1
|
Myers G, Friedman A, Yu L, Pourmandi N, Kerpet C, Ito MA, Saba R, Tang V, Ozel AB, Bergin IL, Johnson CN, Ku CJ, Wang Y, Balbin-Cuesta G, Lim KC, Lin Z, Drysdale C, McGee B, Kurita R, Nakamura Y, Liu X, Siemieniak D, Singh SA, Lyssiotis CA, Maillard I, Weisman LS, Engel JD, Khoriaty R. A genome-wide screen identifies genes required for erythroid differentiation. Nat Commun 2025; 16:3488. [PMID: 40221460 PMCID: PMC11993733 DOI: 10.1038/s41467-025-58739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The complete array of genes required for terminal erythroid differentiation remains unknown. To address this knowledge gap, we perform a genome-scale CRISPR knock-out screen in the human erythroid progenitor cell line HUDEP-2 and validate candidate regulators of erythroid differentiation in a custom secondary screen. Comparison of sgRNA abundance in the CRISPR library, proerythroblasts, and orthochromatic erythroblasts, resulted in the identification of genes that are essential for proerythroblast survival and genes that are required for terminal erythroid differentiation. Among the top genes identified are known regulators of erythropoiesis, underscoring the validity of this screen. Notably, using a Log2 fold change of <-1 and false discovery rate of <0.01, the screen identified 277 genes that are required for terminal erythroid differentiation, including multiple genes not previously nominated through GWAS. NHLRC2, which was previously implicated in hemolytic anemia, was a highly ranked gene. We suggest that anemia due to NHLRC2 mutation results at least in part from a defect in erythroid differentiation. Another highly ranked gene in the screen is VAC14, which we validated for its requirement in erythropoiesis in vitro and in vivo. Thus, data from this CRISPR screen may help classify the underlying mechanisms that contribute to erythroid disorders.
Collapse
Affiliation(s)
- Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Narges Pourmandi
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Claire Kerpet
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Masaki A Ito
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rilie Saba
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vi Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Jui Ku
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Claire Drysdale
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sharon A Singh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
King RA, Khoriaty R. Hereditary disorders of ineffective erythropoiesis. Blood Cells Mol Dis 2025; 111:102910. [PMID: 39938185 PMCID: PMC11884990 DOI: 10.1016/j.bcmd.2025.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Under steady state conditions, humans must produce ∼2 million red blood cells per second to sustain normal red blood cell counts and hemoglobin levels. Ineffective erythropoiesis, also termed dyserythropoiesis, is a process by which erythroid precursors die or fail to efficiently differentiate in the bone marrow. Ineffective erythropoiesis is characterized by expanded bone marrow erythropoiesis and increased erythroferrone production by bone marrow erythroblasts, with the latter resulting in reduced hepcidin production and increased iron absorption. Ineffective erythropoiesis may result from acquired and congenital conditions. Inherited causes of ineffective erythropoiesis include β-thalassemia, sideroblastic anemias, pyruvate kinase deficiency, and congenital dyserythropoietic anemias. This manuscript reviews the definition and evidence for ineffective erythropoiesis and describes the most common hereditary disorders of dyserythropoiesis.
Collapse
Affiliation(s)
- Richard A King
- Department of Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Maeda M, Arakawa M, Saito K. Disease-Associated Factors at the Endoplasmic Reticulum-Golgi Interface. Traffic 2025; 26:e70001. [PMID: 40047103 PMCID: PMC11883524 DOI: 10.1111/tra.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
The endoplasmic reticulum (ER)-Golgi interface is essential for directing the transport of proteins synthesized in the ER to the Golgi apparatus via the ER-Golgi intermediate compartment, as well as for recycling proteins back to the ER. This transport is facilitated by various components, including COPI and COPII coat protein complexes and the transport protein particle complex. Recently, the ER-Golgi transport pathway has gained attention due to emerging evidence of nonvesicular transport mechanisms and the regulation of trafficking through liquid-liquid phase separation. Numerous diseases have been linked to mutations in proteins localized at the ER-Golgi interface, highlighting the need for comprehensive analysis of these conditions. This review examines the disease phenotypes associated with dysfunctional ER-Golgi transport factors and explores their cellular effects, providing insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Masashi Arakawa
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| | - Kota Saito
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of MedicineAkita UniversityAkitaJapan
| |
Collapse
|
4
|
Everett LA, Lin Z, Friedman A, Tang VT, Myers G, Balbin-Cuesta G, King R, Zhu G, McGee B, Khoriaty R. LMAN1 serves as a cargo receptor for thrombopoietin. JCI Insight 2024; 9:e175704. [PMID: 39499573 DOI: 10.1172/jci.insight.175704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
Thrombopoietin (TPO) is a plasma glycoprotein that binds its receptor on megakaryocytes (MKs) and MK progenitors, resulting in enhanced platelet production. The mechanism by which TPO is secreted from hepatocytes remains poorly understood. Lectin mannose-binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) form a complex at the endoplasmic reticulum membrane, recruiting cargo proteins into COPII vesicles for secretion. In this study, we showed that LMAN1-deficient mice (with complete germline LMAN1 deficiency) exhibited mild thrombocytopenia, whereas the platelet count was entirely normal in mice with approximately 7% Lman1 expression. Surprisingly, mice deleted for Mcfd2 did not exhibit thrombocytopenia. Analysis of peripheral blood from LMAN1-deficient mice demonstrated normal platelet size and normal morphology of dense and alpha granules. LMAN1-deficient mice exhibited a trend toward reduced MK and MK progenitors in the bone marrow. We next showed that hepatocyte-specific but not hematopoietic Lman1 deletion results in thrombocytopenia, with plasma TPO level reduced in LMAN1-deficient mice, despite normal Tpo mRNA levels in LMAN1-deficient livers. TPO and LMAN1 interacted by coimmunoprecipitation in a heterologous cell line, and TPO accumulated intracellularly in LMAN1-deleted cells. Together, these studies verified the hepatocyte as the cell of origin for TPO production in vivo and were consistent with LMAN1 as the endoplasmic reticulum cargo receptor that mediates the efficient secretion of TPO. To our knowledge, TPO is the first example of an LMAN1-dependent cargo that is independent of MCFD2.
