1
|
Fu Y, Guzior DV, Okros M, Bridges C, Rosset SL, González CT, Martin C, Karunarathne H, Watson VE, Quinn RA. Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation. Nat Commun 2025; 16:3434. [PMID: 40210868 PMCID: PMC11985902 DOI: 10.1038/s41467-025-58649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat-/- KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.
Collapse
Affiliation(s)
- Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Maxwell Okros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sabrina L Rosset
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Cely T González
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Hansani Karunarathne
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Detwiler Z, Chaudhari SN. BAAT away liver cancer: conjugated bile acids impair T cell function in hepatocellular carcinoma immunotherapy. IMMUNOMETABOLISM (COBHAM, SURREY) 2025; 7:e00062. [PMID: 40352823 PMCID: PMC12063675 DOI: 10.1097/in9.0000000000000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
In this renaissance era of gene therapy, a new study published by the Susan Kaech lab in Science demonstrates the use of CRISPR-Cas9 technology to selectively deplete conjugated bile acids in the liver by targeting the bile acid-CoA:amino acid N-acyltransferase (Baat) gene to improve responsiveness to immunotherapy. This study highlights the role of conjugated bile acids in impairing intratumoral T cell function by directly accumulating in resident liver T cells and driving mitochondrial dysfunction. Knockout of Baat reduced hepatic conjugated bile acid production, thus improving immunotherapy potency and reducing tumor burden. Subsequently, Baat liver knockout reduced levels of microbially produced secondary bile acids such as lithocholic acid, a known carcinogen and T cell toxin. This study mechanistically links bile acids to liver cancer immunotherapy success, setting the stage for bile acid-based screening approaches and pharmacologic manipulations for improved patient outcomes.
Collapse
Affiliation(s)
- Zachary Detwiler
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Snehal N. Chaudhari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Dong Z, Yang S, Tang C, Li D, Kan Y, Yao L. New insights into microbial bile salt hydrolases: from physiological roles to potential applications. Front Microbiol 2025; 16:1513541. [PMID: 40012771 PMCID: PMC11860951 DOI: 10.3389/fmicb.2025.1513541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Gut microbiota has been increasingly linked to metabolic health and diseases over the past few decades. Bile acids (BAs), the major components of bile, are bidirectionally linked to intestinal microbiota, also known as the gut microbiome-BA metabolic axis. Gut microbiota-derived bile salt hydrolase (BSH, EC 3.5.1.24), which catalyzes the "gateway" reaction in a wider pathway of bile acid modification, not only shapes the bile acid landscape, but also modulates the crosstalk between gut microbiota and host health. Therefore, microbial BSHs exhibit the potential to directly or indirectly influence microbial and host physiologies, and have been increasingly considered as promising targets for the modulation of gut microbiota to benefit animal and human health. However, their physiological functions in bacterial and host physiologies are still controversial and not clear. In this review, we mainly discuss the current evidence related to the physiological roles that BSHs played in gut microbiota and human health, and the possible underlying mechanisms. Meanwhile, we also present the potential applications of BSHs and BSH-producing probiotics in various fields. Finally, we describe several important questions that need to be addressed by further investigations. A detailed exploration of the physiological significance of BSHs will contribute to their future diagnostic and therapeutic applications in improving animal and human health.
Collapse
Affiliation(s)
- Zixing Dong
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Shuangshuang Yang
- College of Physical Education, Nanyang Normal University, Nanyang, China
| | - Cunduo Tang
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Dandan Li
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Province Engineering Research Center of Insect Bioreactor, College of Life Sciences, Nanyang Normal University, Nanyang, China
- China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| |
Collapse
|
5
|
Xu F, Zhao S, Zhu Y, Zhu J, Kong L, Li H, Ma S, Wang B, Qu Y, Tian Z, Zhao J, Liu L. Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy. LIFE METABOLISM 2024; 3:loae026. [PMID: 39873005 PMCID: PMC11748520 DOI: 10.1093/lifemeta/loae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 01/30/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment. Phytic acid (PA), as an endogenous and natural antioxidant in the liver, presents significant anti-inflammatory and lipid metabolism-inhibiting functions to alleviate MASH. In this study, considering the unique phosphate-rich structure of PA, we developed a cerium-PA (CePA) nanocomplex by combining PA with cerium ions possessing phosphodiesterase activity. CePA intervened in the S2448 phosphorylation of mTOR through the occupation effect of phosphate groups, thereby inhibiting the inflammatory response and mTOR-sterol regulatory element-binding protein 1 (SREBP1) regulation axis. The in vivo experiments suggested that CePA alleviated MASH progression and fat accumulation in high-fat diet-fed mice. Mechanistic studies validated that CePA exerts a liver-targeted mTOR repressive function, making it a promising candidate for MASH and other mTOR-related disease treatments.
