1
|
Snoj J, Zhou W, Ljubetič A, Jerala R. Advances in designed bionanomolecular assemblies for biotechnological and biomedical applications. Curr Opin Biotechnol 2025; 92:103256. [PMID: 39827499 DOI: 10.1016/j.copbio.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in protein engineering have revolutionized the design of bionanomolecular assemblies for functional therapeutic and biotechnological applications. This review highlights the progress in creating complex protein architectures, encompassing both finite and extended assemblies. AI tools, including AlphaFold, RFDiffusion, and ProteinMPNN, have significantly enhanced the scalability and success of de novo designs. Finite assemblies, like nanocages and coiled-coil-based structures, enable precise molecular encapsulation or functional protein domain presentation. Extended assemblies, including filaments and 2D/3D lattices, offer unparalleled structural versatility for applications such as vaccine development, responsive biomaterials, and engineered cellular scaffolds. The convergence of artificial intelligence-driven design and experimental validation promises strong acceleration of the development of tailored protein assemblies, offering new opportunities in synthetic biology, materials science, biotechnology, and biomedicine.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Vidmar S, Šmidlehner T, Aupič J, Strmšek Ž, Ljubetič A, Xiao F, Hu G, Liu C, Beck F, Erdmann PS, Jerala R. Beyond Dimerization: Harnessing Tetrameric Coiled-Coils for Nanostructure Assembly. Angew Chem Int Ed Engl 2025; 64:e202422075. [PMID: 39666653 PMCID: PMC11914934 DOI: 10.1002/anie.202422075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures. Tetramerizing helical bundles can run in parallel or antiparallel orientation, expanding the number of topological solutions for modular nanostructures. Furthermore, this strategy facilitates the construction of nanostructures from two identical polypeptide chains. Importantly, tetrameric modules substantially stabilized protein nanostructures against air-water interface denaturation, enabling the determination of the first cryo-electron microscopy three-dimensional structure of a coiled-coil-based nanostructure, confirming the designed agreement of the modules forming a tetrahedral cage.
Collapse
Affiliation(s)
- Sara Vidmar
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Interdisciplinary Doctoral Programme in BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Jana Aupič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Key Laboratory of Pathogen Bioscience and Anti-infective MedicineDepartment of BioinformaticsCenter for Systems BiologySchool of Life SciencesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Chuan Liu
- Human TechnopoleMilanItaly
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Florian Beck
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Roman Jerala
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- EN-FIST Centre of ExcellenceLjubljanaSlovenia
| |
Collapse
|
3
|
Hiefinger C, Zinner G, Fürtges TF, Narindoshvili T, Schindler S, Bruckmann A, Rudack T, Raushel FM, Sterner R. Photocontrolling the Enantioselectivity of a Phosphotriesterase via Incorporation of a Light-Responsive Unnatural Amino Acid. JACS AU 2025; 5:858-870. [PMID: 40017780 PMCID: PMC11863162 DOI: 10.1021/jacsau.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
The external control of catalytic activity and substrate specificity of enzymes by light has aroused great interest in the fields of biocatalysis and pharmacology. Going beyond, we have attempted to photocontrol enzyme stereoselectivity on the example of phosphotriesterase (PTE), which is capable of hydrolyzing a wide variety of racemic organophosphorus substrates where one of two enantiomers is often highly toxic. To pursue this goal, the photocaged unnatural amino acid o-nitrobenzyl-l-tyrosine (ONBY) was incorporated by genetic code expansion at the large subsite of the active center, together with additional mutations at the small subsite. The stereoselectivities of the resulting PTE variants were tested with the achiral control substrate paraoxon and four different racemic substrates, which contained a p-nitrophenol leaving group in combination with either methyl-phenyl, ethyl-phenyl, methyl-cyclohexyl, or ethyl-cyclohexyl substituents. Comparison of the enantioselectivities (k cat/K M for Sp divided by k cat/K M for Rp) before and after decaging of ONBY using irradiation revealed the desired photoinduced inversion of enantioselectivity for three of the variants: PTE_I106A-H257ONBY exhibited a 43-fold stereoselectivity switch for the methyl-phenyl substrate, PTE_I106A-F132A-H257ONBY a 184-fold stereoselectivity switch for the methyl-cyclohexyl substrate, and PTE_I106A-F132A-S308A-H257ONBY a 52-fold and a 57-fold stereoselectivity switch for the methyl-cyclohexyl and the ethyl-cyclohexyl substrates. A computational analysis including molecular dynamics simulations and docking showed that a complicated interplay between steric constraints and specific enzyme-substrate interactions is responsible for the observed effects. Our findings significantly broaden the scope of possibilities for the spatiotemporal control of enantioselective transformations using light in biocatalytic systems.
