1
|
Deeleepojananan C, Pandit S, Li J, Schmidt DA, Farmer DK, Grassian VH. Chemical Transformations of Infiltrated Wildfire Smoke on Indoor-Relevant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40242954 DOI: 10.1021/acs.est.4c11771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dylan A Schmidt
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Shin N, Bai B, Joo T, Wang Y, Ng NL, Liu P. Photolytic Mass Loss of Secondary Organic Aerosol Derived from Photooxidation of Biomass Burning Furan Precursors. ACS ES&T AIR 2025; 2:476-485. [PMID: 40242282 PMCID: PMC11997955 DOI: 10.1021/acsestair.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Direct photolysis as a potentially important chemical loss pathway for atmospheric organic aerosol (OA) is increasingly recognized but remains highly uncertain, particularly for secondary organic aerosol (SOA) derived from biomass burning (BB) precursors. We present the measurements of the photolytic mass change of SOA derived from photooxidation of three furan precursors, 3-methylfuran, 2-methylfuran, and furfural, in an environmental chamber under both dry and humid conditions. Each type of SOA was collected on crystal sensors, and the mass losses by photolysis under 300 or 340 nm light were continuously monitored using a quartz crystal microbalance (QCM). By incorporation of measurements and modeling, 10-40% of furan SOA masses can be lost by direct photolysis under solar radiation over their typical atmospheric lifetime. The mass loss fraction is well correlated with the mass fraction of nitrogen-containing compounds (NOC) in the SOA, possibly because these species can largely enhance the light absorption cross section and readily undergo photodissociation under UV light.
Collapse
Affiliation(s)
- Nara Shin
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bin Bai
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Taekyu Joo
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Earth and Environmental Sciences, Korea
University, Seoul 02841, South Korea
| | - Yuchen Wang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- College
of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Nga L. Ng
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pengfei Liu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Wang M, Liu W, Ding X, Liu T, Zhou W, Lou S, Venables DS, Varma R, Huang C, Chen J. Rapid and high-precision cavity-enhanced spectroscopic measurement of HONO and NO 2: Application to emissions from heavy-duty diesel vehicles in chassis dynamometer tests and in mobile monitoring. Talanta 2025; 285:127386. [PMID: 39689639 DOI: 10.1016/j.talanta.2024.127386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Nitrous acid (HONO) is crucial in atmospheric chemistry as it is a major precursor for hydroxyl radicals (OH), the dominant atmospheric oxidant. Hydroxyl radicals are essential in the formation of secondary air pollutants like ozone and particulate matter. This study presents a newly developed Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBBCEAS) system for precise and rapid measurements of HONO and nitrogen dioxide (NO2) emissions. The instrument's optical cavity (formed by two mirrors separated by 96 cm and with reflectivity of 0.99955 at 378 nm) resulted in an effective optical path length of 1.4 km. With an integration time of 5 s, the 1σ measurement precisions for HONO and NO2 were 0.19 ppb and 0.48 ppb with overall measurement uncertainties of 10 % and 7 %, respectively. Comparative analysis of the IBBCEAS and a commercial cavity-attenuated phase shift (CAPS) systems under non-emission conditions demonstrated excellent agreement (slope = 1.01 and R2 = 0.98). The instrument was applied to study HONO and NO2 emissions from heavy-duty vehicles in chassis dynamometer tests and mobile monitoring. Chassis dynamometer tests revealed that HONO and NO2 emissions depend strongly on vehicle speed and driving conditions. We find a HONO/NOX ratio of 1.01 × 10-2 across the entire China-World Transient Vehicle Cycle (C-WTVC) driving cycle. Mobile monitoring in urban areas shows emission characteristics similar to those observed in chassis dynamometer tests. Frequent acceleration-deceleration patterns of diesel vehicles under congested traffic conditions lead to higher HONO and NO2 emissions compared to driving under steady speed conditions. Improving traffic flow conditions will help reduce HONO and NO2 emissions.
Collapse
Affiliation(s)
- Meng Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Wenyang Liu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiang Ding
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Tao Liu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenxin Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shengrong Lou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Dean S Venables
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ravi Varma
- Department of Physics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jun Chen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
4
|
Waxman M, Manczak EM. Air Pollution's Hidden Toll: Links Between Ozone, Particulate Matter, and Adolescent Depression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1663. [PMID: 39767502 PMCID: PMC11675593 DOI: 10.3390/ijerph21121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Rising rates of depression among youth present a growing mental health crisis. Despite growing concerns regarding the risks of air pollution exposure on youth mental and physical health, associations between ambient air pollutants and depression have been largely overlooked in youth. In this cross-sectional study, we investigated associations between ozone, particulate matter, and depressive symptoms in adolescents across 224 Colorado census tracts (average age of 14.45 years, 48.8% female, 48.9% of minority race/ethnicity). Students in participating schools reported depressive symptoms and demographic information, and school addresses were used to compute ozone and particulate matter levels per census tract. Possible confounding variables, including sociodemographic and geographic characteristics, were also addressed. Exploratory analyses examined demographic moderators of these associations. Census tracts with higher ozone concentrations had a higher percentage of adolescents experiencing depressive symptoms. Particulate matter did not emerge as a significant predictor of adolescent depressive symptoms. Secondary analyses demonstrated that associations with ozone were moderated by racial/ethnic and gender compositions of census tracts, with stronger effects in census tracts with higher percentages of individuals with marginalized racial/ethnic and gender identities. Ultimately, this project strengthens our understanding of the interplay between air pollution exposures and mental health during adolescence.
