1
|
Chen X, Han W, Chang X, Tang C, Chen K, Bao L, Zhang L, Hu J, Wang S, Bao Z. High-quality genome assembly of the azooxanthellate coral Tubastraea coccinea (Lesson, 1829). Sci Data 2025; 12:507. [PMID: 40140403 PMCID: PMC11947264 DOI: 10.1038/s41597-025-04839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Coral reefs are among the most biodiverse and economically significant ecosystems globally, yet they are increasingly degrading due to global climate change and local human activities. The sun coral Tubastraea coccinea (T. coccinea) an obligate heterotroph lacking symbiotic zooxanthellae, exhibits remarkable tolerance to conditions that cause bleaching and mortality in zooxanthellate species. With its extensive low-latitude distribution across multiple oceans, T. coccinea has become a highly invasive species, adversely impacting native species, degrading local ecosystems, and causing significant socio-economic challenges that demand effective management. Despite substantial research efforts, the molecular biology of T. coccinea remains insufficiently characterized. To address this gap, we generated a draft genome assembly for T. coccinea using PacBio Hi-Fi long-read sequencing. The assembly spans 875.9 Mb with a scaffold N50 of 694.3 kb and demonstrates high completeness, with a BUSCO score of 97.4%. A total of 37,307 protein-coding sequences were identified, 95.2% of which were functionally annotated through comparisons with established protein databases. This reference genome provides a valuable resource for understanding the genetic structure of T. coccinea, advancing research into its adaptive mechanism to environmental changes, and informing conservation and management strategies to mitigate its invasive impact.
Collapse
Affiliation(s)
- Xiaomei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Wentao Han
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Xinyao Chang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Caiyin Tang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Kai Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lingling Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Jingjie Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China
| | - Shi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province & MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Sanya/Qingdao, China.
| |
Collapse
|
2
|
Torrado H, Rios D, Primov K, Burdick DR, Bentlage B, Lemer S, Combosch D. Evolutionary Genomics of Two Co-occurring Congeneric Fore Reef Coral Species on Guam (Mariana Islands). Genome Biol Evol 2025; 17:evae278. [PMID: 39834241 PMCID: PMC11746966 DOI: 10.1093/gbe/evae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A. surculosa sensu Randall & Myers (1983) and A. cf. verweyi Veron & Wallace, 1984 around Guam, using genome-wide sequence data (ddRAD). We further contrast our findings with the results of a recent study on back reef A. cf. pulchra (Brook, 1891) to assess the impact of habitat, colony morphology, and phylogenetic relatedness on these basic population genetic characteristics and generate testable hypotheses for future studies. Both target species were found to have small effective population sizes, low levels of genetic diversity, and minimal population structure around Guam. Nonetheless, A. cf. verweyi had significantly higher levels of genetic diversity, some population structure as well as more clones, close relatives and putative loci under selection. Comparisons with A. cf. pulchra indicate a potentially significant impact by habitat on population structure and genetic diversity while colony morphology seems to significantly impact clonality. This study revealed significant differences in the basic population genetic makeup of two sympatric Acropora species on Guam. Our results suggest that colony morphology and habitat/ecology may have a significant impact on the population genetic makeup in reef corals, which could offer valuable insights for future management decisions in the absence of genetic data.
Collapse
Affiliation(s)
- Héctor Torrado
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | - Dareon Rios
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | - Karim Primov
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - David R Burdick
- Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | | | - Sarah Lemer
- Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
- Museum of Nature Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, 20146 Hamburg, Germany
| | - David Combosch
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| |
Collapse
|
3
|
Lock C, Gabriel MM, Bentlage B. Transcriptomic signatures across a critical sedimentation threshold in a major reef-building coral. Front Physiol 2024; 15:1303681. [PMID: 38919851 PMCID: PMC11196755 DOI: 10.3389/fphys.2024.1303681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/10/2024] [Indexed: 06/27/2024] Open
Abstract
Sedimentation is a major cause of global near-shore coral reef decline. Although the negative impacts of sedimentation on coral reef community composition have been well-documented, the effects of sedimentation on coral metabolism in situ have received comparatively little attention. Using transcriptomics, we identified gene expression patterns changing across a previously defined sedimentation threshold that was deemed critical due to changes in coral cover and community composition. We identified genes, pathways, and molecular processes associated with this transition that may allow corals, such as Porites lobata, to tolerate chronic, severe sedimentation and persist in turbid environments. Alternative energy generation pathways may help P. lobata maintain a persistent stress response to survive when the availability of light and oxygen is diminished. We found evidence for the expression of genes linked to increased environmental sensing and cellular communication that likely allow P. lobata to efficiently respond to sedimentation stress and associated pathogen challenges. Cell damage increases under stress; consequently, we found apoptosis pathways over-represented under severe sedimentation, a likely consequence of damaged cell removal to maintain colony integrity. The results presented here provide a framework for the response of P. lobata to sedimentation stress under field conditions. Testing this framework and its related hypotheses using multi-omics approaches can deepen our understanding of the metabolic plasticity and acclimation potential of corals to sedimentation and their resilience in turbid reef systems.