Collapse
Affiliation(s)
- Caroline Hiefinger
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Gabriel Zinner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Torben F. Fürtges
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Tamari Narindoshvili
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Sebastian Schindler
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Astrid Bruckmann
- Institute
of Biochemistry, Genetics and Microbiology, Regensburg Center for
Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Till Rudack
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Frank M. Raushel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Žigová K, Marčeková Z, Petrovičová T, Lorková K, Čacho F, Krasňan V, Rebroš M. Intensified functional expression of recombinant Zymomonas mobilis zinc-dependent alcohol dehydrogenase I. J Biotechnol 2024; 395:141-148. [PMID: 39349124 DOI: 10.1016/j.jbiotec.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
Alcohol dehydrogenase I from Zymomonas mobilis (zmADH1) is a zinc-dependent oxidoreductase that catalyses the oxidation of primary or secondary alcohols to the corresponding aldehydes or ketones using NAD+/NADH as a cofactor. Efforts to express zmADH1 in Escherichia coli in a soluble form have been laden with solubility difficulties. A soluble form of recombinant zmADH1 was achieved by the addition of 1 mM zinc into media. Zinc addition facilitates the proper folding of recombinant zmADH1 and significantly reduces the formation of inclusion bodies. The yield of recombinant zmADH1 represents approximately 30 mg/1 L Luria-Bertani media. Intensified production in fermenters showed a striking difference between the specific and total activities of zmADH1 produced at different zinc concentrations. The zmADH1 showed an affinity to medium-chain alcohols, especially 1-pentanol, which could be used in new greener routes for preparation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Klaudia Žigová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Zuzana Marčeková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Tatiana Petrovičová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Katarína Lorková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - František Čacho
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia.
| |
Collapse
|
5
|
Mezgec K, Snoj J, Ulčakar L, Ljubetič A, Tušek Žnidarič M, Škarabot M, Jerala R. Coupling of Spectrin Repeat Modules for the Assembly of Nanorods and Presentation of Protein Domains. ACS NANO 2024; 18:28748-28763. [PMID: 39392430 PMCID: PMC11503911 DOI: 10.1021/acsnano.4c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Modular protein engineering is a powerful approach for fabricating high-molecular-weight assemblies and biomaterials with nanoscale precision. Herein, we address the challenge of designing an extended nanoscale filamentous architecture inspired by the central rod domain of human dystrophin, which protects sarcolemma during muscle contraction and consists of spectrin repeats composed of three-helical bundles. A module of three tandem spectrin repeats was used as a rigid building block self-assembling via coiled-coil (CC) dimer-forming peptides. CC peptides were precisely integrated to maintain the spectrin α-helix continuity in an appropriate frame to form extended nanorods. An orthogonal set of customizable CC heterodimers was harnessed for modular rigid domain association, which could be additionally regulated by metal ions and chelators. We achieved a robust assembly of rigid rods several micrometers in length, determined by atomic force microscopy and negative stain transmission electron microscopy. Furthermore, these rigid rods can serve as a scaffold for the decoration of diverse proteins or biologically active peptides along their length with adjustable spacing up to tens of nanometers, as confirmed by the DNA-PAINT super-resolution microscopy. This demonstrates the potential of modular bottom-up protein engineering and tunable CCs for the fabrication of functionalized protein biomaterials.
