1
|
Li Z, Martens YA, Ren Y, Jin Y, Sekiya H, Doss SV, Kouri N, Castanedes-Casey M, Christensen TA, Miller Nevalainen LB, Takegami N, Chen K, Liu CC, Soto-Beasley A, Boon BDC, Labuzan SA, Ikezu TC, Chen Y, Bartkowiak AD, Xhafkollari G, Wetmore AM, Bennett DA, Reichard RR, Petersen RC, Kanekiyo T, Ross OA, Murray ME, Dickson DW, Bu G, Zhao N. APOE genotype determines cell-type-specific pathological landscape of Alzheimer's disease. Neuron 2025; 113:1380-1397.e7. [PMID: 40112813 DOI: 10.1016/j.neuron.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The apolipoprotein E (APOE) gene is the strongest genetic risk modifier for Alzheimer's disease (AD), with the APOE4 allele increasing risk and APOE2 decreasing it compared with the common APOE3 allele. Using single-nucleus RNA sequencing of the temporal cortex from APOE2 carriers, APOE3 homozygotes, and APOE4 carriers, we found that AD-associated transcriptomic changes were highly APOE genotype dependent. Comparing AD with controls, APOE2 carriers showed upregulated synaptic and myelination-related pathways, preserving synapses and myelination at the protein level. Conversely, these pathways were downregulated in APOE3 homozygotes, resulting in reduced synaptic and myelination proteins. In APOE4 carriers, excitatory neurons displayed reduced synaptic pathways similar to APOE3, but oligodendrocytes showed upregulated myelination pathways like APOE2. However, their synaptic and myelination protein levels remained unchanged or increased. APOE4 carriers also showed increased pro-inflammatory signatures in microglia but reduced responses to amyloid-β pathology. These findings reveal APOE genotype-specific molecular alterations in AD across cell types.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yunjung Jin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | - Nanaka Takegami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Baayla D C Boon
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney A Labuzan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tadafumi C Ikezu
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Allison M Wetmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Chepyala SR, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. Turnover atlas of proteome and phosphoproteome across mouse tissues and brain regions. Cell 2025; 188:2267-2287.e21. [PMID: 40118046 PMCID: PMC12033170 DOI: 10.1016/j.cell.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications such as phosphorylation are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites in eight mouse tissues and various brain regions using advanced proteomics and stable isotope labeling. We reveal tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discover a remarkable pattern of turnover changes for peroxisome proteins in specific tissues and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides fundamental insights into protein stability, tissue dynamic proteotypes, and functional protein phosphorylation and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shisheng Wang
- Department of General Surgery and Liver Transplant Center, Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Surendhar R Chepyala
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay M Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA; Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
4
|
Khawaja RR, Martín-Segura A, Santiago-Fernández O, Sereda R, Lindenau K, McCabe M, Macho-González A, Jafari M, Scrivo A, Gomez-Sintes R, Chavda B, Saez-Ibanez AR, Tasset I, Arias E, Xie X, Kim M, Kaushik S, Cuervo AM. Sex-specific and cell-type-specific changes in chaperone-mediated autophagy across tissues during aging. NATURE AGING 2025; 5:691-708. [PMID: 39910244 PMCID: PMC12003181 DOI: 10.1038/s43587-024-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Aging leads to progressive decline in organ and tissue integrity and function, partly due to loss of proteostasis and autophagy malfunctioning. A decrease with age in chaperone-mediated autophagy (CMA), a selective type of lysosomal degradation, has been reported in various organs and cells from rodents and humans. Disruption of CMA recapitulates features of aging, whereas activating CMA in mice protects against age-related diseases such as Alzheimer's, retinal degeneration and/or atherosclerosis. However, sex-specific and cell-type-specific differences in CMA with aging remain unexplored. Here, using CMA reporter mice and single-cell transcriptomic data, we report that most organs and cell types show CMA decline with age, with males exhibiting a greater decline with aging. Reduced CMA is often associated with fewer lysosomes competent for CMA. Transcriptional downregulation of CMA genes may further contribute to CMA decline, especially in males. These findings suggest that CMA differences may influence organ vulnerability to age-related degeneration.