Collapse
Affiliation(s)
- Fenghua Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Yejing Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
| | - Huichen Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Shouzheng Ma
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Bo Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an, Shaanxi 710032, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710000, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
6
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
7
|
Xu J, Wang N, Yang L, Zhong J, Chen M. Intestinal flora and bile acid interactions impact the progression of diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1441415. [PMID: 39371929 PMCID: PMC11449830 DOI: 10.3389/fendo.2024.1441415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, with the rapid development of omics technologies, researchers have shown that interactions between the intestinal flora and bile acids are closely related to the progression of diabetic kidney disease (DKD). By regulating bile acid metabolism and receptor expression, the intestinal flora affects host metabolism, impacts the immune system, and exacerbates kidney injury in DKD patients. To explore interactions among the gut flora, bile acids and DKD, as well as the related mechanisms, in depth, in this paper, we review the existing literature on correlations among the gut flora, bile acids and DKD. This review also summarizes the efficacy of bile acids and their receptors as well as traditional Chinese medicines in the treatment of DKD and highlights the unique advantages of bile acid receptors in DKD treatment. This paper is expected to reveal a new and important potential strategy for the clinical treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- Department of Nephrology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Luo Y, Peng S, Cheng J, Yang H, Lin L, Yang G, Jin Y, Wang Q, Wen Z. Chitosan-Stabilized Selenium Nanoparticles Alleviate High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Modulating the Gut Barrier Function and Microbiota. J Funct Biomater 2024; 15:236. [PMID: 39194674 DOI: 10.3390/jfb15080236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically active compound derived from selenium polysaccharides, have demonstrated potential in addressing obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by increasing the abundance of mucus-associated microbiota (Bifidobacterium, Akkermansia, and Muribaculaceae_unclassified) and decreasing the abundance of obesity-contributed bacterium (Anaerotruncus, Lachnoclostridium, and Proteus). The modulation of intestinal microbiota by LCS-SeNPs influenced several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan derivation. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the intervention of HFD-induced NAFLD.
Collapse
Affiliation(s)
- Yuhang Luo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shujiang Peng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | | | - Hongli Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lin Lin
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | | | - Yuanxiang Jin
- Xianghu Laboratory, Hangzhou 311231, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Zhengshun Wen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Xianghu Laboratory, Hangzhou 311231, China
| |
Collapse
|
9
|
Zhang Z, Qin X, Yi T, Li Y, Li C, Zeng M, Luo H, Lin X, Xie J, Xia B, Lin Y, Lin L. Gubra Amylin-NASH Diet Induced Nonalcoholic Fatty Liver Disease Associated with Histological Damage, Oxidative Stress, Immune Disorders, Gut Microbiota, and Its Metabolic Dysbiosis in Colon. Mol Nutr Food Res 2024; 68:e2300845. [PMID: 38966885 DOI: 10.1002/mnfr.202300845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/02/2024] [Indexed: 07/06/2024]
Abstract
SCOPE The overall changes of colon under nonalcoholic fatty liver disease (NAFLD) remain to be further elucidated. METHODS AND RESULTS This study establishes a mouse model of NAFLD through a long-term Gubra Amylin-nonalcoholic steatohepatitis (NASH) diet (GAN diet). The results show that GAN diet significantly induces weight gain, liver steatosis, colonic oxidative stress, and lipid accumulation in blood, liver, and adipose tissue in mice. GAN feeding reduces the diversity of the gut microbiota, alters the composition and abundance of the gut microbiota, and leads to an increase in microbial metabolites such as long-chain fatty acids (LCFAs) and secondary bile acids (BAs), as well as a decrease in short-chain fatty acids (SCFAs). The RNA-seq and immunofluorescence results reveal that the GAN diet alters the expression of proteins and their coding genes involved in oxidative stress, immune response, and barrier function in colon tissue, such as lipocalin-2 (Lcn2, p < 0.05), heme oxygenase-1 (HO-1/Hmox1, p < 0.05), interferon-gamma (IFN-γ), and claudin-3/7. In addition, correlation analysis indicates a strong correlation between the changes in gut microbiota and lipid biomarkers. Additionally, the expression of immune related genes in colon tissue is related to the LCFAs produced by microbial metabolism. CONCLUSION GAN-induced NAFLD is related to microbiota and its metabolic imbalance, oxidative stress, immune disorders, and impaired barrier function in colon.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinyi Qin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tao Yi