Collapse
Affiliation(s)
- Megan Waxman
- Department of Psychology, University of Denver, Denver, CO 80208, USA
| | | |
Collapse
|
5
|
Joo T, Rogers MJ, Soong C, Hass-Mitchell T, Heo S, Bell ML, Ng NL, Gentner DR. Aged and Obscured Wildfire Smoke Associated with Downwind Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1340-1347. [PMID: 39678709 PMCID: PMC11636238 DOI: 10.1021/acs.estlett.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Fine-mode particulate matter (PM2.5) is a highly detrimental air pollutant, regulated without regard for chemical composition and a chief component of wildfire smoke. As wildfire activity increases with climate change, its growing continental influence necessitates multidisciplinary research to examine smoke's evolving chemical composition far downwind and connect chemical composition-based source apportionment to potential health effects. Leveraging advanced real-time speciated PM2.5 measurements, including an aerosol chemical speciation monitor in conjunction with source apportionment and health risk assessments, we quantified the stark pollution enhancements during peak Canadian wildfire smoke transport to New York City over June 6-9, 2023. Interestingly, we also observed lower-intensity, but frequent, multiday wildfire smoke episodes during May-June 2023, which risk exposure misclassification as generic aged organic PM2.5 via aerosol mass spectrometry given its extensive chemical transformations during 1 to 6+ days of transport. Total smoke-related organic PM2.5 showed significant associations with asthma exacerbations, and estimates of in-lung oxidative stress were enhanced with chemical aging, collectively demonstrating elevated health risks with increasingly frequent smoke episodes. These results show that avoiding underestimated aged biomass burning PM2.5 contributions, especially outside of peak episodes, necessitates real-time chemically resolved PM2.5 monitoring to enable next-generation health studies, models, and policy under far-reaching wildfire impacts in the 21st century.
Collapse
Affiliation(s)
- Taekyu Joo
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Earth and Environmental Sciences, Korea
University, Seoul 02841, South Korea
| | - Mitchell J. Rogers
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Catelynn Soong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tori Hass-Mitchell
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Seulkee Heo
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Michelle L. Bell
- School
of the Environment, Yale University, New Haven, Connecticut 06511, United States
- Interdisciplinary
Program in Precision Public Health, Department of Public Health Sciences, Graduate School of Korea University, Seoul 02841, South Korea
| | - Nga L. Ng
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of
Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Drew R. Gentner
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Maji KJ, Ford B, Li Z, Hu Y, Hu L, Langer CE, Hawkinson C, Paladugu S, Moraga-McHaley S, Woods B, Vansickle M, Uejio CK, Maichak C, Sablan O, Magzamen S, Pierce JR, Russell AG. Impact of the 2022 New Mexico, US wildfires on air quality and health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174197. [PMID: 38914336 DOI: 10.1016/j.scitotenv.2024.174197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The 2022 wildfires in New Mexico, United States, were unparalleled compared to past wildfires in the state in both their scale and intensity, resulting in poor air quality and a catastrophic loss of habitat and livelihood. Among all wildfires in New Mexico in 2022, six wildfires were selected for our study based on the size of the burn area and their proximity to populated areas. These fires accounted for approximately 90 % of the total burn area in New Mexico in 2022. We used a regional chemical transport model and data-fusion technique to quantify the contribution of these six wildfires (April 6 to August 22) on particulate matter (PM2.5: diameter ≤ 2.5 μm) and ozone (O3) concentrations, as well as the associated health impacts from short-term exposure. We estimated that these six wildfires emitted 152 thousand tons of PM2.5 and 287 thousand tons of volatile organic compounds to the atmosphere. We estimated that the average daily wildfire smoke PM2.5 across New Mexico was 0.3 μg/m3, though 1 h maximum exceeded 120 μg/m3 near Santa Fe. Average wildfire smoke maximum daily average 8-h O3 (MDA8-O3) contribution was 0.2 ppb during the study period over New Mexico. However, over the state 1 h maximum smoke O3 exceeded 60 ppb in some locations near Santa Fe. Estimated all-cause excess mortality attributable to short term exposure to wildfire PM2.5 and MDA8-O3 from these six wildfires were 18 (95 % Confidence Interval (CI), 15-21) and 4 (95 % CI: 3-6) deaths. Additionally, we estimate that wildfire PM2.5 was responsible for 171 (95 %: 124-217) excess cases of asthma emergency department visits. Our findings underscore the impact of wildfires on air quality and human health risks, which are anticipated to intensify with global warming, even as local anthropogenic emissions decline.
Collapse
Affiliation(s)
- Kamal J Maji
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bonne Ford
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Zongrun Li
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leiqiu Hu
- Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, AL, USA
| | - Chelsea Eastman Langer
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Colin Hawkinson
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Srikanth Paladugu
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Stephanie Moraga-McHaley
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Brian Woods
- New Mexico Environmental Public Health Tracking, Environmental Health Epidemiology Bureau, Epidemiology and Response Division, New Mexico Department of Health, Santa Fe, NM, USA
| | - Melissa Vansickle
- Department of Geography, Florida State University, Tallahassee, FL, USA
| | | | - Courtney Maichak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Olivia Sablan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Chang D, Li Q, Wang Z, Dai J, Fu X, Guo J, Zhu L, Pu D, Cuevas CA, Fernandez RP, Wang W, Ge M, Fung JCH, Lau AKH, Granier C, Brasseur G, Pozzer A, Saiz-Lopez A, Song Y, Wang T. Significant chlorine emissions from biomass burning affect the long-term atmospheric chemistry in Asia. Natl Sci Rev 2024; 11:nwae285. [PMID: 39309413 PMCID: PMC11413532 DOI: 10.1093/nsr/nwae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Biomass burning (BB) is a major source of trace gases and particles in the atmosphere, influencing air quality, radiative balance, and climate. Previous studies have mainly focused on the BB emissions of carbon and nitrogen species with less attention on chlorine. Reactive chlorine chemistry has significant effects on atmospheric chemistry and air quality. However, quantitative information on chlorine emissions from BB, particularly the long-term trend and associated atmospheric impacts, is limited both on regional and global scales. Here, we report a long-term (2001-2018) high-resolution BB emission inventory for the major chlorine-containing compounds (HCl, chloride, and CH3Cl) in Asia based on satellite observations. We estimate an average of 730 Gg yr-1 chlorine emitted from BB activity in Asia, with China contributing the largest share at 24.2% (177 Gg yr-1), followed by Myanmar at 18.7% and India at 18.3%. Distinct seasonal patterns and significant spatial and interannual variability are observed, mainly driven by human-mediated changes in agricultural activity. By incorporating the newly developed chlorine emission inventory into a global chemistry-climate model (CAM-Chem), we find that the BB-chlorine emissions lead to elevated levels of HCl and CH3Cl (monthly average up to 2062 and 1421 parts per trillion by volume (pptv), respectively), subsequently resulting in noticeable changes in oxidants (up to 3.1% in O3 and 17% in OH radicals). The results demonstrate that BB is not only a significant source of air pollutants but also of oxidants, suggesting a larger role of BB emissions in the atmospheric chemistry and oxidation process than previously appreciated. In light of the projected increase in BB activity toward the end of the century and the extensive control of anthropogenic emissions worldwide, the contribution of BB emissions may become fundamental to air quality composition in the future.