Collapse
Affiliation(s)
- Lesley A Everett
- Department of Ophthalmology and
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | - Vi T Tang
- Department of Molecular and Integrative Physiology
| | | | | | | | | | | | - Rami Khoriaty
- Department of Internal Medicine
- Department of Cell and Developmental Biology
- Cellular and Molecular Biology Program
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Russo R, Iolascon A, Andolfo I, Marra R, Rosato BE. Updates on clinical and laboratory aspects of hereditary dyserythropoietic anemias. Int J Lab Hematol 2024; 46:595-605. [PMID: 38747503 DOI: 10.1111/ijlh.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Hereditary dyserythropoietic anemias, or congenital dyserythropoietic anemias (CDAs), are rare disorders disrupting normal erythroid lineage development, resulting in ineffective erythropoiesis and monolinear cytopenia. CDAs include three main types (I, II, III), transcription-factor-related forms, and syndromic forms. The widespread use of next-generation sequencing in the last decade has unveiled novel causative genes and unexpected genotype-phenotype correlations. The discovery of the genetic defects underlying the CDAs not only facilitates accurate diagnosis but also enhances understanding of CDA pathophysiology. Notable advancements include identifying a hepatic-specific role of the SEC23B loss-of-function in iron metabolism dysregulation in CDA II, deepening CDIN1 dysfunction during erythroid differentiation, and uncovering a recessive CDA III form associated with RACGAP1 variants. Current treatments primarily rely on supportive measures tailored to disease severity and clinical features. Comparative studies with pyruvate kinase deficiency have illuminated new therapeutic avenues by elucidating iron dyshomeostasis and dyserythropoiesis mechanisms. We herein discuss recent progress in diagnostic methodologies, novel gene discoveries, and enhanced comprehension of CDA pathogenesis and molecular genetics.
Collapse
Affiliation(s)
- Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
7
|
Tang VT, Xiang J, Chen Z, McCormick J, Abbineni PS, Chen XW, Hoenerhoff M, Emmer BT, Khoriaty R, Lin JD, Ginsburg D. Functional overlap between the mammalian Sar1a and Sar1b paralogs in vivo. Proc Natl Acad Sci U S A 2024; 121:e2322164121. [PMID: 38687799 PMCID: PMC11087783 DOI: 10.1073/pnas.2322164121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during midembryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these two paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Joseph McCormick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Prabhodh S. Abbineni
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL60153
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing100871, China
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jiandie D. Lin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI48109
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
8
|
Tang VT, Xiang J, Chen Z, McCormick J, Abbineni PS, Chen XW, Hoenerhoff M, Emmer BT, Khoriaty R, Lin JD, Ginsburg D. Functional overlap between the mammalian Sar1a and Sar1b paralogs in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582310. [PMID: 38463989 PMCID: PMC10925261 DOI: 10.1101/2024.02.27.582310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Proteins carrying a signal peptide and/or a transmembrane domain enter the intracellular secretory pathway at the endoplasmic reticulum (ER) and are transported to the Golgi apparatus via COPII vesicles or tubules. SAR1 initiates COPII coat assembly by recruiting other coat proteins to the ER membrane. Mammalian genomes encode two SAR1 paralogs, SAR1A and SAR1B. While these paralogs exhibit ~90% amino acid sequence identity, it is unknown whether they perform distinct or overlapping functions in vivo. We now report that genetic inactivation of Sar1a in mice results in lethality during mid-embryogenesis. We also confirm previous reports that complete deficiency of murine Sar1b results in perinatal lethality. In contrast, we demonstrate that deletion of Sar1b restricted to hepatocytes is compatible with survival, though resulting in hypocholesterolemia that can be rescued by adenovirus-mediated overexpression of either SAR1A or SAR1B. To further examine the in vivo function of these 2 paralogs, we genetically engineered mice with the Sar1a coding sequence replacing that of Sar1b at the endogenous Sar1b locus. Mice homozygous for this allele survive to adulthood and are phenotypically normal, demonstrating complete or near-complete overlap in function between the two SAR1 protein paralogs in mice. These data also suggest upregulation of SAR1A gene expression as a potential approach for the treatment of SAR1B deficiency (chylomicron retention disease) in humans.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Joseph McCormick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Prabhodh S. Abbineni