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chengfeng Li
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Min Zeng
- College of Xiangxing, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hongshan Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiulian Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
10
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Ma C, Wang F, Zhu J, Wang S, Liu Y, Xu J, Zhao Q, Qin Y, Si W, Zhang J. 18Beta-Glycyrrhetinic Acid Attenuates H 2O 2-Induced Oxidative Damage and Apoptosis in Intestinal Epithelial Cells via Activating the PI3K/Akt Signaling Pathway. Antioxidants (Basel) 2024; 13:468. [PMID: 38671916 PMCID: PMC11047483 DOI: 10.3390/antiox13040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress causes gut dysfunction and is a contributing factor in several intestinal disorders. Intestinal epithelial cell survival is essential for maintaining human and animal health under oxidative stress. 18beta-Glycyrrhetinic acid (GA) is known to have multiple beneficial effects, including antioxidant activity; however, the underlying molecular mechanisms have not been well established. Thus, the present study evaluated the therapeutic effects of GA on H2O2-induced oxidative stress in intestinal porcine epithelial cells. The results showed that pretreatment with GA (100 nM for 16 h) significantly increased the levels of several antioxidant enzymes and reduced corresponding intracellular levels of reactive oxidative species and malondialdehyde. GA inhibited cell apoptosis via activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, as confirmed by RNA sequencing. Further analyses demonstrated that GA upregulated the phosphorylation levels of PI3K and Akt and the protein level of B cell lymphoma 2, whereas it downregulated Cytochrome c and tumor suppressor protein p53 levels. Moreover, molecular docking analysis predicted the binding of GA to Vasoactive intestinal peptide receptor 1, a primary membrane receptor, to activate the PI3K/Akt signaling pathway. Collectively, these results revealed that GA protected against H2O2-induced oxidative damage and cell apoptosis via activating the PI3K/Akt signaling pathway, suggesting the potential therapeutic use of GA to alleviate oxidative stress in humans/animals.
Collapse
Affiliation(s)
- Cui Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Fuxi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Animal Science and Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiawei Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Shiyi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqing Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianfang Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Wei Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.M.); (Q.Z.)
| |
Collapse
|
12
|
Yuan P, Ma R, Hu L, Li R, Wang P, Lin S, Huang J, Wen H, Huang L, Li H, Feng B, Chen H, Liu Y, Zhang X, Lin Y, Xu S, Li J, Zhuo Y, Hua L, Che L, Wu D, Fang Z. Zearalenone Decreases Food Intake by Disrupting the Gut-Liver-Hypothalamus Axis Signaling via Bile Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8200-8213. [PMID: 38560889 DOI: 10.1021/acs.jafc.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.
Collapse
Affiliation(s)
- Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Rongman Ma
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Liang Hu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Ran Li
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Peng Wang
- College of Biology Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Sen Lin
- Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - Jiancai Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hongmei Wen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Hua Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Hong Chen
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Yuntao Liu
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lun Hua
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, People's Republic of China
- Key Laboratory of Agricultural Product processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| |
Collapse
|
13
|
D'Agostino GD, Chaudhari SN, Devlin AS. Host-microbiome orchestration of the sulfated metabolome. Nat Chem Biol 2024; 20:410-421. [PMID: 38347214 PMCID: PMC11095384 DOI: 10.1038/s41589-023-01526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 04/01/2024]
Abstract
Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host-microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host-microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.
