1
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
3
|
Wei C, Liu M, Zhang W. Programmed cell death protein 1 in cancer cells. Cell Commun Signal 2025; 23:185. [PMID: 40241148 PMCID: PMC12001728 DOI: 10.1186/s12964-025-02155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Programmed cell death protein 1 (PD-1) is frequently detected in certain subsets of tumor cells, and our understanding of PD-1 signaling consequences has expanded to include control of tumor growth, stemness and drug resistance. Nonetheless, tumor cell-intrinsic PD-1 has been comparatively underexplored in relation to PD-1 expressed on the surface of immune cells as an immune checkpoint, despite the imperative need to comprehensively elucidate the underlying mechanisms of action for achieving optimal responses in tumor immunotherapy. Here, we review the roles of the regulation and function of tumor-intrinsic PD-1 from its expression to degradation processes. Our primary focus is on unraveling its enigmatic influence on tumorigenesis and progression as proposed by recent findings, while navigating the labyrinthine network of regulatory mechanisms governing its expression and intricate functional interplay. We also discuss how the elucidation of the mechanistic underpinnings of tumor-intrinsic PD-1 expression holds the potential to explain the divergent therapeutic outcomes observed with anti-PD-1-based combination therapies, thereby furnishing indispensable insights crucial for synergistic anti-tumor strategies.
Collapse
Affiliation(s)
- Chunlian Wei
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
| |
Collapse
|
4
|
Dziubek K, Faktor J, Lokhande KB, Shrivastava A, Papak I, Chrusciel E, Pilch M, Hupp T, Marek-Trzonkowska N, Singh A, Parys M, Kote S. PD-1 interactome in osteosarcoma: identification of a novel PD-1/AXL interaction conserved between humans and dogs. Cell Commun Signal 2024; 22:605. [PMID: 39696578 DOI: 10.1186/s12964-024-01935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The PD-1/PDL-1 immune checkpoint inhibitors revolutionized cancer treatment, yet osteosarcoma remains a therapeutic challenge. In some types of cancer, PD-1 receptor is not solely expressed by immune cells but also by cancer cells, acting either as a tumor suppressor or promoter. While well-characterized in immune cells, little is known about the role and interactome of the PD-1 pathway in cancer. We investigated PD-1 expression in human osteosarcoma cells and studied PD-1 protein-protein interactions in cancer. Using U2OS cells as a model, we confirmed PD-1 expression by western blotting and characterized its intracellular as well as surface localization through flow cytometry and immunofluorescence. High-throughput analysis of PD-1 interacting proteins was performed using a pull-down assay and quantitative mass spectrometry proteomic analysis. For validation and molecular modeling, we selected tyrosine kinase receptor AXL-a recently reported cancer therapeutic target. We confirmed the PD-1/AXL interaction by immunoblotting and proximity ligation assay (PLA). Molecular dynamics (MD) simulations uncovered binding affinities and domain-specific interactions between extracellular (ECD) and intracellular (ICD) domains of PD-1 and AXL. ECD complexes exhibited strong binding affinity, further increasing for the ICD complexes, emphasizing the role of ICDs in the interaction. PD-1 phosphorylation mutant variants (Y223F and Y248F) did not disrupt the interaction but displayed varying strengths and binding affinities. Using bemcentinib, a selective AXL inhibitor, we observed reduced binding affinity in the PD-1/AXL interaction, although it was not abrogated. To facilitate the future translation of this finding into clinical application, we sought to validate the interaction in canine osteosarcoma. Osteosarcoma spontaneously occurs at significantly higher frequency in dogs and shares close genetic and pathological similarities with humans. We confirmed endogenous expression of PD-1 and AXL in canine osteosarcoma cells, with PD-1/AXL interaction preserved in the dog cells. Also, the interacting residues remain conserved in both species, indicating an important biological function of the interaction. Our study shed light on the molecular basis of the PD-1/AXL interaction with the implication for its conservation across species, providing a foundation for future research aimed at improving immunotherapy strategies and developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Kiran Bharat Lokhande