Collapse
Affiliation(s)
- Rabia R Khawaja
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- IMDEA Food, Madrid, Spain
| | - Olaya Santiago-Fernández
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristen Lindenau
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Adrián Macho-González
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maryam Jafari
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Bellvitge Biomedical Research Institute, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Raquel Gomez-Sintes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Bhakti Chavda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Rosa Saez-Ibanez
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Esperanza Arias
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xianhong Xie
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Salmonowicz H, Szczepanowska K. The fate of mitochondrial respiratory complexes in aging. Trends Cell Biol 2025:S0962-8924(25)00042-X. [PMID: 40148160 DOI: 10.1016/j.tcb.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025]
Abstract
While mitochondrial dysfunction is one of the canonical hallmarks of aging, it remains only vaguely defined. Its core feature embraces defects in energy-producing molecular machinery, the mitochondrial respiratory complexes (MRCs). The causes and consequences of these defects hold research attention. In this review, we assess the lifecycle of respiratory complexes, from biogenesis to degradation, and look closely at the mechanisms that could underpin their dysfunction in aged cells. We discuss how these processes could be altered by aging and expand on the fate of MRCs in age-associated pathologies. Given the complexity behind MRC maintenance and functionality, several traits could contribute to the phenomenon known as age-associated mitochondrial dysfunction. New advances will help us better understand the fate of this machinery in aging and age-related diseases.
Collapse
Affiliation(s)
- Hanna Salmonowicz
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Karolina Szczepanowska
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; Remedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland.
| |
Collapse
|
6
|
Shoff T, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Determination of Trends Underlying Aspartic Acid Isomerization in Intact Proteins Reveals Unusually Rapid Isomerization of Tau. ACS Chem Neurosci 2025; 16:673-686. [PMID: 39881547 PMCID: PMC11843600 DOI: 10.1021/acschemneuro.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at day 0, isomerization increased over time and was quantifiable for 105 proteins by day 50. Data analysis revealed that the isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our data set, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas
A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Alamillo L, Ng DCM, Currie J, Black A, Pandi B, Manda V, Pavelka J, Schaal P, Travers JG, McKinsey TA, Lam MPY, Lau E. Deuterium labeling enables proteome wide turnover kinetics analysis in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635596. [PMID: 39975278 PMCID: PMC11838351 DOI: 10.1101/2025.01.30.635596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The half-life of proteins is tightly regulated and underlies many cellular processes. It remains unclear the extent to which proteins are dynamically synthesized and degraded in different cell types and cell states. We introduce an improved D2O labeling workflow and apply it to examine the landscape of protein turnover in pluripotent and differentiating human induced pluripotent stem cells (hiPSC). The majority of hiPSC proteins show minimal turnover beyond cell doubling rates, but we also identify over 100 new fast-turnover proteins not previously described as short-lived. These include proteins that function in cell division and cell cycle checkpoints, that are enriched in APC/C and SPOP degrons, and that are depleted upon pluripotency exit. Differentiation rapidly shifts the set of fast-turnover proteins toward including RNA binding and splicing proteins. The ability to identify fast-turnover proteins in different cell cultures also facilitates secretome analysis, as exemplified by studies of hiPSC-derived cardiac myocytes and primary human cardiac fibroblasts. The presented workflow is broadly applicable to protein turnover studies in diverse primary, pluripotent, and transformed cells.
Collapse
Affiliation(s)
- Lorena Alamillo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C. M. Ng
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexander Black
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Boomathi Pandi
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peyton Schaal
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua G. Travers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy A. McKinsey
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P. Y. Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Shoff TA, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Unusually Rapid Isomerization of Aspartic Acid in Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626870. [PMID: 39677806 PMCID: PMC11643016 DOI: 10.1101/2024.12.04.626870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at Day 0, isomerization increased across time and was quantifiable for 105 proteins by Day 50. Data analysis revealed that isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our dataset, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Li F, Bahr JN, Bierth FAL, Reshetniak S, Tetzlaff C, Fornasiero EF, Wichmann C, Rizzoli SO. Morphological correlates of synaptic protein turnover in the mouse brain. Life Sci Alliance 2024; 7:e202402793. [PMID: 39134363 PMCID: PMC11325198 DOI: 10.26508/lsa.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Synaptic proteins need to be replaced regularly, to maintain function and to prevent damage. It is unclear whether this process, known as protein turnover, relates to synaptic morphology. To test this, we relied on nanoscale secondary ion mass spectrometry, to detect newly synthesized synaptic components in the brains of young adult (6 mo old) and aged mice (24 mo old), and on transmission electron microscopy, to reveal synapse morphology. Several parameters correlated to turnover, including pre- and postsynaptic size, the number of synaptic vesicles and the presence of a postsynaptic nascent zone. In aged mice, the turnover of all brain compartments was reduced by ∼20%. The turnover rates of the pre- and postsynapses correlated well in aged mice, suggesting that they are subject to common regulatory mechanisms. This correlation was poorer in young adult mice, in line with their higher synaptic dynamics. We conclude that synapse turnover is reflected by synaptic morphology.
