1
|
Xian H, Guo H, Liu YY, Ma SB, Zhao R, Zhang JL, Zhang H, Xie RG, Guo XC, Ren J, Wu SX, Luo C, Cong R. Nociceptor-localized KCC2 suppresses brachial plexus avulsion-induced neuropathic pain and related central sensitization. Cell Biosci 2025; 15:12. [PMID: 39891150 PMCID: PMC11786554 DOI: 10.1186/s13578-025-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Lack in understanding of the mechanism on brachial plexus avulsion (BPA)-induced neuropathic pain (NP) is the key factor restricting its treatment. In the current investigation, we focused on the nociceptor-localized K+-Cl- cotransporter 2 (KCC2) to investigate its role in BPA-induced NP and related pain sensitization. A novel mice model of BPA on the middle trunk (C7) was established, and BPA mice showed a significant reduction in mechanical withdrawal threshold of the affected fore- and hind- paws without affecting the motor function through CatWalk Gait analysis. Decreased expression of KCC2 in dorsal root ganglion (DRG) was detected through Western blot and FISH technology after BPA. Overexpression of KCC2 in DRG could reverse the hyperexcitability of DRG neurons and alleviate the pain of BPA mice synchronously. Meanwhile, the calcium response signal of the affected SDH could be significantly reduced through above method using spinal cord fiber photometry. The synthesis and release of brain-derived neurotrophic factor (BDNF) was also proved reduction through overexpression of KCC2 in DRG, which indicates BDNF can also act as the downstream role in this pain state. As in human-derived tissues, we found decreased expression of KCC2 and increased expression of BDNF and TrκB in avulsed roots of BPA patients compared with normal human DRGs. Our results indicate that nociceptor-localized KCC2 can suppress BPA-induced NP, and peripheral sensitization can be regulated to reverse central sensitization by targeting KCC2 in DRG at the peripheral level through BDNF signaling. The consistent results in both humanity and rodents endow great potential to future transformation of clinical practice.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hang Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xu-Cheng Guo
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jie Ren
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Charles KA, Molpeceres Sierra E, Bouali-Benazzouz R, Tibar H, Oudaha K, Naudet F, Duveau A, Fossat P, Benazzouz A. Interplay between subthalamic nucleus and spinal cord controls parkinsonian nociceptive disorders. Brain 2025; 148:313-330. [PMID: 38916480 DOI: 10.1093/brain/awae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/19/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Pain is a non-motor symptom that impairs quality of life in patients with Parkinson's disease. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions. Next, we studied the consequences of deep brain stimulation (DBS) of the STN on the electrical activity of DHSC neurons. Then, we investigated whether the therapeutic effect of STN-DBS would be mediated by the brainstem descending pathway involving the rostral ventromedial medulla. Finally, to better understand how the STN modulates allodynia, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in the STN. The study was carried out on the 6-OHDA rodent model of Parkinson's disease, obtained by stereotactic injection of the neurotoxin into the medial forebrain bundle of rats and mice. In these animals, we used motor and nociceptive behavioural tests, in vivo electrophysiology of STN and wide dynamic range (WDR) DHSC neurons in response to peripheral stimulation, deep brain stimulation of the STN and the selective DREADD approach. Vglut2-ires-cre mice were used to specifically target and inhibit STN glutamatergic neurons. STN neurons are able to detect nociceptive stimuli, encode their intensity and generate windup-like plasticity, like WDR neurons in the DHSC. These phenomena are impaired in dopamine-depleted animals, as the intensity response is altered in both spinal and subthalamic neurons. Furthermore, as with L-DOPA, STN-DBS in rats ameliorated 6-OHDA-induced allodynia, and this effect is mediated by descending brainstem projections leading to normalization of nociceptive integration in DHSC neurons. Furthermore, this therapeutic effect was reproduced by selective inhibition of STN glutamatergic neurons in Vglut2-ires-cre mice. Our study highlights the centrality of the STN in nociceptive circuits, its interaction with the DHSC and its key involvement in pain sensation in Parkinson's disease. Furthermore, our results provide for the first-time evidence that subthalamic DBS produces analgesia by normalizing the responses of spinal WDR neurons via descending brainstem pathways. These effects are due to direct inhibition, rather than activation of glutamatergic neurons in the STN or passage fibres, as shown in the DREADDs experiment.