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, Faridabad, India
| | - Ashish Shrivastava
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Elzbieta Chrusciel
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Magdalena Pilch
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Family Medicine, Laboratory of Immunoregulation and Cellular Therapies, Medical University of Gdansk, Gdansk, Poland
| | - Ashutosh Singh
- Department of Life Sciences, Translational Bioinformatics and Computational Genomics Research Lab, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
5
|
Liu Y, Xie X, Li J, Xiao Q, He S, Fu H, Zhang X, Liu Y. Immune Characteristics and Immunotherapy of HIV-Associated Lymphoma. Curr Issues Mol Biol 2024; 46:9984-9997. [PMID: 39329948 PMCID: PMC11429793 DOI: 10.3390/cimb46090596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of antiretroviral therapy (ART), mortality among people living with the human immunodeficiency virus (HIV) has significantly decreased, yet the population of people living with HIV remains substantial. Among people living with HIV (PLWH), HIV-associated lymphoma (HAL) has surpassed Kaposi's sarcoma to become the most common tumor in this population in developed countries. However, there remains a dearth of comprehensive and systematic understanding regarding HIV-associated lymphomas. This review aims to shed light on the changes in the immune system among PLWH and the characteristics of the immune microenvironment in HIV-associated lymphoma, with a specific focus on the immune system's role in these individuals. Additionally, it seeks to explore recent advancements in immunotherapy for the treatment of HIV-associated lymphoma, intending to enhance strategies for immunotherapy in this specific population.
Collapse
Affiliation(s)
- Yi Liu
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xiaoqing Xie
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qing Xiao
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Huihui Fu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
6
|
Holzgruber J, Martins C, Kulcsar Z, Duplaine A, Rasbach E, Migayron L, Singh P, Statham E, Landsberg J, Boniface K, Seneschal J, Hoetzenecker W, Berdan EL, Ho Sui S, Ramsey MR, Barthel SR, Schatton T. Type I interferon signaling induces melanoma cell-intrinsic PD-1 and its inhibition antagonizes immune checkpoint blockade. Nat Commun 2024; 15:7165. [PMID: 39187481 PMCID: PMC11347607 DOI: 10.1038/s41467-024-51496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Programmed cell death 1 (PD-1) is a premier cancer drug target for immune checkpoint blockade (ICB). Because PD-1 receptor inhibition activates tumor-specific T-cell immunity, research has predominantly focused on T-cell-PD-1 expression and its immunobiology. In contrast, cancer cell-intrinsic PD-1 functional regulation is not well understood. Here, we demonstrate induction of PD-1 in melanoma cells via type I interferon receptor (IFNAR) signaling and reversal of ICB efficacy through IFNAR pathway inhibition. Treatment of melanoma cells with IFN-α or IFN-β triggers IFNAR-mediated Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling, increases chromatin accessibility and resultant STAT1/2 and IFN regulatory factor 9 (IRF9) binding within a PD-1 gene enhancer, and leads to PD-1 induction. IFNAR1 or JAK/STAT inhibition suppresses melanoma-PD-1 expression and disrupts ICB efficacy in preclinical models. Our results uncover type I IFN-dependent regulation of cancer cell-PD-1 and provide mechanistic insight into the potential unintended ICB-neutralizing effects of widely used IFNAR1 and JAK inhibitors.