Collapse
Affiliation(s)
- Di Chang
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Environment Research Institute, Shandong University, Qingdao 266000, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jianing Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg 20146, Germany
| | - Xiao Fu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Jia Guo
- Environmental Central Facility, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Lei Zhu
- Atmospheric Chemistry Modeling & Remote Sensing Research Group, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongchuan Pu
- Atmospheric Chemistry Modeling & Remote Sensing Research Group, Southern University of Science and Technology, Shenzhen 518055, China
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza 5501, Argentina
| | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Claire Granier
- NOAA Chemical Sciences Laboratory/CIRES, University of Colorado, Boulder, CO 80305, USA
- Laboratoire d'Aerologie, CNRS, University of Toulouse UPS, Toulouse 31062, France
| | - Guy Brasseur
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg 20146, Germany
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80305, USA
| | - Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
8
|
Hertelendy AJ, Howard C, Sorensen C, Ranse J, Eboreime E, Henderson S, Tochkin J, Ciottone G. Seasons of smoke and fire: preparing health systems for improved performance before, during, and after wildfires. Lancet Planet Health 2024; 8:e588-e602. [PMID: 39122327 DOI: 10.1016/s2542-5196(24)00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024]
Abstract
Increased frequency, intensity, and duration of wildfires are intensifying exposure to direct and smoke-related hazards in many areas, leading to evacuation and smoke-related effects on health and health systems that can affect regions extending over thousands of kilometres. Effective preparation and response are currently hampered by inadequate training, continued siloing of disciplines, insufficient finance, and inadequate coordination between health systems and governance at municipal, regional, national, and international levels. This Review highlights the key health and health systems considerations before, during, and after wildfires, and outlines how a health system should respond to optimise population health outcomes now and into the future. The focus is on the implications of wildfires for air quality, mental health, and emergency management, with elements of international policy and finance also addressed. We discuss commonalities of existing climate-resilient health care and disaster management frameworks and integrate them into an approach that addresses issues of financing, leadership and governance, health workforce, health information systems, infrastructure, supply chain, technologies, community interaction and health-care delivery, before, during, and after a wildfire season. This Review is a practical briefing for leaders and health professionals facing severe wildfire seasons and a call to break down silos and join with other disciplines to proactively plan for and fund innovation and coordination in service of a healthier future.
Collapse
Affiliation(s)
- Attila J Hertelendy
- Department of Information Systems and Business Analytics, College of Business, Florida International University, Miami, FL, USA; Disaster Medicine Fellowship, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Courtney Howard
- Cummings School of Medicine, University of Calgary, Calgary, AB, Canada; Dahdaleh Institute for Global Health Research, York University, ON, Canada
| | - Cecilia Sorensen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Emergency Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jamie Ranse
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ejemai Eboreime
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah Henderson
- Environmental Health Services, BC Center for Disease Control, Vancouver, BC, Canada
| | - Jeffrey Tochkin
- School of Health Related Research, University of Sheffield, Sheffield, UK; Health Emergency Management, Vernon, BC, Canada
| | - Gregory Ciottone
- Disaster Medicine Fellowship, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Smith Lewin C, Kumar A, Herbinet O, Arnoux P, Asgher R, Barua S, Battin-Leclerc F, Farhoudian S, Garcia GA, Tran LS, Vanhove G, Nahon L, Rissanen M, Bourgalais J. 1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry. J Phys Chem A 2024; 128:5374-5385. [PMID: 38917032 DOI: 10.1021/acs.jpca.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | | | - Rabbia Asgher
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | - Sana Farhoudian
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Luc-Sy Tran
- PC2A, Université Lille, CNRS, F-59000 Lille, France
| | | | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | |
Collapse
|
10
|
Chong K, Wang Y, Zheng M, Qu H, Zhang R, Lee YR, Ji Y, Huey LG, Fang H, Song W, Fang Z, Liu C, Gao Y, Tang J, Wang X. Observation-Based Diagnostics of Reactive Nitrogen Recycling through HONO Heterogenous Production: Divergent Implications for Ozone Production and Emission Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11554-11567. [PMID: 38885439 PMCID: PMC11223480 DOI: 10.1021/acs.est.3c07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Understanding of nitrous acid (HONO) production is crucial to photochemical studies, especially in polluted environments like eastern China. In-situ measurements of gaseous and particulate compositions were conducted at a rural coastal site during the 2018 spring Ozone Photochemistry and Export from China Experiment (OPECE). This data set was applied to investigate the recycling of reactive nitrogen through daytime heterogeneous HONO production. Although HONO levels increase during agricultural burning, analysis of the observation data does not indicate more efficient HONO production by agricultural burning aerosols than other anthropogenic aerosols. Box and 1-D modeling analyses reveal the intrinsic relationships between nitrogen dioxide (NO2), particulate nitrate (pNO3), and nitric acid (HNO3), resulting in comparable agreement between observed and simulated HONO concentrations with any one of the three heterogeneous HONO production mechanisms, photosensitized NO2 conversion on aerosols, photolysis of pNO3, and conversion from HNO3. This finding underscores the uncertainties in the mechanistic understanding and quantitative parametrizations of daytime heterogeneous HONO production pathways. Furthermore, the implications for reactive nitrogen recycling, ozone (O3) production, and O3 control strategies vary greatly depending on the HONO production mechanism. On a regional scale, the conversion of HONO from pNO3 can drastically enhance O3 production, while the conversion from NO2 can reduce O3 sensitivity to NOx changes in polluted eastern China.