Collapse
Affiliation(s)
- Fengxia Li
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Julius N Bahr
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
| | - Felicitas A-L Bierth
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Molecular Medicine Bachelor Programme, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Salovska B, Li W, Bernhardt OM, Germain PL, Gandhi T, Reiter L, Liu Y. A Comprehensive and Robust Multiplex-DIA Workflow Profiles Protein Turnover Regulations Associated with Cisplatin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620709. [PMID: 39554001 PMCID: PMC11565775 DOI: 10.1101/2024.10.28.620709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Measuring protein turnover is essential for understanding cellular biological processes and advancing drug discovery. The multiplex DIA mass spectrometry (DIA-MS) approach, combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC), has proven to be a reliable method for analyzing protein turnover and degradation kinetics. Previous multiplex DIA-MS workflows have employed various strategies, including leveraging the highest isotopic labeling channels of peptides to enhance the detection of isotopic MS signal pairs or clusters. In this study, we introduce an improved and robust workflow that integrates a novel machine learning strategy and channel-specific statistical filtering, enabling dynamic adaptation to systematic or temporal variations in channel ratios. This allows comprehensive profiling of protein turnover throughout the pSILAC experiment without relying solely on the highest channel signals. Additionally, we developed KdeggeR , a data processing and analysis package optimized for pSILAC-DIA experiments, which estimates and visualizes peptide and protein degradation rates and dynamic profiles. Our integrative workflow was benchmarked on both 2-channel and 3-channel standard DIA datasets and across two mass spectrometry platforms, demonstrating its broad applicability. Finally, applying this workflow to an aneuploid cancer cell model before and after cisplatin resistance development demonstrated a strong negative correlation between transcript regulation and protein degradation for major protein complex subunits. We also identified specific protein turnover signatures associated with cisplatin resistance.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | | | - Pierre-Luc Germain
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | | | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
12
|
Takasugi M, Nonaka Y, Takemura K, Yoshida Y, Stein F, Schwarz JJ, Adachi J, Satoh J, Ito S, Tombline G, Biashad SA, Seluanov A, Gorbunova V, Ohtani N. An atlas of the aging mouse proteome reveals the features of age-related post-transcriptional dysregulation. Nat Commun 2024; 15:8520. [PMID: 39353907 PMCID: PMC11445428 DOI: 10.1038/s41467-024-52845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
To what extent and how post-transcriptional dysregulation affects aging proteome remains unclear. Here, we provide proteomic data of whole-tissue lysates (WTL) and low-solubility protein-enriched fractions (LSF) of major tissues collected from mice of 6, 15, 24, and 30 months of age. Low-solubility proteins are preferentially affected by age and the analysis of LSF doubles the number of proteins identified to be differentially expressed with age. Simultaneous analysis of proteome and transcriptome using the same tissue homogenates reveals the features of age-related post-transcriptional dysregulation. Post-transcriptional dysregulation becomes evident especially after 24 months of age and age-related post-transcriptional dysregulation leads to accumulation of core matrisome proteins and reduction of mitochondrial membrane proteins in multiple tissues. Based on our in-depth proteomic data and sample-matched transcriptome data of adult, middle-aged, old, and geriatric mice, we construct the Mouse aging proteomic atlas ( https://aging-proteomics.info/ ), which provides a thorough and integrative view of age-related gene expression changes.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Yoshiki Nonaka
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Frank Stein
- Proteomic Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
13
|
Tang W, Wang Q, Sun M, Liu C, Huang Y, Zhou M, Zhang X, Meng Z, Zhang J. The gut microbiota-oligodendrocyte axis: A promising pathway for modulating oligodendrocyte homeostasis and demyelination-associated disorders. Life Sci 2024; 354:122952. [PMID: 39127317 DOI: 10.1016/j.lfs.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The bidirectional regulation between the gut microbiota and brain, known as gut-brain axis, has received significant attention. The myelin sheath, produced by oligodendrocytes or Schwann cells, is essential for efficient nervous signal transmission and the maintenance of brain function. Growing evidence shows that both oligodendrogenesis and myelination are modulated by gut microbiota and its metabolites, and when dysbiosis occurs, changes in the microbiota composition and/or associated metabolites may impact developmental myelination and the occurrence of neurodevelopmental disabilities. Although the link between the microbiota and demyelinating disease such as multiple sclerosis has been extensively studied, our knowledge about the role of the microbiota in other myelin-related disorders, such as neurodegenerative diseases, is limited. Mechanistically, the microbiota-oligodendrocyte axis is primarily mediated by factors such as inflammation, the vagus nerve, endocrine hormones, and microbiota metabolites as evidenced by metagenomics, metabolomics, vagotomy, and morphological and molecular approaches. Treatments targeting this axis include probiotics, prebiotics, microbial metabolites, herbal bioactive compounds, and specific dietary management. In addition to the commonly used approaches, viral vector-mediated tracing and gene manipulation, integrated multiomics and multicenter clinical trials will greatly promote the mechanistic and interventional studies and ultimately, the development of new preventive and therapeutic strategies against gut-oligodendrocyte axis-mediated brain impairments. Interestingly, recent findings showed that microbiota dysbiosis can be induced by hippocampal myelin damage and is reversible by myelin-targeted drugs, which provides new insights into understanding how hippocampus-based functional impairment (such as in neurodegenerative Alzheimer's disease) regulates the peripheral homeostasis of microbiota and associated systemic disorders.