Collapse
Affiliation(s)
- Julia Holzgruber
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University, 4040, Linz, Austria
| | - Christina Martins
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Zsofi Kulcsar
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Skin Diseases, Clinic for Dermatooncology and Phlebology, University Hospital Bonn, 53127, Bonn, Germany
| | - Alexandra Duplaine
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Centre Hospitalier Universitaire de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, 33000, Bordeaux, France
| | - Erik Rasbach
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Surgery, University Hospital Mannheim, 68167, Mannheim, Germany
| | - Laure Migayron
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Praveen Singh
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Edith Statham
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Landsberg
- Center for Skin Diseases, Clinic for Dermatooncology and Phlebology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katia Boniface
- CNRS, ImmunoConcEpT, University of Bordeaux, UMR 5164, 33000, Bordeaux, France
| | - Julien Seneschal
- Centre Hospitalier Universitaire de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR 5164, 33000, Bordeaux, France
- CNRS, ImmunoConcEpT, University of Bordeaux, UMR 5164, 33000, Bordeaux, France
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venereology, Medical Faculty, Johannes Kepler University, 4040, Linz, Austria
| | - Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Shannan Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Matthew R Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Program of Glyco-Immunology and Oncology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Han S, Zhang Y, Yuan J, Wu Y, Zhou Y, Zhou Y, Li X, Zhou S. sPD-L1 and sPD-L2 in plasma of patients with lung cancer and their clinical significance. Cytokine 2024; 176:156532. [PMID: 38330638 DOI: 10.1016/j.cyto.2024.156532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer death worldwide. We aim here to determine the soluble programmed death ligand-1 (sPD-L1) and soluble programmed death ligand-2 (sPD-L2) levels in the plasma of patients with lung cancer and evaluate the clinical significance. METHODS Plasma samples from 95 lung cancer patients and 55 healthy donors were collected, and the sPD-L1 and sPD-L2 levels were measured using the enzyme-linked immunosorbent assay. The correlations of the plasma sPD-L1 and sPD-L2 levels with clinicopathological status and survival of the patients were analyzed. RESULTS The sPD-L1 and sPD-L2 levels in plasma of lung cancer patients were 713.8 (240.6-3815) pg/ mL and 3233(1122-13955) pg/ mL, respectively, which were significantly higher than those of the health donors 618.6 (189.1-1149) pg/ mL and 2182 (1133-3471) pg/ mL, and the plasma levels of sPD-L1 are correlated with sPD-L2. ROC results showed that both sPD-L1 and sPD-L2 were potential biomarker for lung cancer, and with a higher accuracy level when combined with CEA. Patients with Higher plasma sPD-L1 level (>713.75 pg/ mL) are associated with poor overall survival in advanced lung cancer patients (197 days vs 643 days). CONCLUSIONS The combination of sPD-L1 and sPD-L2 could be used as adjunctive diagnostic, High level of plasma sPD-L1 rather than sPD-L2 is associated with poor prognosis in lung cancer patients.
Collapse
Affiliation(s)
- Shiyang Han
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yan Zhang
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Jingzhi Yuan
- Department of Laboratory Medicine, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yi Wu
- Department of Radiotherapy, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yun Zhou
- Department of Radiotherapy, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Yan Zhou
- Department of Oncology, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China
| | - Xiaowei Li
- Department of Breast and Thyroid Surgery, Jiangsu Shengze Hospital, Suzhou, 215200, Jiangsu, China.
| | - Shuru Zhou
- The Aoyang Cancer Institute, The Affilated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600 Jiangsu, China.
| |
Collapse
|
9
|
Martins C, Rasbach E, Heppt MV, Singh P, Kulcsar Z, Holzgruber J, Chakraborty A, Mucciarone K, Kleffel S, Brandenburg A, Hoetzenecker W, Rahbari NN, DeCaprio JA, Thakuria M, Murphy GF, Ramsey MR, Posch C, Barthel SR, Schatton T. Tumor cell-intrinsic PD-1 promotes Merkel cell carcinoma growth by activating downstream mTOR-mitochondrial ROS signaling. SCIENCE ADVANCES 2024; 10:eadi2012. [PMID: 38241371 PMCID: PMC10798567 DOI: 10.1126/sciadv.adi2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Inhibitors targeting the programmed cell death 1 (PD-1) immune checkpoint have improved MCC patient outcomes by boosting antitumor T cell immunity. Here, we identify PD-1 as a growth-promoting receptor intrinsic to MCC cells. In human MCC lines and clinical tumors, RT-PCR-based sequencing, immunoblotting, flow cytometry, and immunofluorescence analyses demonstrated PD-1 gene and protein expression by MCC cells. MCC-PD-1 ligation enhanced, and its inhibition or silencing suppressed, in vitro proliferation and in vivo tumor xenograft growth. Consistently, MCC-PD-1 binding to PD-L1 or PD-L2 induced, while antibody-mediated PD-1 blockade inhibited, protumorigenic mTOR signaling, mitochondrial (mt) respiration, and ROS generation. Last, pharmacologic inhibition of mTOR or mtROS reversed MCC-PD-1:PD-L1-dependent proliferation and synergized with PD-1 checkpoint blockade in suppressing tumorigenesis. Our results identify an MCC-PD-1-mTOR-mtROS axis as a tumor growth-accelerating mechanism, the blockade of which might contribute to clinical response in patients with MCC.