Collapse
Affiliation(s)
- Kezhen Chong
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuhang Wang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingming Zheng
- School
of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Hang Qu
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruixiong Zhang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Young Ro Lee
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yi Ji
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lewis Gregory Huey
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hua Fang
- Guangzhou
Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Wei Song
- Guangzhou
Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Zheng Fang
- Guangzhou
Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Cheng Liu
- University
of Science and Technology of China, Hefei 230026, China
| | - Yang Gao
- Key
Laboratory of Marine Environment and Ecology, Ministry of Education
of China, Ocean University of China, Qingdao 266100, China
| | - Jianhui Tang
- Yantai Institute
of Coast Zone Research, CAS, Yantai 264003, China
| | - Xinming Wang
- Guangzhou
Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Qu K, Yan Y, Wang X, Jin X, Vrekoussis M, Kanakidou M, Brasseur GP, Lin T, Xiao T, Cai X, Zeng L, Zhang Y. The effect of cross-regional transport on ozone and particulate matter pollution in China: A review of methodology and current knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174196. [PMID: 38942314 DOI: 10.1016/j.scitotenv.2024.174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
China is currently one of the countries impacted by severe atmospheric ozone (O3) and particulate matter (PM) pollution. Due to their moderately long lifetimes, O3 and PM can be transported over long distances, cross the boundaries of source regions and contribute to air pollution in other regions. The reported contributions of cross-regional transport (CRT) to O3 and fine PM (PM2.5) concentrations often exceed those of local emissions in the major regions of China, highlighting the important role of CRT in regional air pollution. Therefore, further improvement of air quality in China requires more joint efforts among regions to ensure a proper reduction in emissions while accounting for the influence of CRT. This review summarizes the methodologies employed to assess the influence of CRT on O3 and PM pollution as well as current knowledge of CRT influence in China. Quantifying CRT contributions in proportion to O3 and PM levels and studying detailed CRT processes of O3, PM and precursors can be both based on targeted observations and/or model simulations. Reported publications indicate that CRT contributes by 40-80 % to O3 and by 10-70 % to PM2.5 in various regions of China. These contributions exhibit notable spatiotemporal variations, with differences in meteorological conditions and/or emissions often serving as main drivers of such variations. Based on trajectory-based methods, transport pathways contributing to O3 and PM pollution in major regions of China have been revealed. Recent studies also highlighted the important role of horizontal transport in the middle/high atmospheric boundary layer or low free troposphere, of vertical exchange and mixing as well as of interactions between CRT, local meteorology and chemistry in the detailed CRT processes. Drawing on the current knowledge on the influence of CRT, this paper provides recommendations for future studies that aim at supporting ongoing air pollution mitigation strategies in China.
Collapse
Affiliation(s)
- Kun Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
| | - Yu Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Xuesong Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China.
| | - Xipeng Jin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mihalis Vrekoussis
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Center of Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Maria Kanakidou
- Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Center of Studies of Air quality and Climate Change, Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Guy P Brasseur
- Max Planck Institute for Meteorology, Hamburg, Germany; National Center for Atmospheric Research, Boulder, CO, USA
| | - Tingkun Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Teng Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Xuhui Cai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100816, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Percy K, Dann T. Long-term trends in British Columbia lower mainland air quality: Criteria air pollutants and VOC. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:261-278. [PMID: 38363818 DOI: 10.1080/10962247.2024.2319770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98th percentile of the daily 24-hr average PM2.5 concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM2.5 concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM2.5 concentrations related to forest fires were a significant influence on PM2.5 ambient concentrations. Annual 4th highest daily maximum 8-hr average O3 concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO2 and SO2 concentrations, and in time-integrated annual VOC concentrations.Implications: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM2.5, O3, NO2, SO2 and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM2.5.
Collapse
Affiliation(s)
- Kevin Percy
- K.E. Percy Air Quality Effects Consulting Ltd, Nasonworth, NB, Canada
| | - Tom Dann
- RS Environmental, Ottawa, ON, Canada
| |
Collapse
|
13
|
Li X, Tian S, Zu K, Xie S, Dong H, Wang H, Chen S, Li Y, Lu K, Zhang Y. Revisiting the Ultraviolet Absorption Cross Section of Gaseous Nitrous Acid (HONO): New Insights for Atmospheric HONO Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4247-4256. [PMID: 38373403 DOI: 10.1021/acs.est.3c08339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.
Collapse
Affiliation(s)
- Xuan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shasha Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kexin Zu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuyang Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huabin Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai 519082, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Czech H, Popovicheva O, Chernov DG, Kozlov A, Schneider E, Shmargunov VP, Sueur M, Rüger CP, Afonso C, Uzhegov V, Kozlov VS, Panchenko MV, Zimmermann R. Wildfire plume ageing in the Photochemical Large Aerosol Chamber (PHOTO-LAC). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:35-55. [PMID: 37873726 DOI: 10.1039/d3em00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Plumes from wildfires are transported over large distances from remote to populated areas and threaten sensitive ecosystems. Dense wildfire plumes are processed by atmospheric oxidants and complex multiphase chemistry, differing from processes at typical ambient concentrations. For studying dense biomass burning plume chemistry in the laboratory, we establish a Photochemical Large Aerosol Chamber (PHOTO-LAC) being the world's largest aerosol chamber with a volume of 1800 m3 and provide its figures of merit. While the photolysis rate of NO2 (jNO2) is comparable to that of other chambers, the PHOTO-LAC and its associated low surface-to-volume ratio lead to exceptionally low losses of particles to the walls. Photochemical ageing of toluene under high-NOx conditions induces substantial formation of secondary organic aerosols (SOAs) and brown carbon (BrC). Several individual nitrophenolic compounds could be detected by high resolution mass spectrometry, demonstrating similar photochemistry to other environmental chambers. Biomass burning aerosols are generated from pine wood and debris under flaming and smouldering combustion conditions and subsequently aged under photochemical and dark ageing conditions, thus resembling day- and night-time atmospheric chemistry. In the unprecedented long ageing with alternating photochemical and dark ageing conditions, the temporal evolution of particulate matter and its chemical composition is shown by ultra-high resolution mass spectrometry. Due to the spacious cavity, the PHOTO-LAC may be used for applications requiring large amounts of particulate matter, such as comprehensive chemical aerosol characterisation or cell exposures under submersed conditions.