Collapse
Affiliation(s)
- Keri-Ann Charles
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Elba Molpeceres Sierra
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Houyam Tibar
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Khalid Oudaha
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Frédéric Naudet
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Alexia Duveau
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, F-33000 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
3
|
Grivet Z, Aby F, Verboven A, Bouali-Benazzouz R, Sueur B, Maingret F, Naudet F, Dhellemmes T, De Deurwaerdere P, Benazzouz A, Fossat P. Brainstem serotonin amplifies nociceptive transmission in a mouse model of Parkinson's disease. NPJ Parkinsons Dis 2025; 11:11. [PMID: 39774033 PMCID: PMC11706991 DOI: 10.1038/s41531-024-00857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation. Mice exhibited mechanical hypersensitivity associated with hyperexcitability of neurons in the dorsal horn of the spinal cord (DHSC). Serotonin (5-HT) levels increased in the spinal cord, correlating with reduced tyrosine hydroxylase (TH) immunoreactivity in the nucleus raphe magnus (NRM) and increased excitability of 5-HT neurons. Selective optogenetic inhibition of 5-HT neurons attenuated mechanical hypersensitivity and reduced DHSC hyperexcitability. In addition, the blockade of 5-HT2A and 5-HT3 receptors reduced mechanical hypersensitivity. These results reveal, for the first time, that PD-like dopamine depletion triggers spinal-mediated mechanical hypersensitivity, associated with serotonergic hyperactivity in the NRM, opening up new therapeutic avenues for Parkinson's disease-associated pain targeting the serotonergic systems.
Collapse
Affiliation(s)
- Zoé Grivet
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Franck Aby
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Aude Verboven
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Benjamin Sueur
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - François Maingret
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Frédéric Naudet
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Thibault Dhellemmes
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Philippe De Deurwaerdere
- Université de Bordeaux, Institut des neurosciences cognitives et intégratives d'aquitaine, Bordeaux, France
- CNRS, Institut des neurosciences cognitives et intégratives d'aquitaine, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.
| |
Collapse
|
4
|
Rosa-Casillas M, Basbaum AI. Rostral ventral medulla circuits regulate both the sensory and affective dimensions of neuropathic pain: a commentary on Dogrul et al. Pain 2025; 166:7-8. [PMID: 39356207 DOI: 10.1097/j.pain.0000000000003375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Mariela Rosa-Casillas
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Lyubashina OA, Sushkevich BM, Sivachenko IB. Postcolitis Alterations in Dose-Dependent Effects of 5-HT1A Agonist Buspirone on Nociceptive Activity of the Raphe Magnus and Dorsal Raphe Neurons in Rats. Eur J Neurosci 2025; 61:e16677. [PMID: 39831438 DOI: 10.1111/ejn.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/03/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone. In postcolitis animals, 5-HT1A autoreceptor- and heteroreceptor-activating high doses of buspirone (2 and 4 mg/kg) lost normally occurring ability to facilitate CRD- and TS-evoked activation of RMg neurons, causing inhibition of the local nociceptive signalling similar to 5-HT1A autoreceptor-activating low doses (0.1 and 0.5 mg/kg). Conversely, the normally inherent property of buspirone at all doses to reduce visceral and somatic pain-related neuronal excitation in the DR was weakened after colitis. These phenomena were associated with a loss of normally occurring inhibitory effect of the compound's high doses on hemodynamic reactions to CRD and TS, revealing deficient antinociceptive action at a systemic level. The data suggest postcolitis changes in buspirone-dependent 5-HT1A autoreceptor- and heteroreceptor-mediated signalling, which can directly or indirectly lead to reduced RMg pain-related activity and increased DR nociceptive excitation, impairing their functioning in the visceral and somatic pain control.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris M Sushkevich
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
6
|
Kadam SD, Hegarty SV. Development of KCC2 therapeutics to treat neurological disorders. Front Mol Neurosci 2024; 17:1503070. [PMID: 39720463 PMCID: PMC11666659 DOI: 10.3389/fnmol.2024.1503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