Collapse
Affiliation(s)
- Christina Martins
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik Rasbach
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Markus V. Heppt
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University (FAU), 91054 Erlangen, Germany
| | - Praveen Singh
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zsofi Kulcsar
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia Holzgruber
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Asmi Chakraborty
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyla Mucciarone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja Kleffel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Brandenburg
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Johannes Kepler University, 4020 Linz, Austria
| | - Nuh N. Rahbari
- Department of Surgery, University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - Manisha Thakuria
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Merkel Cell Carcinoma Center of Excellence, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA 02115, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Posch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Vienna Healthcare Group, 1130 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University Vienna, 1020 Vienna, Austria
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Steven R. Barthel
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Schatton
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program of Glyco-Immunology and Oncology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Wang G, Wei W, Luo Q, Chen L, Bao X, Tao X, He X, Zhan B, Liang H, Jiang J, Ye L. The role and mechanisms of PD-L1 in immune evasion during Talaromyces marneffei infection. Int Immunopharmacol 2024; 126:111255. [PMID: 37984251 DOI: 10.1016/j.intimp.2023.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Talaromycosis, caused by Talaromyces marneffei (T. marneffei), is a systemic fungal disease that involves dissemination throughout the body. The ability of T. marneffei to evade the immune system is considered a crucial factor in its persistent infection, although the specific mechanisms are not yet fully understood. This study aims to investigate the molecular mechanisms underlying the occurrence of latent T. marneffei infection and immune evasion. The gene expression profile analysis in T. marneffei-infected mouse revealed that Pd-l1 exhibited the highest correlation strength with other hub genes, with a median of 0.60 (IQR: 0.50-0.69). T. marneffei infection upregulated the expression of PD-1 and PD-L1 in PBMCs from HIV patients, which was also observed in the T. marneffei-infected mouse and macrophage models. Treatment with a PD-L1 inhibitor significantly reduced fungal burden in the liver and spleen tissues of infected mice and in the kupffer-CTLL-2 co-culture system. PD-L1 inhibitor treatment increased CTLL-2 cell proliferation and downregulated the expression of PD-1, SHP-2, and p-SHP-2, indicating the activation of T cell viability and T cell receptor signaling pathway. Additionally, treatment with a PI3K inhibitor downregulated PD-L1 in T. marneffei-infected kupffer cells. Similar results were observed with treatment using the T. marneffei cell wall virulence factor β-glucan. Overall, T. marneffei infection upregulated PD-L1 expression in HIV / T. marneffei patients, mice, and kupffer cells. Treatment with a PD-L1 inhibitor significantly reduced fungal burden, while activating T cell activity and proliferation, thereby promoting fungal clearance. Furthermore, the PI3K signaling pathway may be involved in the regulation of PD-L1 by T. marneffei.