Collapse
Affiliation(s)
- Hendryk Czech
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
| | - Olga Popovicheva
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - Dmitriy G Chernov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Alexander Kozlov
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Eric Schneider
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| | - Vladimir P Shmargunov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Maxime Sueur
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, 76700, Harfleur, France
| | - Christopher P Rüger
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| | - Carlos Afonso
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, 76700, Harfleur, France
| | - Viktor Uzhegov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Valerii S Kozlov
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Mikhail V Panchenko
- V. E. Zuev Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, 634055, Tomsk, Russia
| | - Ralf Zimmermann
- Department of Analytical and Technical Chemistry, Chair of Analytical Chemistry, Joint Mass Spectrometry Centre (JMSC), University of Rostock, 18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
15
|
Scarpa C, Bacciu V, Ascoli D, Costa-Saura JM, Salis M, Sirca C, Marchetti M, Spano D. Estimating annual GHG and particulate matter emissions from rural and forest fires based on an integrated modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167960. [PMID: 37865246 DOI: 10.1016/j.scitotenv.2023.167960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Rural and forest fires represent one of the most significant sources of emissions in the atmosphere of trace gases and aerosol particles, which significantly impact carbon budget, air quality, and human health. This paper aims to illustrate an integrated modelling approach combining spatial and non-spatial inputs to provide and enhance the estimation of GHG and particulate matter emissions from surface fires using Italy as a case study over the period 2007-2017. Three main improvements characterize the approach proposed in this work: (i) the collection and development of comprehensive and accurate data inputs related to burned area; (ii) the use of the most recent data on fuel type and load; and (iii) the modelling application to estimate fuel moisture, burning efficiency, and fuel consumption considering meteorological factors and combustion phases. On average, Italy's GHG and particulate matter emissions were 2621 Gg yr-1, ranging from a minimum of 772 Gg yr-1 in 2013 to a maximum of 7020 Gg yr-1 in 2007. Emissions from fire disturbances in broadleaf forests, shrublands, and agricultural fuel types account for about 76 % of the total. Results were compared with global and national inventories and showed good agreement, especially considering CO2 and particulate matter. The approach of this study added confidence in emission estimates, and the results can be utilized in decision support systems to address air quality management and fire impact mitigation policies.
Collapse
Affiliation(s)
- Carla Scarpa
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Valentina Bacciu
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy; EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy.
| | - Davide Ascoli
- University of Torino, Department of Agricultural, Forest and Food Sciences, 10095 Grugliasco, Italy.
| | - Josè Maria Costa-Saura
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy; National Biodiversity Future Center, Palazzo Steri, Piazza Marina 61, 90133 Palermo, Italy.
| | - Michele Salis
- National Research Council, Institute of BioEconomy (CNR-IBE), 07100 Sassari, Italy.
| | - Costantino Sirca
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| | - Marco Marchetti
- University of Study of Molise, Department of Biosciences and Territory, 86090 Pesche, Italy; Fondazione Alberitalia ETS, Via Isola Capaccio 77, 47018 Santa Sofia, Italy.
| | - Donatella Spano
- EuroMediterranean Center on Climate Change (CMCC) Foundation, Impact on Agriculture, Forest, and Ecosystem Services (IAFES) Division, 07100 Sassari, Italy; University of Sassari, Department of Agriculture Sciences, 07100 Sassari, Italy.
| |
Collapse
|
16
|
Xue C, Krysztofiak G, Ren Y, Cai M, Mercier P, Fur FL, Robin C, Grosselin B, Daële V, McGillen MR, Mu Y, Catoire V, Mellouki A. A study on wildfire impacts on greenhouse gas emissions and regional air quality in South of Orléans, France. J Environ Sci (China) 2024; 135:521-533. [PMID: 37778824 DOI: 10.1016/j.jes.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 10/03/2023]
Abstract
Wildfire events are increasing globally which may be partly associated with climate change, resulting in significant adverse impacts on local, regional air quality and global climate. In September 2020, a small wildfire (burned area: 36.3 ha) event occurred in Souesmes (Loir-et-Cher, Sologne, France), and its plume spread out over 200 km on the following day as observed by the MODIS satellite. Based on measurements at a suburban site (∼ 50 km northwest of the fire location) in Orléans and backward trajectory analysis, young wildfire plumes were characterized. Significant increases in gaseous pollutants (CO, CH4, N2O, VOCs, etc.) and particles (including black carbon) were found within the wildfire plumes, leading to a reduced air quality. Emission factors, defined as EF (X) = ∆X/∆CO (where, X represents the target species), of various trace gases and black carbon within the young wildfire plumes were determined accordingly and compared with previous studies. Changes in the ambient ions (such as ammonium, sulfate, nitrate, chloride, and nitrite in the particle- and gas- phase) and aerosol properties (e.g., aerosol water content, aerosol pH) were also quantified and discussed. Moreover, we estimated the total carbon and climate-related species (e.g., CO2, CH4, N2O, and BC) emissions and compared them with fire emission inventories. Current biomass burning emission inventories have uncertainties in estimating small fire burned areas and emissions. For instance, we found that the Global Fire Assimilation System (GFAS) may underestimate emissions (e.g., CO) of this small wildfire while other inventories (GFED and FINN) showed significant overestimation. Considering that it is the first time to record wildfire plumes in this region, related atmospheric implications are presented and discussed.
Collapse
Affiliation(s)
- Chaoyang Xue
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS - Université Orléans - CNES (UMR 7328), Orléans Cedex 2 45071, France
| | - Gisèle Krysztofiak
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS - Université Orléans - CNES (UMR 7328), Orléans Cedex 2 45071, France
| | - Yangang Ren
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France; Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Cai
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France
| | - Patrick Mercier
- Lig'Air- Association de surveillance de la qualité de l'air en région Centre-Val de Loire, Saint-Cyr-en-Val 45590, France
| | - Frédéric Le Fur
- Lig'Air- Association de surveillance de la qualité de l'air en région Centre-Val de Loire, Saint-Cyr-en-Val 45590, France
| | - Corinne Robin
- Lig'Air- Association de surveillance de la qualité de l'air en région Centre-Val de Loire, Saint-Cyr-en-Val 45590, France
| | - Benoit Grosselin
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France
| | - Véronique Daële
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France
| | - Max R McGillen
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Valéry Catoire
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS - Université Orléans - CNES (UMR 7328), Orléans Cedex 2 45071, France.