KCC2 is CNS neuron-specific chloride extruder, essential for the establishment and maintenance of the transmembrane chloride gradient, thereby enabling synaptic inhibition within the CNS. Herein, we highlight KCC2 hypofunction as a fundamental and conserved pathology contributing to neuronal circuit excitation/inhibition (E/I) imbalances that underly epilepsies, chronic pain, neuro-developmental/-traumatic/-degenerative/-psychiatric disorders. Indeed, downstream of both acquired and genetic factors, multiple pathologies (e.g., hyperexcitability and inflammation) converge to impair KCC2-dependent inhibition in CNS. When KCC2 hypofunction occurs, affected neurons are disinhibited due to impaired inhibitory responses to GABA/glycine. This causes neuronal hyperexcitability, disinhibition within neuron circuits, and disrupted neurological functions. More recently, KCC2 was identified as a genetically-validated target for epilepsy, intellectual disability, and autism spectrum disorder, and pathogenic mutations in human SLC12A5 gene were linked to psychiatric/mood disorders. The broad therapeutic utility of KCC2-upmodulating drugs relates to its critical role in determining inhibitory activity of GABAergic neurotransmission, a mechanism widely targeted by several drugs. However, in cases of KCC2 hypofunction GABAergic neurotransmission can be depolarizing/excitatory, thereby impairing endogenous neuronal inhibition while also limiting the effectiveness of existing therapeutics targeting/requiring GABAergic pathway inhibition. Several preclinical reports have shown that KCC2 upmodulating treatments rescue and increase the efficacy of anti-seizure and analgesic medications. Thus, a first-in-class KCC2-potentiating therapy would provide a novel mechanism for restoring physiological CNS inhibition and addressing drug resistance in patients with E/I imbalance pathologies. Herein, we discuss progress toward and further work needed to develop the first-in-class KCC2 therapeutics to treat neurological disorder patients.
Collapse
|
7
|
Park M, Koh CS, Chang H, Kim TJ, Mun W, Chang JW, Jung HH. Low-frequency (5-Hz) stimulation of ventrolateral periaqueductal gray modulates the descending serotonergic system in the peripheral neuropathic pain. Pain 2024; 165:1774-1783. [PMID: 38422490 DOI: 10.1097/j.pain.0000000000003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Neuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury. We found that 5-Hz deep brain stimulation effectively modulated mechanical allodynia and induced neuronal activation in the rostral ventromedial medulla, restoring impaired descending serotonergic system. At the spinal level, glial cells were still activated but only the 5-HT1a receptor in the spinal cord was activated, implying its inhibitory role in mechanical allodynia. This study found that peripheral neuropathy caused dysfunction in the descending serotonergic system, and prolonged stimulation of ventrolateral periaqueductal gray can modulate the pathway in an efficient manner. This work would provide new opportunities for the development of targeted and effective treatments for this debilitating disease, possibly giving us lower chances of side effects from repeated high-frequency stimulation or long-term use of medication.
Collapse
Affiliation(s)
- Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Viellard J, Bouali-Benazzouz R, Benazzouz A, Fossat P. Modulating Neural Circuits of Pain in Preclinical Models: Recent Insights for Future Therapeutics. Cells 2024; 13:997. [PMID: 38920628 PMCID: PMC11202162 DOI: 10.3390/cells13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate. Most preclinical models have focused on sensory neurotransmission, with particular emphasis on the dorsal horn of the spinal cord as the first relay of nociceptive information. Beyond impaired nociceptive transmission, chronic pain is also accompanied by numerous comorbidities, such as anxiety-depressive disorders, anhedonia and motor and cognitive deficits gathered under the term "pain matrix". The emergence of cutting-edge techniques assessing specific neuronal circuits allow in-depth studies of the connections between "pain matrix" circuits and behavioural outputs. Pain behaviours are assessed not only by reflex-induced responses but also by various or more complex behaviours in order to obtain the most complete picture of an animal's pain state. This review summarises the latest findings on pain modulation by brain component of the pain matrix and proposes new opportunities to unravel the mechanisms of chronic pain.