Collapse
Affiliation(s)
- Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qiang Luo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaotao He
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Baili Zhan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
11
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
12
|
Zheng H, Wang G, Liu M, Cheng H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: a literature review. Front Oncol 2023; 13:1168226. [PMID: 37397393 PMCID: PMC10312112 DOI: 10.3389/fonc.2023.1168226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Programmed death-1 (PD-1) and its programmed death-ligand 1 (PD-L1) comprise the PD-1/PD-L1 axis and maintain tumor immune evasion. Cancer immunotherapy based on anti-PD-1/PD-L1 antibodies is the most promising anti-tumor treatment available but is currently facing the thorny problem of unsatisfactory outcomes. Traditional Chinese Medicine (TCM), with its rich heritage of Chinese medicine monomers, herbal formulas, and physical therapies like acupuncture, moxibustion, and catgut implantation, is a multi-component and multi-target system of medicine known for enhancing immunity and preventing the spread of disease. TCM is often used as an adjuvant therapy for cancer in clinical practices, and recent studies have demonstrated the synergistic effects of combining TCM with cancer immunotherapy. In this review, we examined the PD-1/PD-L1 axis and its role in tumor immune escape while exploring how TCM therapies can modulate the PD-1/PD-L1 axis to improve the efficacy of cancer immunotherapy. Our findings suggest that TCM therapy can enhance cancer immunotherapy by reducing the expression of PD-1 and PD-L1, regulating T-cell function, improving the tumor immune microenvironment, and regulating intestinal flora. We hope this review may serve as a valuable resource for future studies on the sensitization of immune checkpoint inhibitors (ICIs) therapy.
Collapse
Affiliation(s)
- Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
14
|
Yang R, Hamilton AM, Sun H, Rawji KS, Sarkar S, Mirzaei R, Pike GB, Yong VW, Dunn JF. Detecting monocyte trafficking in an animal model of glioblastoma using R 2* and quantitative susceptibility mapping. Cancer Immunol Immunother 2023; 72:733-742. [PMID: 36194288 DOI: 10.1007/s00262-022-03297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.
Collapse
Affiliation(s)
- Runze Yang
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A Max Hamilton
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Hongfu Sun
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Khalil S Rawji
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Susobhan Sarkar
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Reza Mirzaei
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, N.W. Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - V Wee Yong
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Oncology, Cumming School of Medicine, Calgary, Canada
| | - Jeff F Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, N.W. Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
15
|
Patra T, Cunningham DM, Meyer K, Toth K, Ray RB, Heczey A, Ray R. Targeting Lin28 axis enhances glypican-3-CAR T cell efficacy against hepatic tumor initiating cell population. Mol Ther 2023; 31:715-728. [PMID: 36609146 PMCID: PMC10014222 DOI: 10.1016/j.ymthe.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Overexpression of Lin28 is detected in various cancers with involvement in the self-renewal process and cancer stem cell generation. In the present study, we evaluated how the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC). Our result using HCC patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1), a kynurenine-producing enzyme with effects on tumor immune escape, and Lin28B. Using in silico prediction, we identified a Sox2/Oct4 transcriptional motif acting as an enhancer for IDO1. Knockdown of Lin28B reduced Sox2/Oct4 and downregulated IDO1 in tumor-initiating hepatic cancer cells. We further observed that inhibition of Lin28 by a small-molecule inhibitor (C1632) suppressed IDO1 expression. Suppression of IDO1 resulted in a decline in kynurenine production from tumor-initiating cells. Inhibition of the Lin28 axis also impaired PD-L1 expression in HCC cells. Consequently, modulating Lin28B enhanced in vitro cytotoxicity of glypican-3 (GPC3)-chimeric antigen receptor (CAR) T and NK cells. Next, we observed that GPC3-CAR T cell treatment together with C1632 in a HCC xenograft mouse model led to enhanced anti-tumor activity. In conclusion, our results suggest that inhibition of Lin28B reduces IDO1 and PD-L1 expression and enhances immunotherapeutic potential of GPC3-CART cells against HCC.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
| | - David M Cunningham
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Andras Heczey
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA; Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
16
|
Hematologic malignancies following immune checkpoint inhibition for solid tumors. Cancer Immunol Immunother 2023; 72:249-255. [PMID: 35691988 PMCID: PMC9188911 DOI: 10.1007/s00262-022-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Immune checkpoint inhibition (ICI) can induce durable responses in patients with advanced malignancies. Three cases of hematological neoplasia following ICI for solid tumors have been reported to date. We present five patients treated at our tertiary referral center between 2017 and 2021 who developed chronic myeloid leukemia (two patients), acute myeloid leukemia, myelodysplastic syndrome and chronic eosinophilic leukemia during or after anti-PD-1-based treatment. Molecular analyses were performed on pre-ICI samples to identify baseline variants in myeloid genes. We hypothesize that PD-1 blockade might accelerate progression to overt myeloid malignancies and discuss potential underlying mechanisms.