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, Orléans Cedex 2 45071, France; Mohammed V University, Rabat, Morocco.
| |
Collapse
|
17
|
Jin X, Fiore AM, Cohen RC. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO x-VOC Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14648-14660. [PMID: 37703172 DOI: 10.1021/acs.est.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The frequency of wildfires in the western United States has escalated in recent decades. Here we examine the impacts of wildfires on ground-level ozone (O3) precursors and the O3-NOx-VOC chemistry from the source to downwind urban areas. We use satellite retrievals of nitrogen dioxide (NO2) and formaldehyde (HCHO, an indicator of VOC) from the Tropospheric Monitoring Instrument (TROPOMI) to track the evolution of O3 precursors from wildfires over California from 2018 to 2020. We improved these satellite retrievals by updating the a priori profiles and explicitly accounting for the effects of smoke aerosols. TROPOMI observations reveal that the extensive and intense fire smoke in 2020 led to an overall increase in statewide annual average HCHO and NO2 columns by 16% and 9%. The increase in the level of NO2 offsets the anthropogenic NOx emission reduction from the COVID-19 lockdown. The enhancement of NO2 within fire plumes is concentrated near the regions actively burning, whereas the enhancement of HCHO is far-reaching, extending from the source regions to urban areas downwind due to the secondary production of HCHO from longer-lived VOCs such as ethene. Consequently, a larger increase in NOx occurs in NOx-limited source regions, while a greater increase in HCHO occurs in VOC-limited urban areas, both contributing to more efficient O3 production.
Collapse
Affiliation(s)
- Xiaomeng Jin
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Arlene M Fiore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald C Cohen
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Sekimoto K, Coggon MM, Gkatzelis GI, Stockwell CE, Peischl J, Soja AJ, Warneke C. Fuel-Type Independent Parameterization of Volatile Organic Compound Emissions from Western US Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13193-13204. [PMID: 37611137 PMCID: PMC10483695 DOI: 10.1021/acs.est.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).
Collapse
Affiliation(s)
- Kanako Sekimoto
- Graduate
School of Nanobioscience, Yokohama City
University, Yokohama, Kanagawa 236-0027, Japan
| | - Matthew M. Coggon
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| | - Georgios I. Gkatzelis
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Chelsea E. Stockwell
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Jeff Peischl
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Amber J. Soja
- National
Institute of Aerospace, Hampton, Virginia 23666, United States
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Carsten Warneke
- NOAA
Chemical Sciences Laboratory, Boulder, Corolado 80305, United States
| |
Collapse
|
19
|
Liu Y, Huang Y, Liggio J, Hayden K, Mihele C, Wentzell J, Wheeler M, Leithead A, Moussa S, Xie C, Yang Y, Zhang Y, Han T, Li SM. A newly developed Lagrangian chemical transport scheme: Part 1. Simulation of a boreal forest fire plume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163232. [PMID: 37023817 DOI: 10.1016/j.scitotenv.2023.163232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Forest fire research over the last several decades has improved the understanding of fire emissions and impacts. Nevertheless, the evolution of forest fire plumes remains poorly quantified and understood. Here, a Lagrangian chemical transport model, the Forward Atmospheric Stochastic Transport model coupled with the Master Chemical Mechanism (FAST-MCM), has been developed to simulate the transport and chemical transformations of plumes from a boreal forest fire over several hours since their emission. The model results for NOx (NO and NO2), O3, HONO, HNO3, pNO3 and 70 VOC species are compared with airborne in-situ measurements within plume centers and their surrounding portions during the transport. Comparisons between simulation results and measurements show that the FAST-MCM model can properly reproduce the physical and chemical evolution of forest fire plumes. The results indicate that the model can be an important tool used to aid the understanding of the downwind impacts of forest fire plumes.
Collapse
Affiliation(s)
- Yayong Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yufei Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - John Liggio
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Katherine Hayden
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Cris Mihele
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Jeremy Wentzell
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Michael Wheeler
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amy Leithead
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Samar Moussa
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Conghui Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yanrong Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Yuheng Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Tianran Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871
| | - Shao-Meng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China 100871.
| |
Collapse
|
20
|
Rickly PS, Coggon MM, Aikin KC, Alvarez RJ, Baidar S, Gilman JB, Gkatzelis GI, Harkins C, He J, Lamplugh A, Langford AO, McDonald BC, Peischl J, Robinson MA, Rollins AW, Schwantes RH, Senff CJ, Warneke C, Brown SS. Influence of Wildfire on Urban Ozone: An Observationally Constrained Box Modeling Study at a Site in the Colorado Front Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1257-1267. [PMID: 36607321 DOI: 10.1021/acs.est.2c06157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.
Collapse
Affiliation(s)
- Pamela S Rickly
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Kenneth C Aikin
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Raul J Alvarez
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Sunil Baidar
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Colin Harkins
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jian He
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Aaron Lamplugh
- Institute of Behavioral Science, University of Colorado, Boulder, Colorado80309, United States
| | - Andrew O Langford
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Brian C McDonald
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Michael A Robinson
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Andrew W Rollins
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | | | - Christoph J Senff
- Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado80305, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
| | - Steven S Brown
- NOAA Chemical Sciences Laboratory, Boulder, Colorado80305, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
21
|
Tan Z, Lu K, Ma X, Chen S, He L, Huang X, Li X, Lin X, Tang M, Yu D, Wahner A, Zhang Y. Multiple Impacts of Aerosols on O 3 Production Are Largely Compensated: A Case Study Shenzhen, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17569-17580. [PMID: 36473087 DOI: 10.1021/acs.est.2c06217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tropospheric ozone (O3) is a harmful gas compound to humans and vegetation, and it also serves as a climate change forcer. O3 is formed in the reactions of nitrogen oxides and volatile organic compounds (VOCs) with light. In this study, an O3 pollution episode encountered in Shenzhen, South China in 2018 was investigated to illustrate the influence of aerosols on local O3 production. We used a box model with comprehensive heterogeneous mechanisms and empirical prediction of photolysis rates to reproduce the O3 episode. Results demonstrate that the aerosol light extinction and NO2 heterogeneous reactions showed comparable influence but opposite signs on the O3 production. Hence, the influence of aerosols from different processes is largely counteracted. Sensitivity tests suggest that O3 production increases with further reduction in aerosols in this study, while the continued NOx reduction finally shifts O3 production to an NOx-limited regime with respect to traditional O3-NOx-VOC sensitivity. Our results shed light on the role of NOx reduction on O3 production and highlight further mitigation in NOx not only limiting the production of O3 but also helping to ease particulate nitrate, as a path for cocontrol of O3 and fine particle pollution.