Collapse
Affiliation(s)
- Wen Tang
- Department of Gastroenterology, Chongqing Western Hospital, Chongqing 400052, China
| | - Qi Wang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Mingguang Sun
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Neurology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing University of Chinese Medicine, Beijing 100853, China
| | - Chang''e Liu
- Department of Nutrition, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yonghua Huang
- Department of Neurology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Maohu Zhou
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhaoyou Meng
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Tarbox HE, Branch A, Fried SD. Cognition-Associated Protein Structural Changes in a Rat Model of Aging are Related to Reduced Refolding Capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614172. [PMID: 39386726 PMCID: PMC11463556 DOI: 10.1101/2024.09.20.614172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. There are a few well-known proteins that can misfold and aggregate in an age-dependent manner, such as amyloid β and α-synuclein. However, many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many more proteins that incur structural alterations with age. Here, we used limited-proteolysis mass spectrometry (LiP-MS), a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified several hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning they typically cannot spontaneously refold to their native conformations after being chemically denatured. The potentially cofounding variable of post-translational modifications is systematically addressed, and we find that oxidation and phosphorylation cannot significantly explain the limited proteolysis signal. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline, and more broadly, that proteins need not form amyloids for their misfolded states to be relevant to age-related deterioration in cognitive abilities.
Collapse
Affiliation(s)
- Haley E. Tarbox
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Wang L, Yang X, Xie Y, Xu C, Dai X, Wang M, Liu Y. Nanoparticle-Protein Corona-Based Tissue Proteomics for the Aging Mouse Proteome Atlas. Anal Chem 2024; 96:14363-14371. [PMID: 39192740 DOI: 10.1021/acs.analchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
16
|
Saurat N, Minotti AP, Rahman MT, Sikder T, Zhang C, Cornacchia D, Jungverdorben J, Ciceri G, Betel D, Studer L. Genome-wide CRISPR screen identifies neddylation as a regulator of neuronal aging and AD neurodegeneration. Cell Stem Cell 2024; 31:1162-1174.e8. [PMID: 38917806 PMCID: PMC11405001 DOI: 10.1016/j.stem.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Aging is the biggest risk factor for the development of Alzheimer's disease (AD). Here, we performed a whole-genome CRISPR screen to identify regulators of neuronal age and show that the neddylation pathway regulates both cellular age and AD neurodegeneration in a human stem cell model. Specifically, we demonstrate that blocking neddylation increased cellular hallmarks of aging and led to an increase in Tau aggregation and phosphorylation in neurons carrying the APPswe/swe mutation. Aged APPswe/swe but not isogenic control neurons also showed a progressive decrease in viability. Selective neuronal loss upon neddylation inhibition was similarly observed in other isogenic AD and in Parkinson's disease (PD) models, including PSENM146V/M146V cortical and LRRK2G2019S/G2019S midbrain dopamine neurons, respectively. This study indicates that cellular aging can reveal late-onset disease phenotypes, identifies new potential targets to modulate AD progression, and describes a strategy to program age-associated phenotypes into stem cell models of disease.
Collapse
Affiliation(s)
- Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Maliha T Rahman
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Trisha Sikder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniela Cornacchia
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Johannes Jungverdorben
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Ross AB, Gorhe D, Kim JK, Hodapp S, DeVine L, Chan KM, Chio IIC, Jovanovic M, Ayres Pereira M. Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO. CELL REPORTS METHODS 2024; 4:100760. [PMID: 38677284 PMCID: PMC11133751 DOI: 10.1016/j.crmeth.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.
Collapse
Affiliation(s)
- Alison B Ross
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Lela DeVine
- Department of Biology, Barnard College, New York, NY 10027, USA; Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina M Chan
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
| | - Marina Ayres Pereira
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
19
|
Hamazaki J, Murata S. Relationships between protein degradation, cellular senescence, and organismal aging. J Biochem 2024; 175:473-480. [PMID: 38348509 PMCID: PMC11058314 DOI: 10.1093/jb/mvae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.
