1
|
Ramadan W, Monir R, El-Emam O, Diab M, Shaheen D. Polymorphisms of PPARα and ACTN3 Among Adolescent Egyptian Athletes: A Case-Control Study. Life (Basel) 2025; 15:477. [PMID: 40141820 PMCID: PMC11943583 DOI: 10.3390/life15030477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Athletic performance is a complex phenotype affected by individual traits, environmental conditions, training, and genetics. The peroxisome proliferator-activated receptor-alpha (PPARα) and alpha-actinin-3 (ACTN3) are two genes with the potential to influence human performance. The objective of the present study was to assess the genotype frequencies of ACTN3 (R/X) and PPARα (G/C) and to conduct a comparison of these frequencies among Egyptian adolescent athletes. METHODS This case-control study involved 228 individuals (118 elite-level athletes and 110 sedentary controls). RESULTS This study identified a statistically significant increase in the frequencies of the ACTN3 'R' allele (77.5% compared to 55.9%; p < 0.001) and the PPARα 'C' allele (86.4% compared to 14.1%; p < 0.001) among athletes relative to the control groups. A similar pattern was noted for adolescent athletes in comparison to the control group in terms of both the R/R genotype (61.9% compared to 27.3%; p < 0.001) and the C/C genotype (80.5% compared to 2.7%; p < 0.001). In conclusion, these results imply that polymorphisms in ACTN3 and PPARα could be significant predictors for assessing the performance of adolescent Egyptian athletes.
Collapse
Affiliation(s)
- Wael Ramadan
- Department of Sports Training, Faculty of Physical Education, Mansoura University, Mansura 35516, Egypt;
| | - Rehan Monir
- Department of Medical Biochemistry, Faculty of Medicine, King Khalid University, Abha 62521, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| | - Ola El-Emam
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| | - Mohamed Diab
- Department of Sports Training, Faculty of Physical Education, Mansoura University, Mansura 35516, Egypt;
| | - Dalia Shaheen
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansura 35516, Egypt;
| |
Collapse
|
2
|
Ko H, Le TT, Nguyen NB, Kang SW, Cha KH, Yang N, Jung SH, Kim M. Poncirus trifoliata Extract and Its Active Coumarins Alleviate Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Protein Synthesis, Mitochondrial Biogenesis, and Gut Microbiota. Phytother Res 2025. [PMID: 40088055 DOI: 10.1002/ptr.8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, contributes to frailty and increased morbidity in the elderly. This necessitates the development of effective interventions to combat muscle atrophy. This study investigated the therapeutic potential of Poncirus trifoliata ethanol extract (PT) and its coumarin derivatives against dexamethasone (DEX)-induced muscle atrophy. We employed in vitro and in vivo models of DEX-induced muscle atrophy. C2C12 myotubes were used for mechanistic studies. C57BL/6J mice received DEX injections and oral PT supplementation (50 mg/kg/day) to evaluate effects on muscle mass, function, gene expression, and gut microbiota composition. In vitro, PT enhanced protein synthesis, mitochondrial biogenesis, and myogenic differentiation in DEX-exposed myotubes, with auraptene, ponciol, and triphasiol identified as key bioactive coumarins. In vivo, PT significantly attenuated DEX-induced muscle atrophy, increasing tibialis anterior muscle mass by 36% (p < 0.01), grip strength by 31% (p < 0.001), and maximal running speed by 18% (p < 0.05). Mechanistically, PT upregulated genes associated with muscle function and mitochondrial health. Furthermore, PT modulated gut microbiota composition, notably increasing Phocaeicola vulgatus abundance 2.2-fold, which correlated with improved muscle performance (R = 0.58, p < 0.01). These findings suggest that PT and its coumarin derivatives, particularly auraptene, ponciol, and triphasiol, hold promise as therapeutic agents for combating muscle atrophy. The observed benefits may be mediated through enhanced protein synthesis, improved mitochondrial function, and modulation of the gut-muscle axis.