Collapse
Affiliation(s)
- Zhaofeng Tan
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Xiaoyu Lin
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Mengxue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, 518055Shenzhen, China
| | - Dan Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
| | - Andreas Wahner
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871Beijing, China
- International Joint Laboratory for Regional Pollution Control, 52428Jülich, Germany
- International Joint Laboratory for Regional Pollution Control, 100871Beijing, China
| |
Collapse
|
22
|
Childs ML, Li J, Wen J, Heft-Neal S, Driscoll A, Wang S, Gould CF, Qiu M, Burney J, Burke M. Daily Local-Level Estimates of Ambient Wildfire Smoke PM 2.5 for the Contiguous US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13607-13621. [PMID: 36134580 DOI: 10.1021/acs.est.2c02934] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Smoke from wildfires is a growing health risk across the US. Understanding the spatial and temporal patterns of such exposure and its population health impacts requires separating smoke-driven pollutants from non-smoke pollutants and a long time series to quantify patterns and measure health impacts. We develop a parsimonious and accurate machine learning model of daily wildfire-driven PM2.5 concentrations using a combination of ground, satellite, and reanalysis data sources that are easy to update. We apply our model across the contiguous US from 2006 to 2020, generating daily estimates of smoke PM2.5 over a 10 km-by-10 km grid and use these data to characterize levels and trends in smoke PM2.5. Smoke contributions to daily PM2.5 concentrations have increased by up to 5 μg/m3 in the Western US over the last decade, reversing decades of policy-driven improvements in overall air quality, with concentrations growing fastest for higher income populations and predominantly Hispanic populations. The number of people in locations with at least 1 day of smoke PM2.5 above 100 μg/m3 per year has increased 27-fold over the last decade, including nearly 25 million people in 2020 alone. Our data set can bolster efforts to comprehensively understand the drivers and societal impacts of trends and extremes in wildfire smoke.
Collapse
Affiliation(s)
- Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California 94305, United States
| | - Jessica Li
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Jeffrey Wen
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Anne Driscoll
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
| | - Sherrie Wang
- Goldman School of Public Policy, UC Berkeley, Berkeley, California 94720, United States
| | - Carlos F Gould
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Jennifer Burney
- Global Policy School, UC San Diego, San Diego, California 92093, United States
| | - Marshall Burke
- Center on Food Security and the Environment, Stanford University, Stanford, California 94305, United States
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
- National Bureau of Economic Research, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
23
|
Saide PE, Thapa LH, Ye X, Pagonis D, Campuzano‐Jost P, Guo H, Schuneman ML, Jimenez J, Moore R, Wiggins E, Winstead E, Robinson C, Thornhill L, Sanchez K, Wagner NL, Ahern A, Katich JM, Perring AE, Schwarz JP, Lyu M, Holmes CD, Hair JW, Fenn MA, Shingler TJ. Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL099175. [PMID: 36591326 PMCID: PMC9788259 DOI: 10.1029/2022gl099175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/17/2023]
Abstract
Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign we find that mid-visible smoke MEE can change by a factor of 2-3 between fresh smoke (<2 hr old) and one-day-old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX-AQ measurements increase with age (from 1.40 - 1.45 to 1.5-1.54 from fresh to one-day-old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging.
Collapse
Affiliation(s)
- Pablo E. Saide
- Department of Atmospheric and Oceanic SciencesUniversity of California—Los AngelesLos AngelesCAUSA
- Institute of the Environment and SustainabilityUniversity of California—Los AngelesLos AngelesCAUSA
| | - Laura H. Thapa
- Department of Atmospheric and Oceanic SciencesUniversity of California—Los AngelesLos AngelesCAUSA
| | - Xinxin Ye
- Department of Atmospheric and Oceanic SciencesUniversity of California—Los AngelesLos AngelesCAUSA
| | - Demetrios Pagonis
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
| | - Pedro Campuzano‐Jost
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
| | - Hongyu Guo
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
| | - Melinda L. Schuneman
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
| | - Jose‐Luis Jimenez
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
| | | | | | | | | | | | | | - Nicholas L. Wagner
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
- National Oceanic and Atmospheric AdministrationChemical Sciences LaboratoryBoulderCOUSA
| | - Adam Ahern
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
- National Oceanic and Atmospheric AdministrationChemical Sciences LaboratoryBoulderCOUSA
| | - Joseph M. Katich
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
- National Oceanic and Atmospheric AdministrationChemical Sciences LaboratoryBoulderCOUSA
| | - Anne E. Perring
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
- Department of ChemistryColgate UniversityHamiltonNYUSA
| | - Joshua P. Schwarz
- National Oceanic and Atmospheric AdministrationChemical Sciences LaboratoryBoulderCOUSA
| | - Ming Lyu
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado, BoulderBoulderCOUSA
- National Oceanic and Atmospheric AdministrationChemical Sciences LaboratoryBoulderCOUSA
| | - Christopher D. Holmes
- Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeFLUSA
| | | | - Marta A. Fenn
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications IncHamptonVAUSA
| | - Taylor J. Shingler
- NASA Langley Research CenterHamptonVAUSA
- Science Systems and Applications IncHamptonVAUSA
| |
Collapse
|
24
|
Zhang C, Li J, Zhao W, Yao Q, Wang H, Wang B. Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155904. [PMID: 35569659 DOI: 10.1016/j.scitotenv.2022.155904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) plays a vital role in atmospheric chemistry and O3 formation. Open biomass burning (OBB) is considered to be an important source of HCHO; however, its quantitative contribution to ambient HCHO remains poorly understood due to the lack of reliable high-resolution emission inventories. In this study, a satellite-based method coupled with local emission factors was developed to estimate the hourly primary emissions of HCHO and volatile organic compound (VOC) precursors from OBB in Guangdong (GD) Province of southern China. Furthermore, the contribution of OBB to ambient HCHO was quantified using the Community Multi-scale Air Quality model. The results suggested that in average OBB emissions contributed 5293 tons of primary HCHO per year, accounting for ~14% of the total anthropogenic HCHO emissions in GD. The ambient HCHO concentration ranged from 0.3 ppbv to 8.7 ppbv during normal days, and from 8 ppbv to 45 ppbv in downwind area during OBB impacted days. The monthly contribution of OBB to local HCHO levels reached up to 50% at locations with frequent fires and over 70% during a forest fire event. Ambient HCHO was heavily affected by primary OBB emissions near the source region and by the oxidation of OBB-emitted VOCs in the downwind area. Secondary HCHO formation from OBB emissions was enhanced during photochemical pollution episodes, especially under conditions of high O3 and low NOx. OBB-emitted ethene was identified as the most important VOC precursor of HCHO and contributed to the formation of ~50% of the secondary HCHO. The HCHO formation potential of cropland fires was 26% higher than that of forest fires. Our results suggest that OBB can elevate ambient HCHO levels significantly. Thus, strict control policies on OBB should be implemented, especially for open burning agricultural residues in upwind areas on serious photochemical pollution days.