Collapse
Affiliation(s)
- Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| |
Collapse
|
20
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
21
|
Huang H, van Waardenberg AJ, Graham ME, Anggono V, Widagdo J. Global quantitative proteomic analysis of aged mouse hippocampus. Proteomics 2024; 24:e2300276. [PMID: 38115172 DOI: 10.1002/pmic.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Understanding the molecular changes associated with the aged brain forms the basis for developing potential strategies for slowing cognitive decline associated with normal aging. Focusing on the hippocampus, a critical brain region involved in learning and memory, we employed tandem mass tag methodology to investigate global proteomic changes that occur in advanced-aged (20-month) versus young (3-month) C57BL/6 male mice. Our analysis revealed the upregulation of 236 proteins in the old hippocampal proteome, including those enriched within several age-related processes, such as the adaptive immune response and molecular metabolic pathways, whereas downregulated proteins (88 in total) are mainly involved in axonogenesis and growth cone-related processes. Categorizing proteins by cell-type enrichment in the brain identified a general upregulation of proteins preferentially expressed in microglia, astrocytes, and oligodendrocytes. In contrast, proteins with neuron-specific expression displayed an overall age-related downregulation. By integrating our proteomic with our previously published transcriptomic data, we discovered a mild but significant positive correlation between mRNA and protein expression changes in the aged hippocampus. Therefore, this proteomic data is a valuable additional resource for further understanding age-related molecular mechanisms.
Collapse
Affiliation(s)
- He Huang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Meka DP, Richter M, Rücker T, Voss H, Rissiek A, Krisp C, Kumar NH, Schwanke B, Fornasiero EF, Schlüter H, Calderon de Anda F. Protocol for differential multi-omic analyses of distinct cell types in the mouse cerebral cortex. STAR Protoc 2024; 5:102793. [PMID: 38157295 PMCID: PMC10792265 DOI: 10.1016/j.xpro.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Here, we present a protocol for differential multi-omic analyses of distinct cell types in the developing mouse cerebral cortex. We describe steps for in utero electroporation, subsequent flow-cytometry-based isolation of developing mouse cortical cells, bulk RNA sequencing or quantitative liquid chromatography-tandem mass spectrometry, and bioinformatic analyses. This protocol can be applied to compare the proteomes and transcriptomes of developing mouse cortical cell populations after various manipulations (e.g., epigenetic). For complete details on the use and execution of this protocol, please refer to Meka et al. (2022).1.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Rücker
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Hannah Voss
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Rissiek
- Cytometry und Cell Sorting Core Unit, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Birgit Schwanke
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hartmut Schlüter
- Diagnostic Center, Section Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
23
|
Rao NR, Upadhyay A, Savas JN. Derailed protein turnover in the aging mammalian brain. Mol Syst Biol 2024; 20:120-139. [PMID: 38182797 PMCID: PMC10897147 DOI: 10.1038/s44320-023-00009-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient protein turnover is essential for cellular homeostasis and organ function. Loss of proteostasis is a hallmark of aging culminating in severe dysfunction of protein turnover. To investigate protein turnover dynamics as a function of age, we performed continuous in vivo metabolic stable isotope labeling in mice along the aging continuum. First, we discovered that the brain proteome uniquely undergoes dynamic turnover fluctuations during aging compared to heart and liver tissue. Second, trends in protein turnover in the brain proteome during aging showed sex-specific differences that were tightly tied to cellular compartments. Next, parallel analyses of the insoluble proteome revealed that several cellular compartments experience hampered turnover, in part due to misfolding. Finally, we found that age-associated fluctuations in proteasome activity were associated with the turnover of core proteolytic subunits, which was recapitulated by pharmacological suppression of proteasome activity. Taken together, our study provides a proteome-wide atlas of protein turnover across the aging continuum and reveals a link between the turnover of individual proteasome subunits and the age-associated decline in proteasome activity.
Collapse
Affiliation(s)
- Nalini R Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Di Fraia D, Marino A, Lee JH, Kelmer Sacramento E, Baumgart M, Bagnoli S, Tomaz da Silva P, Kumar Sahu A, Siano G, Tiessen M, Terzibasi-Tozzini E, Gagneur J, Frydman J, Cellerino A, Ori A. Impaired biogenesis of basic proteins impacts multiple hallmarks of the aging brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.20.549210. [PMID: 38260253 PMCID: PMC10802395 DOI: 10.1101/2023.07.20.549210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aging and neurodegeneration entail diverse cellular and molecular hallmarks. Here, we studied the effects of aging on the transcriptome, translatome, and multiple layers of the proteome in the brain of a short-lived killifish. We reveal that aging causes widespread reduction of proteins enriched in basic amino acids that is independent of mRNA regulation, and it is not due to impaired proteasome activity. Instead, we identify a cascade of events where aberrant translation pausing leads to reduced ribosome availability resulting in proteome remodeling independently of transcriptional regulation. Our research uncovers a vulnerable point in the aging brain's biology - the biogenesis of basic DNA/RNA binding proteins. This vulnerability may represent a unifying principle that connects various aging hallmarks, encompassing genome integrity and the biosynthesis of macromolecules.