Collapse
Affiliation(s)
- Hyejin Ko
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ngoc Bao Nguyen
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- College of Dentistry, Department of Biochemistry and Molecular Biology, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Suk Woo Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Nain Yang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
3
|
Ye M, Chao X, Ye C, Guo L, Fan Z, Ma X, Liu A, Liang W, Chen S, Fang C, Zhang X, Luo Q. EGR1 mRNA expression levels and polymorphisms are associated with slaughter performance in chickens. Poult Sci 2025; 104:104533. [PMID: 39603185 PMCID: PMC11635649 DOI: 10.1016/j.psj.2024.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
With the implementation of the policy of "centralized slaughtering and chilled to market" and the development of the livestock processing industry, numerous researchers have begun to focus on the selection and breeding of broilers bred for slaughter. The selection of breeds with excellent slaughtering performance and high meat production performance has become one of the most important selective breeding goals. In our previous study, we conducted transcriptome sequencing on chicken breast tissues with high and low breast muscle rates and found higher early growth response protein 1 (EGR1) expression in breast tissues with a low breast muscle ratio, thus hypothesizing that the EGR1 gene is involved in the growth and development process of chicken muscle tissues. Therefore, we analyzed the gene functions and polymorphisms of EGR1 to investigate its association with slaughter traits. We used various experimental methods, including RT-qPCR, Cell Counting Kit 8, 5-ethynyl-2'-deoxyuridine, western blot, flow cytometry, and immunofluorescence, to validate EGR1's role in chicken primary myoblasts. The results of our functional validation experiments indicate that EGR1 is highly expressed in breast tissues with a low breast muscle content and plays a key role in regulating of muscle growth and development by promoting proliferation and inhibiting the differentiation of chicken primary myoblasts. In addition, we explored the relationship between the EGR1 gene polymorphisms and slaughter traits using mixed linear models for the first time. In a population of Jiangfeng M3 lineage partridge chickens, we identified 4 EGR1 single-nucleotide polymorphisms, 2 of which were significantly associated with slaughter traits, including live weight, slaughter weight, semi-eviscerated weight, eviscerated weight, leg weight, wing weight, and breast muscle rate. In summary, ectopic expression of EGR1 promotes the proliferation and differentiation of chicken primary myoblasts. In addition, polymorphisms in EGR1 were associated with slaughter performance, providing a potential basis for further utilization of EGR1 as a breeding marker.
Collapse
Affiliation(s)
- Mao Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Lijin Guo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xuerong Ma
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Aijun Liu
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Weiming Liang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Shuya Chen
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, PR China; State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, PR China.
| |
Collapse
|
4
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
5
|
Lamia SN, Davis CS, Macpherson PCD, Willingham TB, Zhang Y, Liu C, Iannucci L, Ganji E, Harden D, Bhattacharya I, Abraham AC, Brooks SV, Glancy B, Killian ML. Overexpression of enhanced yellow fluorescent protein fused with Channelrhodopsin-2 causes contractile dysfunction in skeletal muscle. FASEB J 2024; 38:e70185. [PMID: 39584396 PMCID: PMC11586894 DOI: 10.1096/fj.202401664rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2-EYFP (ChR2-EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2-EYFP skeletal muscle and introduced the ChR2-only mouse model that expresses light-responsive ChR2 without the fluorescent EYFP in their skeletal muscles. We found a significant reduction in the contractile ability of ChR2-EYFP muscles compared with ChR2-only and WT mice, observed under both electrical and optogenetic stimulation paradigms. Bulk RNAseq identified the downregulation of genes associated with transmembrane transport and metabolism in ChR2-EYFP muscle, while the ChR2-only muscle did not demonstrate any notable deviations from WT muscle. The RNAseq results were further corroborated by a reduced protein-level expression of ion channel-related HCN2 in ChR2-EYFP muscles and gluconeogenesis-modulating FBP2 in both ChR2-EYFP and ChR2-only muscles. Overall, this study reveals an intrinsic skeletal dysfunction in the widely used ChR2-EYFP mice model and underscores the importance of considering alternative optogenetic models, such as the ChR2-only, for future research in skeletal muscle optogenetics.
Collapse
Affiliation(s)
- Syeda N. Lamia
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
- School of MedicineWashington UniversitySt LouisMissouriUSA
| | - Carol S. Davis
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | | | - T. Brad Willingham
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yingfan Zhang
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Chengyu Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Leanne Iannucci
- Eunice Kennedy Shriver National Institute of Child Health and DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Elahe Ganji
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Desmond Harden
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
| | | | | | | | - Brian Glancy
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
- National Institute of Arthritis, Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Megan L. Killian
- Michigan MedicineUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
- College of EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
6
|
Wang BYH, Hsiao AWT, Shiu HT, Wong N, Wang AYF, Lee CW, Lee OKS, Lee WYW. Mesenchymal stem cells alleviate dexamethasone-induced muscle atrophy in mice and the involvement of ERK1/2 signalling pathway. Stem Cell Res Ther 2023; 14:195. [PMID: 37542297 PMCID: PMC10403871 DOI: 10.1186/s13287-023-03418-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi Ting Shiu
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda Yu-Fan Wang
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chien-Wei Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, 404327, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong.