Collapse
|
4
|
Li R, Zarate D, Avila-Magaña V, Li J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc Biol Sci 2024; 291:20232408. [PMID: 38807516 DOI: 10.1098/rspb.2023.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Photosymbioses between heterotrophic hosts and autotrophic symbionts are evolutionarily prevalent and ecologically significant. However, the molecular mechanisms behind such symbioses remain less elucidated, which hinders our understanding of their origin and adaptive evolution. This study compared gene expression patterns in a photosymbiotic bivalve (Fragum sueziense) and a closely related non-symbiotic species (Trigoniocardia granifera) under different light conditions to detect potential molecular pathways involved in mollusc photosymbiosis. We discovered that the presence of algal symbionts greatly impacted host gene expression in symbiont-containing tissues. We found that the host immune functions were suppressed under normal light compared with those in the dark. In addition, we found that cilia in the symbiont-containing tissues play important roles in symbiont regulation or photoreception. Interestingly, many potential photosymbiosis genes could not be annotated or do not exhibit orthologues in T. granifera transcriptomes, indicating unique molecular functions in photosymbiotic bivalves. Overall, we found both novel and known molecular mechanisms involved in animal-algal photosymbiosis within bivalves. Given that many of the molecular pathways are shared among distantly related host lineages, such as molluscs and cnidarians, it indicates that parallel and/or convergent evolution is instrumental in shaping host-symbiont interactions and responses in these organisms.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | - Daniel Zarate
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | | | - Jingchun Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| |
Collapse
|
5
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Valadez-Ingersoll M, Aguirre Carrión PJ, Bodnar CA, Desai NA, Gilmore TD, Davies SW. Starvation differentially affects gene expression, immunity and pathogen susceptibility across symbiotic states in a model cnidarian. Proc Biol Sci 2024; 291:20231685. [PMID: 38412969 PMCID: PMC10898965 DOI: 10.1098/rspb.2023.1685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemone Exaiptasia pallida (Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, 'defence' responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways-including NF-κB-does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands.
Collapse
Affiliation(s)
| | | | - Caoimhe A. Bodnar
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Niharika A. Desai
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Thomas D. Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
7
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
8
|
Yoshioka Y, Chiu YL, Uchida T, Yamashita H, Suzuki G, Shinzato C. Genes possibly related to symbiosis in early life stages of Acropora tenuis inoculated with Symbiodinium microadriaticum. Commun Biol 2023; 6:1027. [PMID: 37853100 PMCID: PMC10584924 DOI: 10.1038/s42003-023-05350-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Due to the ecological importance of mutualism between reef-building corals and symbiotic algae (Family Symbiodiniaceae), various transcriptomic studies on coral-algal symbiosis have been performed; however, molecular mechanisms, especially genes essential to initiate and maintain these symbioses remain unknown. We investigated transcriptomic responses of Acropora tenuis to inoculation with the native algal symbiont, Symbiodinium microadriaticum, during early life stages, and identified possible symbiosis-related genes. Genes involved in immune regulation, protection against oxidative stress, and metabolic interactions between partners are particularly important for symbiosis during Acropora early life stages. In addition, molecular phylogenetic analysis revealed that some possible symbiosis-related genes originated by gene duplication in the Acropora lineage, suggesting that gene duplication may have been the driving force to establish stable mutualism in Acropora, and that symbiotic molecular mechanisms may vary among coral lineages.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| | - Yi-Ling Chiu
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
9
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
10
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|