Collapse
Affiliation(s)
- Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Antonio Marino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Amit Kumar Sahu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Max Tiessen
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alessandro Cellerino
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
25
|
Qi XH, Chen P, Wang YJ, Zhou ZP, Liu XC, Fang H, Wang CW, Liu J, Liu RY, Liu HK, Zhang ZX, Zhou JN. Increased cysteinyl-tRNA synthetase drives neuroinflammation in Alzheimer's disease. Transl Neurodegener 2024; 13:3. [PMID: 38191451 PMCID: PMC10773087 DOI: 10.1186/s40035-023-00394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Microglia-mediated neuroinflammation in Alzheimer's disease (AD) is not only a response to pathophysiological events, but also plays a causative role in neurodegeneration. Cytoplasmic cysteinyl-tRNA synthetase (CARS) is considered to be a stimulant for immune responses to diseases; however, it remains unknown whether CARS is involved in the pathogenesis of AD. METHODS Postmortem human temporal cortical tissues at different Braak stages and AD patient-derived serum samples were used to investigate the changes of CARS levels in AD by immunocytochemical staining, real-time PCR, western blotting and ELISA. After that, C57BL/6J and APP/PS1 transgenic mice and BV-2 cell line were used to explore the role of CARS protein in memory and neuroinflammation, as well as the underlying mechanisms. Finally, the associations of morphological features among CARS protein, microglia and dense-core plaques were examined by immunocytochemical staining. RESULTS A positive correlation was found between aging and the intensity of CARS immunoreactivity in the temporal cortex. Both protein and mRNA levels of CARS were increased in the temporal cortex of AD patients. Immunocytochemical staining revealed increased CARS immunoreactivity in neurons of the temporal cortex in AD patients. Moreover, overexpression of CARS in hippocampal neurons induced and aggravated cognitive dysfunction in C57BL/6J and APP/PS1 mice, respectively, accompanied by activation of microglia and the TLR2/MyD88 signaling pathway as well as upregulation of proinflammatory cytokines. In vitro experiments showed that CARS treatment facilitated the production of proinflammatory cytokines and the activation of the TLR2/MyD88 signaling pathway of BV-2 cells. The accumulation of CARS protein occurred within dense-core Aβ plaques accompanied by recruitment of ameboid microglia. Significant upregulation of TLR2/MyD88 proteins was also observed in the temporal cortex of AD. CONCLUSIONS The findings suggest that the neuronal CARS drives neuroinflammation and induces memory deficits, which might be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiu-Hong Qi
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Peng Chen
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yue-Ju Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhe-Ping Zhou
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xue-Chun Liu
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Chen-Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ji Liu
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, and The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Rong-Yu Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Han-Kui Liu
- Key Laboratory of Diseases and Genomes, BGI-Genomics, BGI-Shenzhen, Shenzhen, 518000, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100007, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Lee JY, Harney DJ, Teo JD, Kwok JB, Sutherland GT, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus. Mol Neurodegener 2023; 18:63. [PMID: 37726834 PMCID: PMC10510131 DOI: 10.1186/s13024-023-00650-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. METHODS Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Fibrillar C-terminal TMEM106B fragments were isolated using sarkosyl fractionation and quantified by immunoblotting. RESULTS Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. TMEM106B, a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with ageing was specific to carriers of the rs1990622-A allele in the TMEM106B gene that increases risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Rs1990622-A was also associated with higher TMEM106B fibril content. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. CONCLUSIONS Our study demonstrates that TMEM106B protein abundance is increased with brain ageing in humans, establishes that dementia risk allele rs1990622-A predisposes to TMEM106B fibril formation in the hippocampus, and provides the first evidence that rs1990622-A affects brain lipid homeostasis, particularly myelin lipids. Our data suggests that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Greg T Sutherland
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
27
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
28
|
Menéndez-González M. Toward a new nosology of neurodegenerative diseases. Alzheimers Dement 2023; 19:3731-3737. [PMID: 36960767 DOI: 10.1002/alz.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
New "omic" technologies are revealing shared and distinct biological pathways within and across neurodegenerative diseases (NDDs), allowing a better understanding of endophenotypes that exceeds the boundaries of the current diagnostic criteria. Moreover, a diagnostic framework is needed that can accommodate the co-pathology and the clinical overlap and heterogeneity of NDDs. Apart from dissecting the reasons for a revolution in how we conceive NDD, this article aims to prompt a change in how we diagnose and classify NDD, drafting a general scheme for a new nosology. As identifying a cause is the key to using the term "disease" properly, we propose using a tridimensional classification based on three axes: (1) etiology or pathogenic mechanism, (2) pathology markers and molecular biomarkers, (3) anatomic-clinical; and three hierarchical levels of etiology: (1) genetic/sporadic (2) cellular pathways and processes, and function of fluidic brain systems, and (3) risk factors.