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
7
|
Wang BYH, Hsiao AWT, Wong N, Chen YF, Lee CW, Lee WYW. Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model? J Orthop Translat 2023; 39:12-20. [PMID: 36605620 PMCID: PMC9793312 DOI: 10.1016/j.jot.2022.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Primary sarcopenia is usually known as age-related skeletal muscle loss; however, other factors like endocrine, lifestyle and inflammation can also cause muscle loss, known as secondary sarcopenia. Although many studies have used different sarcopenia animal models for exploring the underlying mechanism and therapeutic approaches for sarcopenia, limited study has provided evidence of the relevance of these animal models. This study aims to investigate the similarity and difference in muscle qualities between primary and secondary sarcopenia mice models, using naturally aged mice and dexamethasone-induced mice. Methods 21-month-old mice were used as naturally aged primary sarcopenia mice and 3-month-old mice received daily intraperitoneal injection of dexamethasone (20 mg/ kg body weight) for 10 days were used as secondary sarcopenia model. This study provided measurements for muscle mass and functions, including Dual-energy X-ray absorptiometry (DXA) scanning, handgrip strength test and treadmill running to exhaustion test. Besides, muscle contraction, muscle fibre type measurements and gene expression were also performed to provide additional information on muscle qualities. Results The results suggest two sarcopenia animal models shared a comparable decrease in forelimb lean mass, muscle fibre size, grip strength and muscle contraction ability. Besides, the upregulation of protein degradation genes was also observed in two sarcopenia animal models. However, only primary sarcopenia mice were identified with an early stage of mtDNA deletion. Conclusion Collectively, this study evaluated that the dexamethasone-induced mouse model could be served as an alternative model for primary sarcopenia, according to the comparable muscle mass and functional changes. However, whether dexamethasone-induced mice can be used as an animal model when studying the molecular mechanisms of sarcopenia needs to be carefully evaluated. The translational potential of this article The purpose of sarcopenia research is to investigate appropriate treatments for reversing the loss of skeletal muscle mass and functions. Using animal models for the preclinical study could predict the safety and efficacy of the treatments. This study compared the typical age-related sarcopenia mice model and dexamethasone-induced secondary sarcopenia mice to provide evidence of the pathological and functional changes in the mice models.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
| | - Allen Wei-Ting Hsiao
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
| | - Yi-Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
8
|
Taniguchi Y, Makizako H, Nakai Y, Kiuchi Y, Akaida S, Tateishi M, Takenaka T, Kubozono T, Ohishi M. Associations of the Alpha-Actinin Three Genotype with Bone and Muscle Mass Loss among Middle-Aged and Older Adults. J Clin Med 2022; 11:jcm11206172. [PMID: 36294493 PMCID: PMC9605580 DOI: 10.3390/jcm11206172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bone and muscle mass loss are known to occur simultaneously. The alpha-actinin three (ACTN3) genotype has been shown to potentially affect bone and muscle mass. In this study, we investigated the association between the ACTN3 genotype and bone and muscle mass loss in community-dwelling adults aged ≥ 60 years. This study was a cross-sectional analysis of data from 295 participants who participated in a community health checkup. The ACTN3 genotypes were classified as RR, RX, or XX types. Bone mass loss was defined as a calcaneal speed of sound T-score of <−1.32 and <−1.37, and muscle mass loss was defined as an appendicular skeletal muscle index of <7.0 kg/m2 and <5.7 kg/m2 in men and women, respectively. The percentages of XX, RX, and RR in the combined bone and muscle mass loss group were 33.8%, 30.8%, and 16.7%, respectively, with a significantly higher trend for XX. Multinomial logistic regression analysis showed that XX had an odds ratio of 3.00 (95% confidence interval 1.05−8.54) of being in the combined bone and muscle mass loss group compared to the RR group (covariates: age, sex, grip strength, and medications). The ACTN3 genotype of XX is associated with a higher rate of comorbid bone and muscle mass loss. Therefore, ACTN3 genotyping should be considered for preventing combined bone and muscle mass loss.
