear. Here, it is shown that activation of tyrosine hydroxylase (TH) neurons in the LC alleviates depression-like behaviors in susceptible mice. The dorsolateral septum (dLS) is the most physiologically relevant output from the LC under stress. Stimulation of the LCTH -dLSSST innervation with optogenetic and chemogenetic tools bidirectionally can regulate depression-like behaviors in both male and female mice. Mechanistically, it is found that brain-derived neurotrophic factor (BDNF), but not norepinephrine, is required for the circuit to produce antidepressant-like effects. Genetic overexpression of BDNF in the circuit or supplementation with BDNF protein in the dLS is sufficient to produce antidepressant-like effects. Furthermore, viral knockdown of BDNF in this circuit abolishes the antidepressant-like effect of ketamine, but not fluoxetine. Collectively, these findings underscore the notable antidepressant-like role of the LCTH -dLSSST pathway in depression via BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Qian Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - You Xue
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ke Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hao Wang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuan Ma
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yao Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yi Fan
- Department of NeurologyAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjing210024China
| | - Lei Gao
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hang Yao
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Fangfang Wu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xin Ding
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Qingyu Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Jianhua Ding
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Yi Fan
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Ming Lu
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Gang Hu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
12
|
Guo B, Xi K, Mao H, Ren K, Xiao H, Hartley ND, Zhang Y, Kang J, Liu Y, Xie Y, Zhou Y, Zhu Y, Zhang X, Fu Z, Chen JF, Hu H, Wang W, Wu S. CB1R dysfunction of inhibitory synapses in the ACC drives chronic social isolation stress-induced social impairments in male mice. Neuron 2024; 112:441-457.e6. [PMID: 37992714 DOI: 10.1016/j.neuron.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Junjun Kang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yongsheng Zhou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyuan Zhu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xia Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research in the Department of Brain and Cognitive Sciences at MIT, Cambridge, MA 02139, USA
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hailan Hu
- School of Brain Science and Brain Medicine, New Cornerstone Science Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Cola RB, Roccaro-Waldmeyer DM, Naim S, Babalian A, Seebeck P, Alvarez-Bolado G, Celio MR. Chemo- and optogenetic activation of hypothalamic Foxb1-expressing neurons and their terminal endings in the rostral-dorsolateral PAG leads to tachypnea, bradycardia, and immobility. eLife 2024; 12:RP86737. [PMID: 38300670 PMCID: PMC10945554 DOI: 10.7554/elife.86737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Foxb1 -expressing neurons occur in the dorsal premammillary nucleus (PMd) and further rostrally in the parvafox nucleus, a longitudinal cluster of neurons in the lateral hypothalamus of rodents. The descending projection of these Foxb1+ neurons end in the dorsolateral part of the periaqueductal gray (dlPAG). The functional role of the Foxb1+ neuronal subpopulation in the PMd and the parvafox nucleus remains elusive. In this study, the activity of the Foxb1+ neurons and of their terminal endings in the dlPAG in mice was selectively altered by employing chemo- and optogenetic tools. Our results show that in whole-body barometric plethysmography, hM3Dq-mediated, global Foxb1+ neuron excitation activates respiration. Time-resolved optogenetic gain-of-function manipulation of the terminal endings of Foxb1+ neurons in the rostral third of the dlPAG leads to abrupt immobility and bradycardia. Chemogenetic activation of Foxb1+ cell bodies and ChR2-mediated excitation of their axonal endings in the dlPAG led to a phenotypical presentation congruent with a 'freezing-like' situation during innate defensive behavior.
Collapse
Affiliation(s)
- Reto B Cola
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Diana M Roccaro-Waldmeyer
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Samara Naim
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Alexandre Babalian
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| | - Petra Seebeck
- Zurich integrative Rodent Physiology (ZIRP), University of ZürichZürichSwitzerland
| | | | - Marco R Celio
- Anatomy and program in Neuroscience, Faculty of Science and Medicine, University of FribourgFribourgSwitzerland
| |
Collapse
|
14
|
de Almeida AP, Tamais AM, Zerbini C, Melleu FF, Canteras NS, Motta SC. Role of the rostral dorsomedial column of the periaqueductal gray during social defeat in rats. Ann N Y Acad Sci 2023; 1530:138-151. [PMID: 37818796 DOI: 10.1111/nyas.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.
Collapse
Affiliation(s)
- Alisson Pinto de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alicia Moraes Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Cristina Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Fricker BA, Ho D, Seifert AW, Kelly AM. Biased brain and behavioral responses towards kin in males of a communally breeding species. Sci Rep 2023; 13:17040. [PMID: 37813903 PMCID: PMC10562393 DOI: 10.1038/s41598-023-44257-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023] Open
Abstract
In complex social environments, individuals may interact with not only novel and familiar conspecifics but also kin and non-kin. The ability to distinguish between conspecific identities is crucial for most animals, yet how the brain processes conspecific type and how animals may alter behavior accordingly is not well known. We examined whether the communally breeding spiny mouse (Acomys cahirinus) responds differently to conspecifics that vary in novelty and kinship. In a group interaction test, we found that males can distinguish novel kin from novel non-kin, and preferentially spend time with novel kin over familiar kin and novel non-kin. To determine whether kinship and novelty status are differentially represented in the brain, we conducted immediate early gene tests, which revealed the dorsal, but not ventral, lateral septum differentially processes kinship. Neither region differentially processes social novelty. Further, males did not exhibit differences in prosocial behavior toward novel and familiar conspecifics but exhibited more prosocial behavior with novel kin than novel non-kin. These results suggest that communally breeding species may have evolved specialized neural circuitry to facilitate a bias to be more affiliative with kin, regardless of whether they are novel or familiar, potentially to promote prosocial behaviors, thereby facilitating group cohesion.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Deborah Ho
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY, 40506, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|