Collapse
|
17
|
Park JH, Kang I, Lee HK. The immune landscape of high-grade brain tumor after treatment with immune checkpoint blockade. Front Immunol 2022; 13:1044544. [PMID: 36591276 PMCID: PMC9794569 DOI: 10.3389/fimmu.2022.1044544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the therapeutic success of immune checkpoint blockade (ICB) therapy against multiple tumors, many patients still do not benefit from ICB. In particular, high-grade brain tumors, such as glioblastoma multiforme (GBM), have a very low response rate to ICB, resulting in several failed clinical trials. This low response rate might be caused by a lack of understanding of the unique characteristics of brain immunity. To overcome this knowledge gap, macroscopic studies of brain immunity are needed. We use single cell RNA sequencing to analyze the immune landscape of the tumor microenvironment (TME) under anti-PD-1 antibody treatment in a murine GBM model. We observe that CD8 T cells show a mixed phenotype overall that includes reinvigoration and re-exhaustion states. Furthermore, we find that CCL5 induced by anti-PD-1 treatment might be related to an increase in the number of anti-inflammatory macrophages in the TME. Therefore, we hypothesize that CCL5-mediated recruitment of anti-inflammatory macrophages may be associated with re-exhaustion of CD8 T cells in the TME. We compare our observations in the murine GBM models with publicly available data from human patients with recurrent GBM. Our study provides critical information for the development of novel immunotherapies to overcome the limitations of anti-PD-1 therapy.
Collapse
|
18
|
Fan Y, Wang T, Lei J, Fei F, Liu J, Liu Y. Effects of postoperative radiotherapy and docetaxel and PD-1 inhibitors on the survival and safety of glioblastoma patients: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1326. [PMID: 36660707 PMCID: PMC9843395 DOI: 10.21037/atm-22-2670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Background The present standard treatment rarely allows the complete removal of glioblastoma (GBM). So postoperative treatments are provided to prevent or delay tumor recurrence. The overall survival (OS) rate and safety of postoperative chemotherapy alone, or combined with radiotherapy (RT), or programmed cell death-1 (PD-1) inhibitor in GBM is still unclear. The present goal was to explore postoperative treatment's effect on the survival and safety of patients with GBM. Methods We searched the mainstream online databases for clinical studies of RT and chemotherapy and PD-1 inhibitors in the treatment of GBM published up to May 2020. The patients in the experimental group accepted an anti-PD-1 drug alone and RT + chemotherapy, whereas the controlled patients were treated with docetaxel alone. The literature qualities were assessed using Cochrane Risk of Bias 2.0, and studies were assigned. The meta-analysis was conducted by RevMan 5.4 software. Results A total of 927 articles were identified through the online database search. The articles unable to meet the inclusion criteria were excluded leaving 6 studies for inclusion in the study. Compared with docetaxel-based chemotherapy for GBM, combined RT chemotherapy and PD-1 inhibitor therapy had better OS [mean difference (MD), -1.75; 95% confidence interval (CI): -2.99 to -0.51; P=0.006] and progression-free survival (PFS) and a lower incidence of adverse reactions (MD, -7.03; 95% CI: -7.64 to -6.42; P<0.00001) above grade III. Conclusions Postoperative combination of RT and chemotherapy and PD-1 inhibitors had some advantages over docetaxel in terms of effectiveness. More clinical trials are needed to confirm effectiveness.