Collapse
Affiliation(s)
- Manuel Menéndez-González
- Department of Medicine, Universidad de Oviedo, Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Neurology Research Group, Instituto de Investigación Sanitaria, Oviedo, Spain
| |
Collapse
|
29
|
Chou MY, Wong YC, Wang SY, Chi CH, Wang TH, Huang MJ, Huang PH, Li PH, Wang MF. Potential antidepressant effects of a dietary supplement from Huáng qí and its complex in aged senescence-accelerated mouse prone-8 mice. Front Nutr 2023; 10:1235780. [PMID: 37575325 PMCID: PMC10421658 DOI: 10.3389/fnut.2023.1235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Healthcare is an emerging industry with significant market potential in the 21st century. Therefore, this study aimed to evaluate the benefits of tube feeding Huáng qí and its complexes for 8 weeks on 3-month-old senescence-accelerated mouse prone-8 (SAMP8) mice, 48 in total, randomly divided into 3 groups including control, Huáng qí extract [820 mg/kg Body weight (BW)/day], and Huáng qí complexes (6.2 mL /kg BW/day), where each group consisted of males (n = 8) and females (n = 8). Behavioral tests (locomotion test and aging score assessment on week 6, the single-trial passive avoidance test on week 7, and the active shuttle avoidance test on week 8) were conducted to evaluate the ability of the mice to learn and remember. In addition, after sacrificing the animals, the blood and organs were measured for antioxidant and aging bioactivities, including malondialdehyde (MDA) content and superoxide dismutase (SOD) activity and catalase activities (CAT), and the effects on promoting aging in SAMP8 mice were investigated. The findings showed that Huáng qí enhanced locomotor performance and had anti-aging effects, with positive effects on health, learning, and memory in SAMP-8 mice (p < 0.05), whether applied as a single agent (820 mg/kg BW/day) or as a complex (6.2 mL/kg BW/day) (p < 0.05). Based on existing strengths, a more compelling platform for clinical validation of human clinical evidence will be established to enhance the development and value-added of astragalus-related products while meeting the diversified needs of the functional food market.
Collapse
Affiliation(s)
- Ming-Yu Chou
- School of Business, Qanzhou Vocational and Technical University, Jinjiang, China
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Yue-Ching Wong
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan (R.O.C.)
| | - Shih-Yi Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Ching-Hsin Chi
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
| | - Teng-Hsu Wang
- PhytoHealth Corporation, Taipei city, Taiwan (R.O.C.)
| | - Mao-Jung Huang
- School of General Education, Hsiuping University of Science and Technology, Taichung, Taiwan (R.O.C.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, China
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan (R.O.C.)
- Department of Food and Nutrition, Providence University, Taichung, Taiwan (R.O.C.)
| |
Collapse
|
30
|
Riemenschneider H, Simonetti F, Sheth U, Katona E, Roth S, Hutten S, Farny D, Michaelsen M, Nuscher B, Schmidt MK, Flatley A, Schepers A, Gruijs da Silva LA, Zhou Q, Klopstock T, Liesz A, Arzberger T, Herms J, Feederle R, Gendron TF, Dormann D, Edbauer D. Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo. Acta Neuropathol Commun 2023; 11:112. [PMID: 37434215 DOI: 10.1186/s40478-023-01592-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1β, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.
Collapse
Affiliation(s)
- Henrick Riemenschneider
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Francesca Simonetti
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Saskia Hutten
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Michael K Schmidt
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Lara A Gruijs da Silva
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Arthur Liesz
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dorothee Dormann
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany.
| |
Collapse
|
31
|
Hafner AS, Triesch J. Synaptic logistics: Competing over shared resources. Mol Cell Neurosci 2023; 125:103858. [PMID: 37172922 DOI: 10.1016/j.mcn.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
High turnover rates of synaptic proteins imply that synapses constantly need to replace their constituent building blocks. This requires sophisticated supply chains and potentially exposes synapses to shortages as they compete for limited resources. Interestingly, competition in neurons has been observed at different scales. Whether it is competition of receptors for binding sites inside a single synapse or synapses fighting for resources to grow. Here we review the implications of such competition for synaptic function and plasticity. We identify multiple mechanisms that synapses use to safeguard themselves against supply shortages and identify a fundamental neurologistic trade-off governing the sizes of reserve pools of essential synaptic building blocks.