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Artlett CM, Connolly LM. TANGO1 Dances to Export of Procollagen from the Endoplasmic Reticulum. FIBROSIS (HONG KONG, CHINA) 2023; 1:10008. [PMID: 38650832 PMCID: PMC11034787 DOI: 10.35534/fibrosis.2023.10008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The endoplasmic reticulum (ER) to Golgi secretory pathway is an elegantly complex process whereby protein cargoes are manufactured, folded, and distributed from the ER to the cisternal layers of the Golgi stack before they are delivered to their final destinations. The export of large bulky cargoes such as procollagen and its trafficking to the Golgi is a sophisticated mechanism requiring TANGO1 (Transport ANd Golgi Organization protein 1. It is also called MIA3 (Melanoma Inhibitory Activity protein 3). TANGO1 has two prominent isoforms, TANGO1-Long and TANGO1-Short, and each isoform has specific functions. On the luminal side, TANGO1-Long has an HSP47 recruitment domain and uses this protein to collect collagen. It can also tether its paralog isoforms cTAGE5 and TALI and along with these proteins enlarges the vesicle to accommodate procollagen. Recent studies show that TANGO1-Long combines retrograde membrane flow with anterograde cargo transport. This complex mechanism is highly activated in fibrosis and promotes the excessive deposition of collagen in the tissues. The therapeutic targeting of TANGO1 may prove successful in the control of fibrotic disorders. This review focuses on TANGO1 and its complex interaction with other procollagen export factors that modulate increased vesicle size to accommodate the export of procollagen.
Collapse
Affiliation(s)
- Carol M. Artlett
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Lianne M. Connolly
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
10
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
King R, Gallagher PJ, Khoriaty R. The congenital dyserythropoieitic anemias: genetics and pathophysiology. Curr Opin Hematol 2022; 29:126-136. [PMID: 35441598 PMCID: PMC9021540 DOI: 10.1097/moh.0000000000000697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Patrick J. Gallagher
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Rosato BE, Marra R, D’Onofrio V, Del Giudice F, Della Monica S, Iolascon A, Andolfo I, Russo R. SEC23B Loss-of-Function Suppresses Hepcidin Expression by Impairing Glycosylation Pathway in Human Hepatic Cells. Int J Mol Sci 2022; 23:ijms23031304. [PMID: 35163229 PMCID: PMC8835815 DOI: 10.3390/ijms23031304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 01/15/2023] Open
Abstract
Biallelic pathogenic variants in the SEC23B gene cause congenital dyserythropoietic anemia type II (CDA II), a rare hereditary disorder hallmarked by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypo-glycosylation of some red blood cell membrane proteins. Abnormalities in SEC23B, which encodes the homonymous cytoplasmic COPII (coat protein complex II) component, disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways. The most harmful complication of CDA II is the severe iron overload. Within our case series (28 CDA II patients), approximately 36% of them exhibit severe iron overload despite mild degree of anemia and slightly increased levels of ERFE (the only erythroid regulator of hepcidin suppression). Thus, we hypothesized a direct role of SEC23B loss-of-function in the pathomechanism of hepatic iron overload. We established a hepatic cell line, HuH7, stably silenced for SEC23B. In silenced cells, we observed significant alterations of the iron status, due to both the alteration in BMP/SMADs pathway effectors and a reduced capability to sense BMP6 stimulus. We demonstrated that the loss-of-function of SEC23B is responsible of the impairment in glycosylation of the membrane proteins involved in the activation of the BMP/SMADs pathway with subsequent hepcidin suppression. Most of these data were confirmed in another hepatic cell line, HepG2, stably silenced for SEC23B. Our findings suggested that the pathogenic mechanism of iron overload in CDA II is associated to both ineffective erythropoiesis and to a specific involvement of SEC23B pathogenic variants at hepatic level. Finally, we demonstrated the ability of SEC23B paralog, i.e., SEC23A, to rescue the hepcidin suppression, highlighting the functional overlap between the two SEC23 paralogs in human hepatic cells.
Collapse
Affiliation(s)
- Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Vanessa D’Onofrio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | | | - Simone Della Monica
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
- Correspondence: (I.A.); (R.R.)
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy; (B.E.R.); (R.M.); (V.D.); (S.D.M.); (A.I.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy;
- Correspondence: (I.A.); (R.R.)
| |
Collapse
|