Collapse
Affiliation(s)
- Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
16
|
Fang C, Cheng J, Jia W, Xu Y. Akkermansia muciniphila Ameliorates Alcoholic Liver Disease in Experimental Mice by Regulating Serum Metabolism and Improving Gut Dysbiosis. Metabolites 2023; 13:1057. [PMID: 37887381 PMCID: PMC10608788 DOI: 10.3390/metabo13101057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Alcoholic liver disease (ALD) represents a significant global health concern, yet the available treatment options remain limited. Numerous studies have shown that gut microbiota is a critical target for the treatment of ALD. Additionally, there is increasing evidence that host metabolism also plays a crucial role in the development of ALD. Akkermansia muciniphila has been demonstrated to ameliorate experimental ALD through its modulatory effects on the intestinal vascular barrier, enhancement of mucus layer thickness, and promotion of intestinal tight junction proteins. Nevertheless, there is a dearth of studies investigating the impact of A. muciniphila on host metabolism and gut microbiota. Here, C57BL/6 mice were utilized to establish a modified NIAAA model in order to investigate the impact of the oral administration of A. muciniphila during the development of ALD. Furthermore, we employed targeted metabolomics to analyze the serum metabolomic profiles of the mice and 2bRAD-M sequencing to comprehensively examine the underlying mechanisms of the efficacy of A. muciniphila on ALD. Our results illustrated that the oral administration of A. muciniphila alleviated alcohol-induced liver injury in conjunction with encouraged serum levels of ornithine and diminished the elevation of oxalic acid levels induced by alcohol intake. In addition, A. muciniphila also inhibited the proliferation of harmful bacteria, such as Escherichia coli and Helicobacter hepaticus, induced by alcohol consumption while promoting the growth of butyrate-producing and commensal bacteria, including Paramuribaculum intestinale and Bacteroides ovatus. In conclusion, this study suggests that A. muciniphila restores ALD by regulating the gut microbiota, and this corrective effect is associated with alterations in the serum metabolism. Our research supplies a theoretical basis for developing A. muciniphila as an innovative generation of probiotic for preventing and managing ALD.
Collapse
Affiliation(s)
- Cheng Fang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinyan Cheng
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (C.F.); (J.C.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Ramayo-Caldas Y, Crespo-Piazuelo D, Morata J, González-Rodríguez O, Sebastià C, Castello A, Dalmau A, Ramos-Onsins S, Alexiou KG, Folch JM, Quintanilla R, Ballester M. Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiol Spectr 2023; 11:e0527122. [PMID: 37255458 PMCID: PMC10433821 DOI: 10.1128/spectrum.05271-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Anna Castello
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Antoni Dalmau
- Animal Welfare Program, Institute of Agrifood Research and Technology, Girona, Spain
| | - Sebastian Ramos-Onsins
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Konstantinos G. Alexiou
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| |
Collapse
|
18
|
Zhao J, Ban T, Miyawaki H, Hirayasu H, Izumo A, Iwase SI, Kasai K, Kawasaki K. Long-Term Dietary Fish Meal Substitution with the Black Soldier Fly Larval Meal Modifies the Caecal Microbiota and Microbial Pathway in Laying Hens. Animals (Basel) 2023; 13:2629. [PMID: 37627424 PMCID: PMC10451910 DOI: 10.3390/ani13162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Feeding laying hens with black soldier fly larval (BSFL) meal improves their performance. However, the beneficial mechanism of BSFL meals in improving the performance of laying hens remains unclear. This study investigated the effects of the BSFL diet on liver metabolism, gut physiology, and gut microbiota in laying hens. Eighty-seven Julia hens were randomly assigned to three groups based on their diets and fed maize grain-and soybean meal-based diets mixed with either 3% fish meal (control diet), 1.5% fish and 1.5% BSFL meals, or 3% BSFL meal for 52 weeks. No significant differences were observed in biochemical parameters, hepatic amino acid and saturated fatty acid contents, intestinal mucosal disaccharidase activity, and intestinal morphology between BSFL diet-fed and control diet-fed laying hens. However, the BSFL diet significantly increased the abundance of acetic and propionic acid-producing bacteria, caecal short-chain fatty acids, and modified the caecal microbial pathways that are associated with bile acid metabolism. These findings indicate that consuming a diet containing BSFL meal has minimal effects on plasma and liver nutritional metabolism in laying hens; however, it can alter the gut microbiota associated with short-chain fatty acid production as well as the microbial pathways involved in intestinal fat metabolism. In conclusion, this study provides evidence that BSFL can enhance enterocyte metabolism and gut homeostasis in laying hens.