Collapse
Affiliation(s)
- Yoshiaki Taniguchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Department of Physical Therapy, Kagoshima Medical Professional College, Kagoshima 891-0133, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
- Correspondence: ; Tel.: +81-99-275-5111
| | - Yuki Nakai
- Department of Mechanical Systems Engineering, Faculty of Engineering, Daiichi Institute of Technology, Kagoshima 899-4395, Japan
| | - Yuto Kiuchi
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Section for Health Promotion, Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Shoma Akaida
- Graduate School of Health Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Mana Tateishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Toshihiko Takenaka
- Tarumizu Municipal Medical Center Tarumizu Chuo Hospital, Kagoshima 891-2124, Japan
| | - Takuro Kubozono
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
9
|
Mörseburg A, Pagani L, Malyarchuk B, Derenko M, Kivisild T. Response to Wyckelsma et al.: Loss of α-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. Am J Hum Genet 2022; 109:967-972. [PMID: 35523147 PMCID: PMC9118108 DOI: 10.1016/j.ajhg.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
The common loss-of-function mutation R577X in the structural muscle protein ACTN3 emerged as a potential target of positive selection from early studies and has been the focus of insightful physiological work suggesting a significant impact on muscle metabolism. Adaptation to cold climates has been proposed as a key adaptive mechanism explaining its global allele frequency patterns. Here, we re-examine this hypothesis analyzing modern (n = 3,626) and ancient (n = 1,651) genomic data by using allele-frequency as well as haplotype homozygosity-based methods. The presented results are more consistent with genetic drift rather than selection in cold climates as the main driver of the ACTN3 R577X frequency distribution in human populations across the world. This Matters Arising paper is in response to Wyckelsma et al. (2021),1 published in The American Journal of Human Genetics. See also the response by Wyckelsma et al. (2022),2 published in this issue.
Collapse
Affiliation(s)
- Alexander Mörseburg
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Biology, University of Padova, 35131 Padova, Italy
| | - Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Miroslava Derenko
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya str. 18, Magadan 685000, Russia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven, Herestraat 3000, Belgium.
| |
Collapse
|
10
|
Dong B, Li Q, Zhang T, Liang X, Jia M, Fu Y, Bai J, Fu S. Population Genetic Polymorphism of Skeletal Muscle Strength Related Genes in Five Ethnic Minorities in North China. Front Genet 2021; 12:756802. [PMID: 34745225 PMCID: PMC8564566 DOI: 10.3389/fgene.2021.756802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Musculoskeletal performance is a complex trait influenced by environmental and genetic factors, and it has different manifestations in different populations. Heilongjiang province, located in northern China, is a multi-ethnic region with human cultures dating back to the Paleolithic Age. The Daur, Hezhen, Ewenki, Mongolian and Manchu ethnic groups in Heilongjiang province may have strong physical fitness to a certain extent. Based on the genetic characteristics of significant correlation between some important genes and skeletal muscle function, this study selected 23 SNPs of skeletal muscle strength-related genes and analyzed the distribution of these loci and genetic diversity in the five ethnic groups. Use Haploview (version 4.1) software to calculate the chi-square and the Hardy-Weinberg equilibrium to assess the difference between the two ethnic groups. Use R (version 4.0.2) software to perform principal component analysis of different ethnic groups. Use MEGA (version 7.0) software to construct the phylogenetic tree of different ethnic groups. Use POPGENE (version 1.32) software to calculate the heterozygosity and the FST values of 23 SNPs. Use Arlequin (version 3.5.2.2) software to analyze molecular variance (AMOVA) among 31 populations. The results showed that there was haplotype diversity of VDR, angiotensin-converting enzyme, ACTN3, EPO and IGF1 genes in the five ethnic groups, and there were genetic differences in the distribution of these genes in the five ethnic groups. Among them, the average gene heterozygosity (AVE_HET) of the 23 SNPs in the five populations was 0.398. The FST values of the 23 SNPs among the five ethnic groups varied from 0.0011 to 0.0137. According to the principal component analysis, the genetic distance of Daur, Mongolian and Ewenki is relatively close. According to the phylogenetic tree, the five ethnic groups are clustered together with the Asian population. These data will enrich existing genetic information of ethnic minorities.
Collapse
Affiliation(s)
- Bonan Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Qiuyan Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China.,Editorial Department of International Journal of Genetics, Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xiao Liang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Mansha Jia
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|