Collapse
Affiliation(s)
- Klemen Mezgec
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Snoj
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Liza Ulčakar
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department
of Biotechnology and Systems Biology, National
Institute of Biology, SI-1000 Ljubljana, Slovenia
| | - Miha Škarabot
- Condensed
Matter Department, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- CTGCT, Centre
of Technology of Gene and Cell Therapy, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
7
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
8
|
Plaper T, Rihtar E, Železnik Ramuta T, Forstnerič V, Jazbec V, Ivanovski F, Benčina M, Jerala R. The art of designed coiled-coils for the regulation of mammalian cells. Cell Chem Biol 2024; 31:1460-1472. [PMID: 38971158 PMCID: PMC11335187 DOI: 10.1016/j.chembiol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Synthetic biology aims to engineer complex biological systems using modular elements, with coiled-coil (CC) dimer-forming modules are emerging as highly useful building blocks in the regulation of protein assemblies and biological processes. Those small modules facilitate highly specific and orthogonal protein-protein interactions, offering versatility for the regulation of diverse biological functions. Additionally, their design rules enable precise control and tunability over these interactions, which are crucial for specific applications. Recent advancements showcase their potential for use in innovative therapeutic interventions and biomedical applications. In this review, we discuss the potential of CCs, exploring their diverse applications in mammalian cells, such as synthetic biological circuit design, transcriptional and allosteric regulation, cellular assemblies, chimeric antigen receptor (CAR) T cell regulation, and genome editing and their role in advancing the understanding and regulation of cellular processes.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Erik Rihtar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Judd KD, Mendes de Oliveira D, Urbina AS, Ben-Amotz D. Influence of H +, OH - and salts on hydrophobic self-assembly. Chem Sci 2024; 15:6378-6384. [PMID: 38699259 PMCID: PMC11062122 DOI: 10.1039/d3sc06995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
In spite of the ubiquity of acid/base ions and salts in biological systems, their influence on hydrophobic self-assembly remains an open question. Here we use a combined experimental and theoretical strategy to quantify the influence of H+ and OH-, as well as salts containing Li+, Na+, Cl- and Br-, on the hydrophobic self-assembly of micelles composed of neutral oily 1,2-hexanediol surfactants. The distributions of aggregate sizes, both below and above the critical micelle concentration (CMC), are determined using Raman multivariate curve resolution (Raman-MCR) spectroscopy to quantify the multi-aggregation chemical potential surface (MCPS) that drives self-assembly. The results reveal that ions have little influence on the formation of hydrophobic contact dimers but can significantly drive high-order self assembly. Moreover, the hydration-shells of oily solutes are found to expel the above salt ions and OH-, but to attract H+, with wide-ranging implications.
Collapse
Affiliation(s)
- Kenneth D Judd
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | | | - Andres S Urbina
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Dor Ben-Amotz
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
10
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells‐Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. Protein Sci 2024; 33:e4973. [PMID: 38533546 PMCID: PMC10966355 DOI: 10.1002/pro.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Elena A. Scott
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
| | - Kyle Meador
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eric J. Lee
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Todd O. Yeates
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA‐DOE Institute for Genomics and ProteomicsLos AngelesCaliforniaUSA
| | | |
Collapse
|
11
|