Collapse
Affiliation(s)
- Junliang Zhao
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Takuma Ban
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hironori Miyawaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hirofumi Hirayasu
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Akihisa Izumo
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Shun-ichiro Iwase
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Koji Kasai
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Kiyonori Kawasaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| |
Collapse
|
19
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
20
|
Chen H, Kan Q, Zhao L, Ye G, He X, Tang H, Shi F, Zou Y, Liang X, Song X, Liu R, Luo J, Li Y. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
Affiliation(s)
- Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Qibin Kan
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Rui Liu
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
21
|
Wang Q, Xu K, Cai X, Wang C, Cao Y, Xiao J. Rosmarinic Acid Restores Colonic Mucus Secretion in Colitis Mice by Regulating Gut Microbiota-Derived Metabolites and the Activation of Inflammasomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4571-4585. [PMID: 36883243 DOI: 10.1021/acs.jafc.2c08444] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Maintaining a steady state of mucus barrier is an important potential target for polyphenol to exert its anticolitis activity. This study elucidates the pivotal role of polyphenol rosmaric acid (RA) in regulating the mucus barrier function and alleviating inflammation by identifying its gut microbiota-derived metabolites and evaluating its inhibitory effect on inflammasomes in colitis mice. Results demonstrated that RA treatment promoted the proliferation of goblet cells and restored the level of mucus secretion, especially Muc2. RA reshaped the microbiota of colitis mice, particularly the boost of core probiotics, such as p. Bacteroidaceae, f. Muribaculaceae, g. Muribaculaceae, g. Alistipes, and g. Clostridia_UCG-014. Nontargeted metabonomics and targeted metabonomics confirmed a significant increase in the bile acids and their metabolites (7-sulfocholic acid, stercobilin, chenodeoxycholic acid 3-sulfate, chenodeoxycholic acid sulfate, and ursodeoxycholic acid 3-sulfate), indole metabolites ((R)-2,3-dihydro-3,5-dihydroxy-2-oxo-3-indoleacetic acid, frovatriptan, 3-formyl-6-hydroxyindole, and brassicanal A), and short-chain fatty acids (SCFAs) (acetic acid, butyric acid, isobutyric acid, isovaleric acid, and valeric acid) that contributed to the strengthened mucus barrier function. In addition, being absorbed mainly in the lower digestive tract, RA inhibited the overexpression of inflammasomes (especially NLRP6) that occurred in colitis mice to promote the mucus secretion of goblet cells. These data confirmed that RA, as a promising candidate to enhance gut health, restored colonic mucus secretion in colitis mice by mediating the production of gut microbiota-derived metabolites and the overexpression of inflammasomes. The presented study provides scientific evidence explaining the apparent paradox of low bioavailability and high bioactivity in polyphenols.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kangjie Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Malarney KP, Chang PV. Chemoproteomic Approaches for Unraveling Prokaryotic Biology. Isr J Chem 2023; 63:e202200076. [PMID: 37842282 PMCID: PMC10575470 DOI: 10.1002/ijch.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 03/07/2023]
Abstract
Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Microbiology, Cornell University, Ithaca, NY 14853 (USA)
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853 (USA)
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 (USA)
| |
Collapse
|
23
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|