Collapse
Affiliation(s)
- Juliette Viellard
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, UMR 5293, F-33076 Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
9
|
Zeng J, Gao WW, Yang H, Wang YN, Mei Y, Liu TT, Wang M, Tang L, Ma DC, Li W. Sodium tanshinone IIA sulfonate suppresses microglia polarization and neuroinflammation possibly via regulating miR-125b-5p/STAT3 axis to ameliorate neuropathic pain. Eur J Pharmacol 2024; 972:176523. [PMID: 38552937 DOI: 10.1016/j.ejphar.2024.176523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
The spinal cord microglia play a pivotal role in neuroinflammation and neuropathic pain (NP). Sodium tanshinone IIA sulfonate (STS), a derivative of tanshinone IIA, has anti-inflammatory and anti-hyperalgesic effects. However, its underlying mechanism in NP remains unclear. This study aimed to investigate the effect of STS and elucidate possible mechanisms in a rat model of spared nerve injury. In vivo experiments, STS and AG490 were administered intraperitoneally once daily for 14 consecutive days after surgery. The results showed that the expression of miR-125b-5p in the spinal dorsal horn was substantially reduced, whereas signal transducer and activator of transcription 3 (STAT3) signaling was increased. After treatment with STS, the mechanical thresholds, expression of miR-125b-5p, and microglial M2 marker such as Arg-1 in the spinal cord horn increased significantly, whereas multiple pro-inflammatory cytokines and apoptosis were significantly reduced. Moreover, STAT3 pathway-related proteins and expression of the microglial M1 marker, CD68, were appreciably inhibited. In vitro, lipopolysaccharide (LPS) was used to induce an inflammatory response in BV-2 microglial cells. STS pretreatment inhibited LPS-stimulated pro-inflammatory cytokine secretion, reduced STAT3 pathway related-proteins and apoptosis, increased miR-125b-5p and proopiomelanocortin expression, and enhanced microglia transformation from M1 to M2 phenotype in BV-2 cells. These effects were reversed after the inhibition of miR-125b-5p expression in BV-2 cells. A dual-luciferase reporter assay confirmed that STAT3 binds to miR-125b-5p. In summary, these results suggest that STS exerts anti-hyperalgesic and anti-neuroinflammatory effects in rats with NP possibly via the miR-125b-5p/STAT3 axis.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Wei-Wei Gao
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hao Yang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ya-Nang Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yang Mei
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ting-Ting Liu
- Department of Pain Medicine, Affiliated Shapingba Hospital, Chongqing University, Chongqing, China
| | - Min Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Li Tang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dong-Chuan Ma
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wei Li
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| |
Collapse
|
10
|
Kurita S, Sasaki M, Tanaka M, Kuwabara Y, Ogasawara Y, Baba H, Kamiya Y. Analgesic effects of oral Yokukansan on acute postoperative pain and involvement of the serotonin nervous system: a mouse model study. BMC Complement Med Ther 2024; 24:198. [PMID: 38773460 PMCID: PMC11110364 DOI: 10.1186/s12906-024-04501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Yokukansan, a traditional Japanese medicine (Kampo), has been widely used to treat neurosis, dementia, and chronic pain. Previous in vitro studies have suggested that Yokukansan acts as a partial agonist of the 5-HT1A receptor, resulting in amelioration of chronic pain through inhibition of nociceptive neuronal activity. However, its effectiveness for treating postoperative pain remains unknown, although its analgesic mechanism of action has been suggested to involve serotonin and glutamatergic neurotransmission. This study aimed to investigate the effect of Yokukansan on postoperative pain in an animal model. METHODS A mouse model of postoperative pain was created by plantar incision, and Yokukansan was administered orally the day after paw incision. Pain thresholds for mechanical and heat stimuli were examined in a behavioral experiment. In addition, to clarify the involvement of the serotonergic nervous system, we examined the analgesic effects of Yokukansan in mice that were serotonin-depleted by para-chlorophenylalanine (PCPA) treatment and intrathecal administration of NAN-190, 5-HT1A receptor antagonist. RESULTS Orally administered Yokukansan increased the pain threshold dose-dependent in postoperative pain model mice. Pretreatment of para-chlorophenylalanine dramatically suppressed serotonin immunoreactivity in the spinal dorsal horn without changing the pain threshold after the paw incision. The analgesic effect of Yokukansan tended to be attenuated by para-chlorophenylalanine pretreatment and significantly attenuated by intrathecal administration of 2.5 µg of NAN-190 compared to that in postoperative pain model mice without para-chlorophenylalanine treatment and NAN-190 administration. CONCLUSION This study demonstrated that oral administration of Yokukansan has acute analgesic effects in postoperative pain model mice. Behavioral experiments using serotonin-depleted mice and mice intrathecally administered with a 5-HT1A receptor antagonist suggested that Yokukansan acts as an agonist at the 5-HT1A receptor, one of the serotonin receptors, to produce analgesia.