Snoj J, Lapenta F, Jerala R. Preorganized cyclic modules facilitate the self-assembly of protein nanostructures. Chem Sci 2024; 15:3673-3686. [PMID: 38455016 PMCID: PMC10915844 DOI: 10.1039/d3sc06658d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The rational design of supramolecular assemblies aims to generate complex systems based on the simple information encoded in the chemical structure. Programmable molecules such as nucleic acids and polypeptides are particularly suitable for designing diverse assemblies and shapes not found in nature. Here, we describe a strategy for assembling modular architectures based on structurally and covalently preorganized subunits. Cyclization through spontaneous self-splicing of split intein and coiled-coil dimer-based interactions of polypeptide chains provide structural constraints, facilitating the desired assembly. We demonstrate the implementation of a strategy based on the preorganization of the subunits by designing a two-chain coiled-coil protein origami (CCPO) assembly that adopts a tetrahedral topology only when one or both subunit chains are covalently cyclized. Employing this strategy, we further design a 109 kDa trimeric CCPO assembly comprising 24 CC-forming segments. In this case, intein cyclization was crucial for the assembly of a concave octahedral scaffold, a newly designed protein fold. The study highlights the importance of preorganization of building modules to facilitate the self-assembly of higher-order supramolecular structures.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- Interdisciplinary Doctoral Program in Biomedicine, University of Ljubljana Kongresni trg 12 SI-1000 Ljubljana Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- EN-FIST Centre of Excellence Trg OF 13 SI-1000 Ljubljana Slovenia
| |
Collapse
|
12
|
Bajpayee N, Pophali S, Vijayakanth T, Nandi S, Desai AV, Kumar V, Jain R, Bera S, Shimon LJW, Misra R. Metal-driven folding and assembly of a minimal β-sheet into a 3D-porous honeycomb framework. Chem Commun (Camb) 2024; 60:2621-2624. [PMID: 38299634 DOI: 10.1039/d3cc05185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In contrast to short helical peptides, constrained peptides, and foldamers, the design and fabrication of crystalline 3D frameworks from the β-sheet peptides are rare because of their high self-aggregation propensity to form 1D architectures. Herein, we demonstrate the formation of a 3D porous honeycomb framework through the silver coordination of a minimal β-sheet forming a peptide having terminal metal coordinated 4- and 3-pyridyl ligands.
Collapse
Affiliation(s)
- Nikhil Bajpayee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali, 160062, India.
| | - Salil Pophali
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali, 160062, India.
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, India
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali, 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar (Mohali), Mohali, 160062, India.
| |
Collapse
|
13
|
Perez AR, Lee Y, Colvin ME, Merg AD. Interhelical E@g-N@a interactions modulate coiled coil stability within a de novo set of orthogonal peptide heterodimers. J Pept Sci 2024; 30:e3540. [PMID: 37690796 DOI: 10.1002/psc.3540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
The designability of orthogonal coiled coil (CC) dimers, which draw on well-established design rules, plays a pivotal role in fueling the development of CCs as synthetically versatile assembly-directing motifs for the fabrication of bionanomaterials. Here, we aim to expand the synthetic CC toolkit through establishing a "minimalistic" set of orthogonal, de novo CC peptides that comprise 3.5 heptads in length and a single buried Asn to prescribe dimer formation. The designed sequences display excellent partner fidelity, confirmed via circular dichroism (CD) spectroscopy and Ni-NTA binding assays, and are corroborated in silico using molecular dynamics (MD) simulation. Detailed analysis of the MD conformational data highlights the importance of interhelical E@g-N@a interactions in coordinating an extensive 6-residue hydrogen bonding network that "locks" the interchain Asn-Asn' contact in place. The enhanced stability imparted to the Asn-Asn' bond elicits an increase in thermal stability of CCs up to ~15°C and accounts for significant differences in stability within the collection of similarly designed orthogonal CC pairs. The presented work underlines the utility of MD simulation as a tool for constructing de novo, orthogonal CCs, and presents an alternative handle for modulating the stability of orthogonal CCs via tuning the number of interhelical E@g-N@a contacts. Expansion of CC design rules is a key ingredient for guiding the design and assembly of more complex, intricate CC-based architectures for tackling a variety of challenges within the fields of nanomedicine and bionanotechnology.