Collapse
Affiliation(s)
- Yingjun Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Lei
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Fei
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:954-970. [PMID: 36627891 PMCID: PMC9771744 DOI: 10.20517/cdr.2022.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022]
Abstract
Cancer is one of the most harmful diseases in the world, which causes huge numbers of deaths every year. Many drugs have been developed to treat tumors. However, drug resistance usually develops after a period of time, which greatly weakens the therapeutic effect. Tumor drug resistance is characterized by blocking the action of anticancer drugs, resisting apoptosis and DNA repair, and evading immune recognition. To tackle tumor drug resistance, many engineered drug delivery systems (DDS) have been developed. Metal-organic frameworks (MOFs) are one kind of emerging and promising nanocarriers for DDS with high surface area and abundant active sites that make the functionalization simpler and more efficient. These features enable MOFs to achieve advantages easily towards other materials. In this review, we highlight the main mechanisms of tumor drug resistance and the characteristics of MOFs. The applications and opportunities of MOF-based DDS to overcome tumor drug resistance are also discussed, shedding light on the future development of MOFs to address tumor drug resistance.
Collapse
Affiliation(s)
- Huafeng Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Shi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yiting Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yinghao Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Correspondence to: Dr. Tianxiang Wei, School of Environment, Nanjing Normal University, Nanjing 210023, Jiangsu, China. E-mail:
| |
Collapse
|
21
|
Microglia-T cell conversations in brain cancer progression. Trends Mol Med 2022; 28:951-963. [PMID: 36075812 DOI: 10.1016/j.molmed.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022]
Abstract
The highly immunosuppressive and heterogeneous milieu of brain malignancies contributes to their dismal prognosis. Regardless of their cellular origin, brain tumors grow in an environment with various specialized organ-resident cells. Although homeostatic microglia contribute to a healthy brain, conversations between disease-associated microglia and T cells compromise their individual and collective capacity to curb malignant growth. We review the mechanisms of T cell-microglia interactions and discuss how their collaboration fosters heterogeneity and immunosuppression in brain cancers. Because of the importance of microglia and T cells in the brain tumor microenvironment, it is crucial to understand their interactions to derive innovative therapeutics.
Collapse
|
22
|
Distinct antibody clones detect PD-1 checkpoint expression and block PD-L1 interactions on live murine melanoma cells. Sci Rep 2022; 12:12491. [PMID: 35864188 PMCID: PMC9304406 DOI: 10.1038/s41598-022-16776-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (abs) targeting the programmed cell death 1 (PD-1) immune checkpoint pathway have revolutionized tumor therapy. Because T-cell-directed PD-1 blockade boosts tumor immunity, anti-PD-1 abs have been developed for examining T-cell-PD-1 functions. More recently, PD-1 expression has also been reported directly on cancer cells of various etiology, including in melanoma. Nevertheless, there is a paucity of studies validating anti-PD-1 ab clone utility in specific assay types for characterizing tumor cell-intrinsic PD-1. Here, we demonstrate reactivity of several anti-murine PD-1 ab clones and recombinant PD-L1 with live B16-F10 melanoma cells and YUMM lines using multiple independent methodologies, positive and negative PD-1-specific controls, including PD-1-overexpressing and PD-1 knockout cells. Flow cytometric analyses with two separate anti-PD-1 ab clones, 29F.1A12 and RMP1-30, revealed PD-1 surface protein expression on live murine melanoma cells, which was corroborated by marked enrichment in PD-1 gene (Pdcd1) expression. Immunoblotting, immunoprecipitation, and mass spectrometric sequencing confirmed PD-1 protein expression by B16-F10 cells. Recombinant PD-L1 also recognized melanoma cell-expressed PD-1, the blockade of which by 29F.1A12 fully abrogated PD-1:PD-L1 binding. Together, our data provides multiple lines of evidence establishing PD-1 expression by live murine melanoma cells and validates ab clones and assay systems for tumor cell-directed PD-1 pathway investigations.
Collapse
|