Collapse
Affiliation(s)
- Shuichiro Kurita
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo ward, Niigata, 951-8510, Japan
| | - Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo ward, Niigata, 951-8510, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Moegi Tanaka
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo ward, Niigata, 951-8510, Japan
- Department of Palliative Care, Niigata City General Hospital, 463-7 Shumoku, Chuo ward, Niigata, 950-1197, Japan
| | - Yoshinori Kuwabara
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan
| | - Yukino Ogasawara
- Division of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina, 362-0806, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo ward, Niigata, 951-8510, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo ward, Niigata, 951-8510, Japan.
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, 501-1194, Japan.
| |
Collapse
|
11
|
Zhu S, Shi J, Zhang Y, Chen X, Shi T, Li L. Combination administration of alprazolam and N-Ethylmaleimide synergistically enhances sleep behaviors in mice with no potential CNS side effects. PeerJ 2024; 12:e17342. [PMID: 38737745 PMCID: PMC11086308 DOI: 10.7717/peerj.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Background N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.
Collapse
Affiliation(s)
- Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
12
|
Gilabert D, Duveau A, Carracedo S, Linck N, Langla A, Muramatsu R, Koch-Nolte F, Rassendren F, Grutter T, Fossat P, Boué-Grabot E, Ulmann L. Microglial P2X4 receptors are essential for spinal neurons hyperexcitability and tactile allodynia in male and female neuropathic mice. iScience 2023; 26:108110. [PMID: 37860691 PMCID: PMC10583052 DOI: 10.1016/j.isci.2023.108110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
In neuropathic pain, recent evidence has highlighted a sex-dependent role of the P2X4 receptor in spinal microglia in the development of tactile allodynia following nerve injury. Here, using internalization-defective P2X4mCherryIN knockin mice (P2X4KI), we demonstrate that increased cell surface expression of P2X4 induces hypersensitivity to mechanical stimulations and hyperexcitability in spinal cord neurons of both male and female naive mice. During neuropathy, both wild-type (WT) and P2X4KI mice of both sexes develop tactile allodynia accompanied by spinal neuron hyperexcitability. These responses are selectively associated with P2X4, as they are absent in global P2X4KO or myeloid-specific P2X4KO mice. We show that P2X4 is de novo expressed in reactive microglia in neuropathic WT and P2X4KI mice of both sexes and that tactile allodynia is relieved by pharmacological blockade of P2X4 or TrkB. These results show that the upregulation of P2X4 in microglia is crucial for neuropathic pain, regardless of sex.
Collapse
Affiliation(s)
- Damien Gilabert
- IGF, University Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Alexia Duveau
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Sara Carracedo
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Linck
- IGF, University Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Adeline Langla
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - François Rassendren
- IGF, University Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Thomas Grutter
- University of Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Pascal Fossat
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- University Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Lauriane Ulmann
- IGF, University Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| |
Collapse
|
13
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Ikeda N, Kawasaki M, Baba K, Nishimura H, Fujitani T, Suzuki H, Matsuura T, Ohnishi H, Shimizu M, Sanada K, Nishimura K, Yoshimura M, Maruyama T, Conway-Campbell BL, Onaka T, Teranishi H, Hanada R, Ueta Y, Sakai A. Chemogenetic Activation of Oxytocin Neurons Improves Pain in a Reserpine-induced Fibromyalgia Rat Model. Neuroscience 2023; 528:37-53. [PMID: 37532013 DOI: 10.1016/j.neuroscience.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model. In FM model, OXT-monomeric red fluorescent protein 1 (OXT-mRFP1) transgenic rats exhibited increased depressive behavior and sensitivity in a mechanical nociceptive test, suggesting reduced pain tolerance. Additionally, the development of the FM-like phenotype in OXT-mRFP1 FM model rats was accompanied by a significant reduction in OXT mRNA expression in the magnocellular neurons of the paraventricular nucleus. OXT-mRFP1 FM model rats also had significantly fewer tryptophan hydroxylase (TPH)- and tyrosine hydroxylase (TH)-immunoreactive (ir) neurons as well as reduced serotonin and norepinephrine levels in the dorsal raphe and locus coeruleus. To investigate the effects of stimulating the endogenous OXT pathway, rats expressing OXT-human muscarinic acetylcholine receptor (hM3Dq)-mCherry designer receptors exclusively activated by designer drugs (DREADDs) were also assessed in the FM model. Treatment of these rats with clozapine-N-oxide (CNO), an hM3Dq-activating drug, significantly improved characteristic FM model-induced pathophysiological pain, but did not alter depressive-like behavior. The chemogenetically induced effects were reversed by pre-treatment with an OXT receptor antagonist, confirming the specificity of action via the OXT pathway. These results indicate that endogenous OXT may have analgesic effects in FM, and could be a potential target for effective pain management strategies for this disorder.