Collapse
Affiliation(s)
- Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Yumie Lee
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Michael E Colvin
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| |
Collapse
|
14
|
Plaper T, Merljak E, Fink T, Satler T, Ljubetič A, Lainšček D, Jazbec V, Benčina M, Stevanoska S, Džeroski S, Jerala R. Designed allosteric protein logic. Cell Discov 2024; 10:8. [PMID: 38228615 DOI: 10.1038/s41421-023-00635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
The regulation of protein function by external or internal signals is one of the key features of living organisms. The ability to directly control the function of a selected protein would represent a valuable tool for regulating biological processes. Here, we present a generally applicable regulation of proteins called INSRTR, based on inserting a peptide into a loop of a target protein that retains its function. We demonstrate the versatility and robustness of coiled-coil-mediated regulation, which enables designs for either inactivation or activation of selected protein functions, and implementation of two-input logic functions with rapid response in mammalian cells. The selection of insertion positions in tested proteins was facilitated by using a predictive machine learning model. We showcase the robustness of the INSRTR strategy on proteins with diverse folds and biological functions, including enzymes, signaling mediators, DNA binders, transcriptional regulators, reporters, and antibody domains implemented as chimeric antigen receptors in T cells. Our findings highlight the potential of INSRTR as a powerful tool for precise control of protein function, advancing our understanding of biological processes and developing biotechnological and therapeutic interventions.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tadej Satler
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Sintija Stevanoska
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Rihtar E, Fink T, Jerala R. Coiled-Coil Interaction Toolbox for Engineering Mammalian Cells. Methods Mol Biol 2024; 2774:31-41. [PMID: 38441756 DOI: 10.1007/978-1-0716-3718-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Protein interactions play a crucial role in a variety of biological processes. Therefore, regulation of these interactions has received considerable attention in terms of synthetic biology tool development. Of those, a toolbox of small peptides known as coiled coils (CCs) represents a unique effective tool for mediating protein-protein interactions because their binding specificity and affinity can be designed and controlled. CC peptides have been used as a building module for designing synthetic regulatory circuits in mammalian cells, construction of fast response to a signal, amplification of the response, and localization and regulation of function of diverse proteins. In this chapter, we describe a designed set of CCs used for mammalian cell engineering and provide a protocol for the construction of CC-mediated logic circuits in mammalian cells. Ultimately, these tools could be used for diverse biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Erik Rihtar
- National Institute of Chemistry, Department of Synthetic Biology and Immunology, Ljubljana, Slovenia
| | - Tina Fink
- National Institute of Chemistry, Department of Synthetic Biology and Immunology, Ljubljana, Slovenia
| | - Roman Jerala
- National Institute of Chemistry, Department of Synthetic Biology and Immunology, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells-Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566319. [PMID: 37986890 PMCID: PMC10659388 DOI: 10.1101/2023.11.08.566319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Elena A. Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Eric J. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Arthur D. Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| | - Roger Castells-Graells
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| |
Collapse
|
17
|
Satler T, Hadži S, Jerala R. Crystal Structure of de Novo Designed Coiled-Coil Protein Origami Triangle. J Am Chem Soc 2023; 145:16995-17000. [PMID: 37486611 PMCID: PMC10416210 DOI: 10.1021/jacs.3c05531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/25/2023]
Abstract
Coiled-coil protein origami (CCPO) uses modular coiled-coil building blocks and topological principles to design polyhedral structures distinct from those of natural globular proteins. While the CCPO strategy has proven successful in designing diverse protein topologies, no high-resolution structural information has been available about these novel protein folds. Here we report the crystal structure of a single-chain CCPO in the shape of a triangle. While neither cyclization nor the addition of nanobodies enabled crystallization, it was ultimately facilitated by the inclusion of a GCN2 homodimer. Triangle edges are formed by the orthogonal parallel coiled-coil dimers P1:P2, P3:P4, and GCN2 connected by short linkers. A triangle has a large central cavity and is additionally stabilized by side-chain interactions between neighboring segments at each vertex. The crystal lattice is densely packed and stabilized by a large number of contacts between triangles. Interestingly, the polypeptide chain folds into a trefoil-type protein knot topology, and AlphaFold2 fails to predict the correct fold. The structure validates the modular CC-based protein design strategy, providing molecular insight underlying CCPO stabilization and new opportunities for the design.
Collapse
Affiliation(s)
- Tadej Satler
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, 1000 Ljubljana, Slovenia
- Interdisciplinary
Doctoral Programme in Biomedicine, University
of Ljubljana, 1000 Ljubljana, Slovenia
| | - San Hadži
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, 1000 Ljubljana, Slovenia
- Department
of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department
of Synthetic Biology and Immunology, National
Institute of Chemistry, 1000 Ljubljana, Slovenia
- EN-FIST
Centre of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
19
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|