Collapse
Affiliation(s)
- Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wenlong Zhao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Qian Yao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
25
|
Stockwell CE, Bela MM, Coggon MM, Gkatzelis GI, Wiggins E, Gargulinski EM, Shingler T, Fenn M, Griffin D, Holmes CD, Ye X, Saide PE, Bourgeois I, Peischl J, Womack CC, Washenfelder RA, Veres PR, Neuman JA, Gilman JB, Lamplugh A, Schwantes RH, McKeen SA, Wisthaler A, Piel F, Guo H, Campuzano-Jost P, Jimenez JL, Fried A, Hanisco TF, Huey LG, Perring A, Katich JM, Diskin GS, Nowak JB, Bui TP, Halliday HS, DiGangi JP, Pereira G, James EP, Ahmadov R, McLinden CA, Soja AJ, Moore RH, Hair JW, Warneke C. Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7564-7577. [PMID: 35579536 DOI: 10.1021/acs.est.1c07121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.
Collapse
Affiliation(s)
- Chelsea E Stockwell
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Megan M Bela
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Matthew M Coggon
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Georgios I Gkatzelis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Elizabeth Wiggins
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | | | - Taylor Shingler
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Marta Fenn
- NASA Langley Research Center, Hampton, Virginia 23681, United States
- Science Systems and Applications, Inc., Hampton, Virginia 23666, United States
| | - Debora Griffin
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Christopher D Holmes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Xinxin Ye
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
| | - Pablo E Saide
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, United States
| | - Ilann Bourgeois
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Caroline C Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | | | - Patrick R Veres
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - J Andrew Neuman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Aaron Lamplugh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Rebecca H Schwantes
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Stuart A McKeen
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Armin Wisthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
- Department of Chemistry, University of Oslo, Oslo 0371, Norway
| | - Felix Piel
- Department of Chemistry, University of Oslo, Oslo 0371, Norway
- Ionicon Analytik, Innsbruck 6020, Austria
| | - Hongyu Guo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alan Fried
- Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Thomas F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Lewis Gregory Huey
- School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Anne Perring
- Department of Chemistry, Colgate University, Madison County, Hamilton, New York 13346, United States
| | - Joseph M Katich
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Glenn S Diskin
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - John B Nowak
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - T Paul Bui
- Atmospheric Sciences Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Hannah S Halliday
- Environmental Protection Agency, Research Triangle, North Carolina 27709, United States
| | - Joshua P DiGangi
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Gabriel Pereira
- Department of Geosciences, Federal University of Sao Joao del-Rei, Sao Joao del-Rei, MG 36307, Brazil
| | - Eric P James
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Global Systems Laboratory, Boulder, Colorado 80305, United States
| | - Ravan Ahmadov
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Global Systems Laboratory, Boulder, Colorado 80305, United States
| | - Chris A McLinden
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Amber J Soja
- NASA Langley Research Center, Hampton, Virginia 23681, United States
- National Institute of Aerospace, Hampton, Virginia 23666, United States
| | - Richard H Moore
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Johnathan W Hair
- NASA Langley Research Center, Hampton, Virginia 23681, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
26
|
Liang Y, Weber RJ, Misztal PK, Jen CN, Goldstein AH. Aging of Volatile Organic Compounds in October 2017 Northern California Wildfire Plumes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1557-1567. [PMID: 35037463 DOI: 10.1021/acs.est.1c05684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the western United States, the number and severity of large wildfires have been growing for decades. Biomass burning (BB) is a major source of volatile organic compounds (VOCs) to the atmosphere both globally and regionally. Following emission, BB VOCs are oxidized while being transported downwind, producing ozone, secondary organic aerosols, and secondary hazardous VOCs. In this research, we measured VOCs using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) in an urban area 55-65 km downwind of the October 2017 Northern California wildfires. Nonaromatic oxygenated compounds were the dominant component of BB VOCs measured. In the smoke plumes, the VOCs account for 70-75% of the total observed organic carbon, with the remainder being particulate matter (with a diameter of <2.5 μm, PM2.5). We show that the correlation of VOCs with furan (primary BB VOC) and maleic anhydride (secondary BB VOC) can indicate the origin of the VOCs. This was further confirmed by the diurnal variations of the VOCs and their concentration-weighted trajectories. Oxidation during transport consumed highly reactive compounds including benzenoids, furanoids, and terpenoids and produced more oxygenated VOCs. Furthermore, wildfire VOCs altered the ozone formation regime and raised the O3 levels in the San Francisco Bay Area.
Collapse
Affiliation(s)
- Yutong Liang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert J Weber
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Coty N Jen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United State
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
27
|
Schneider SR, Abbatt JP. Wildfire atmospheric chemistry: climate and air quality impacts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|