Collapse
Affiliation(s)
- Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
15
|
Feshki M, De Koninck Y, Gosselin B. Deep Learning Empowered Fresnel-based Lensless Fluorescence Microscopy . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082985 DOI: 10.1109/embc40787.2023.10339990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Miniaturized fluorescence microscopy has revolutionized the way neuroscientists study the brain in-vivo. Recent developments in computational lensless imaging promise a next generation of miniaturized microscopes in lensless fluorescence microscopy. We developed a microscope prototype using an optimized Fresnel amplitude mask. While many lensless imaging modalities have reported excellent performance using Deep Learning (DL) approaches, DL application in fluorescence imaging has been left untouched. We generated a computational dataset based on experimental system calibration to evaluate DL capabilities on biological cell morphologies. We show that our DL-assisted microscope can provide high-quality imaging with a structural similarity index of 89%. The least absolute error was decreased by 63% using the DL-assisted method compared with the classical models. The state-of-the-art performance of this prototype enhances the expected potential of amplitude masks in lensless microscopy applications, which are critical for robust in-vivo flat microscopy with engineered image sensors.Clinical Relevance- This study aids in advancing miniaturized fluorescence microscopy, which greatly impacts long-term brain circuit and disease studies in freely moving animal models.
Collapse
|
16
|
Shi M, Zhou J, Hu R, Xu H, Chen Y, Wu X, Chen B, Ma R. EA participates in pain transition through regulating KCC2 expression by BDNF-TrkB in the spinal cord dorsal horn of male rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100115. [PMID: 36875547 PMCID: PMC9982673 DOI: 10.1016/j.ynpai.2023.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The pathogenesis of chronic pain is complex and poorly treated, seriously affecting the quality of life of patients. Electroacupuncture (EA) relieves pain by preventing the transition of acute pain into chronic pain, but its mechanism of action is still unclear. Here, we aimed to investigate whether EA can inhibit pain transition by increasing KCC2 expression via BDNF-TrkB. We used hyperalgesic priming (HP) model to investigate the potential central mechanisms of EA intervention on pain transition. HP model male rats showed significant and persistent mechanically abnormal pain. Brain derived neurotrophic factor (BDNF) expression and Tropomyosin receptor kinase B (TrkB) phosphorylation were upregulated in the affected spinal cord dorsal horn (SCDH) of HP model rats, accompanied by K+-Cl-- Cotransporter-2 (KCC2) expression was down-regulated. EA significantly increased the mechanical pain threshold in HP model male rats and decreased BDNF and p-TrkB overexpression and upregulated KCC2 expression. Blockade of BDNF with BDNF neutralizing antibody attenuated mechanical abnormal pain in HP rats. Finally, administration of exogenous BDNF by pharmacological methods reversed the EA-induced resistance to abnormal pain. In all, these results suggest that BDNF-TrkB contributes to mechanical abnormal pain in HP model rats and that EA ameliorates mechanical abnormal pain through upregulation of KCC2 by BDNF-TrkB in SCDH. Our study further supports EA as an effective treatment to prevent the transition of acute pain into chronic pain.
Collapse
Affiliation(s)
- Mengting Shi
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Zhou
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Acupuncture and Moxibustion, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rong Hu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haipeng Xu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xingying Wu
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bowen Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ruijie Ma
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Acupuncture and Moxibustion, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|