Collapse
Affiliation(s)
- Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Wagle S, Kraynyukova N, Hafner AS, Tchumatchenko T. Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. Mol Cell Neurosci 2023; 125:103846. [PMID: 36963534 DOI: 10.1016/j.mcn.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function.
Collapse
Affiliation(s)
- Surbhit Wagle
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany
| | - Nataliya Kraynyukova
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tatjana Tchumatchenko
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Anselm-Franz-von-Bentzel-Weg 3, 55128 Mainz, Germany; Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
33
|
Fornasiero EF, Savas JN. Determining and interpreting protein lifetimes in mammalian tissues. Trends Biochem Sci 2023; 48:106-118. [PMID: 36163144 PMCID: PMC9868050 DOI: 10.1016/j.tibs.2022.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- Department of Neuro-Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
34
|
Li W, Salovska B, Fornasiero EF, Liu Y. Toward a hypothesis-free understanding of how phosphorylation dynamically impacts protein turnover. Proteomics 2023; 23:e2100387. [PMID: 36422574 PMCID: PMC10964180 DOI: 10.1002/pmic.202100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased "hypothesis-free" analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.
Collapse
Affiliation(s)
- Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Lee JY, Harney D, Kwok J, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels and myelin lipid homeostasis in the ageing human hippocampus. RESEARCH SQUARE 2023:rs.3.rs-2392941. [PMID: 36711721 PMCID: PMC9882607 DOI: 10.21203/rs.3.rs-2392941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. Methods Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Results Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. Transmembrane protein 106B (TMEM106B), a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with age was specific to carriers of the rs1990622-A allele in the TMEM106B gene that is associated with increased risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. Conclusions Our study provides the first evidence that TMEM106B protein abundance is increased with brain ageing in humans, and the first evidence that the major TMEM106B dementia risk allele affects brain lipid homeostasis, with a clear effect on myelin lipid content. Our data implies that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | | - John Kwok
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | - Mark Larance
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | |
Collapse
|
36
|
Hier DB, Azizi S, Thimgan MS, Wunsch DC. Tau kinetics in Alzheimer's disease. Front Aging Neurosci 2022; 14:1055170. [PMID: 36437992 PMCID: PMC9682289 DOI: 10.3389/fnagi.2022.1055170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 07/20/2023] Open
Abstract
The cytoskeletal protein tau is implicated in the pathogenesis of Alzheimer's disease which is characterized by intra-neuronal neurofibrillary tangles containing abnormally phosphorylated insoluble tau. Levels of soluble tau are elevated in the brain, the CSF, and the plasma of patients with Alzheimer's disease. To better understand the causes of these elevated levels of tau, we propose a three-compartment kinetic model (brain, CSF, and plasma). The model assumes that the synthesis of tau follows zero-order kinetics (uncorrelated with compartmental tau levels) and that the release, absorption, and clearance of tau is governed by first-order kinetics (linearly related to compartmental tau levels). Tau that is synthesized in the brain compartment can be released into the interstitial fluid, catabolized, or retained in neurofibrillary tangles. Tau released into the interstitial fluid can mix with the CSF and eventually drain to the plasma compartment. However, losses of tau in the drainage pathways may be significant. The kinetic model estimates half-life of tau in each compartment (552 h in the brain, 9.9 h in the CSF, and 10 h in the plasma). The kinetic model predicts that an increase in the neuronal tau synthesis rate or a decrease in tau catabolism rate best accounts for observed increases in tau levels in the brain, CSF, and plasma found in Alzheimer's disease. Furthermore, the model predicts that increases in brain half-life of tau in Alzheimer's disease should be attributed to decreased tau catabolism and not to increased tau synthesis. Most clearance of tau in the neuron occurs through catabolism rather than release to the CSF compartment. Additional experimental data would make ascertainment of the model parameters more precise.
Collapse
Affiliation(s)
- Daniel B. Hier
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
| | - Matthew S. Thimgan
- Department of Biological Sciences, Missouri University of Science & Technology, Rolla, MO, United States
| | - Donald C. Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
37
|
Gibson GE, Feldman HH, Zhang S, Flowers SA, Luchsinger JA. Pharmacological thiamine levels as a therapeutic approach in Alzheimer's disease. Front Med (Lausanne) 2022; 9:1033272. [PMID: 36275801 PMCID: PMC9585656 DOI: 10.3389/fmed.2022.1033272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
of the study.
Collapse
Affiliation(s)
- Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY, United States
| | - Howard H. Feldman
- Alzheimer's Disease Cooperative Study and Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Sarah A. Flowers
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
38
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|