1
|
García-Hernández N, Calzada F, Bautista E, Sánchez-López JM, Valdes M, Hernández-Caballero ME, Ordoñez-Razo RM. Quantitative Proteomics and Molecular Mechanisms of Non-Hodgkin Lymphoma Mice Treated with Incomptine A, Part II. Pharmaceuticals (Basel) 2025; 18:242. [PMID: 40006055 PMCID: PMC11858899 DOI: 10.3390/ph18020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Incomptine A (IA) has cytotoxic activity in non-Hodgkin lymphoma (NHL) cancer cell lines. Its effects on U-937 cells include induction of apoptosis, production of reactive oxygen species, and inhibition of glycolytic enzymes. We examined the altered protein levels present in the lymph nodes of an in vivo mouse model. Methods: We induced an in vivo model with Balb/c mice with U-937 cells and treated it with IA or methotrexate, as well as healthy mice. We determined expressed proteins by TMT based on the LC-MS/MS method (Data are available via ProteomeXchange with identifier PXD060392) and a molecular docking study targeting 15 deregulated proteins. We developed analyses through the KEGG, Reactome, and Gene Ontology databases. Results: A total of 2717 proteins from the axillary and inguinal lymph nodes were analyzed and compared with healthy mice. Of 412 differentially expressed proteins, 132 were overexpressed (FC ≥ 1.5) and 117 were underexpressed (FC ≤ 0.67). This altered expression was associated with 20 significantly enriched processes, including chromatin remodeling, transcription, translation, metabolic and energetic processes, oxidative phosphorylation, glycolysis/gluconeogenesis, cell proliferation, cytoskeletal organization, and with cell death with necroptosis. Conclusions: We confirmed the previously observed dose-dependent effect of IA as a secondary metabolite with important potential as an anticancer agent for the treatment of NHL, showing that the type of drug or the anatomical location influences the response to treatment. The IA promises to be a likely safer and more effective treatment to improve outcomes, reduce toxicities, and improve survival in patients with NHL, initially targeting histones and transcription factors that will affect cell death proteins.
Collapse
Affiliation(s)
- Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| | - Elihú Bautista
- SECIHTI-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, San Luis Potosí, Mexico;
| | - José Manuel Sánchez-López
- Hospital Infantil de Tlaxcala, Investigación y Enseñanza, 20 de Noviembre S/M, San Matias Tepetomatitlan, Apetatitlan de de Antonio Carvajal 90606, Tlaxcala, Mexico;
- Phagocytes Architecture and Dynamics, IPBS, UMR5089 CNRS-Université Toulouse 3, 205 route de Narbonne, 31077 Toulouse, France
| | - Miguel Valdes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Miguel Hidalgo, Mexico City 11340, Mexico
| | | | - Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| |
Collapse
|
2
|
Eccles-Miller JA, Johnson TD, Baldwin WS. Sexually Dimorphic Effects of CYP2B6 in the Development of Fasting-Mediated Steatosis in Mice: Role of the Oxylipin Products 9-HODE and 9-HOTrE. Biomedicines 2025; 13:295. [PMID: 40002708 PMCID: PMC11853041 DOI: 10.3390/biomedicines13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cytochrome P450 2B6 (CYP2B6) is a sexually dimorphic, anti-obesity CYP enzyme responsible for the metabolism of xeno- and endobiotics, including the metabolism of polyunsaturated fatty acids (PUFAs) into 9-hydroxyoctadecadienoic acid (9-HODE) and 9-hydroxyoctadecatrienoic acid (9-HOTrE). However, humanized CYP2B6 transgenic (hCYP2B6-Tg) mice are sensitive to diet-induced hepatic steatosis despite their resistance to obesity. The purpose of this study was to determine if 9-HODE, 9-HOTrE, or other factors contribute to the sexually dimorphic steatosis observed in hCYP2B6-Tg mice. Results: Cyp2b9/10/13-null (Cyp2b-null) mice were injected with either 9-HODE or 9-HOTrE for 2 days and were then subjected to a fasting period of 20 h to induce steatosis. Serum lipids were moderately increased, especially in females, after 9-HODE (triglycerides (TGs), very low-density lipoproteins (VLDLs)) and 9-HOTrE (high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), cholesterol) treatment. No change in hepatic lipids and few changes in hepatic gene expression were observed in mice treated with either oxylipin, suggesting that these oxylipins had minimal to moderate effects. Therefore, to further investigate CYP2B6's role in steatosis, hCYP2B6-Tg and Cyp2b-null mice were subjected to a 20 h fast and compared. Both male and female hCYP2B6-Tg mice exhibited increased steatosis compared to Cyp2b-null mice. Serum cholesterol, triglycerides, HDLs, and VLDLs were increased in hCYP2B6-Tg males. Serum triglycerides and VLDLs were decreased in hCYP2B6-Tg females, suggesting the greater hepatic retention of lipids in females. Hepatic oxylipin profiles revealed eight perturbed oxylipins in female hCYP2B6-Tg mice and only one in males when compared to Cyp2b-null mice. RNA-seq also demonstrated greater effects in females in terms of the number of genes and gene ontology (GO) terms perturbed. There were only a few overlapping GO terms between sexes, and lipid metabolic processes were enriched in hCYP2B6-Tg male mice but were repressed in hCYP2B6-Tg females compared to Cyp2b-nulls. Conclusions: hCYP2B6-Tg mice are sensitive to fasting-mediated steatosis in males and females, although the responses are different. In addition, the oxylipins 9-HODE and 9-HOTrE are unlikely to be the primary cause of CYP2B6's pro-steatotic effects.
Collapse
Affiliation(s)
| | | | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (J.A.E.-M.); (T.D.J.)
| |
Collapse
|
3
|
Schenk M, Mörl K, Herzig S, Beck-Sickinger AG. Targeted modulation of gene expression through receptor-specific delivery of small interfering RNA peptide conjugates. J Pept Sci 2024; 30:e3611. [PMID: 38714526 DOI: 10.1002/psc.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/10/2024]
Abstract
Small interfering RNA (siRNA) has emerged as a valuable tool to address RNA interference (RNAi) to modulate gene expression also in therapy. However, challenges such as inefficient cell targeting and rapid degradation in biological systems have limited its success. To address these issues, the development of a receptor-specific shuttle system represents a promising solution. [F7,P34]-NPY analogues were modified by solid-phase peptide synthesis, enabling non-covalent conjugation with siRNA. This modification yielded an efficient siRNA vehicle capable of binding and transporting its cargo into target cells without adversely affecting receptor activation or cell viability. Mass spectrometry and gel shift assays confirmed successful and stable siRNA binding under various conditions. Microscopy experiments further demonstrated the co-internalization of labeled peptides and siRNA in Hepa1c1 cells, highlighting the stability of the complex. In vitro quantitative RT-PCR experiments, targeting the TSC22D4 gene to normalize systemic glucose homeostasis and insulin resistance, revealed a functional peptide-based siRNA shuttle system with the ability to decrease mRNA expression to approximately 40%. These findings strengthen the potential of receptor-specific siRNA shuttle systems as efficient tools for gene therapy that offer a possibility for reducing side effects.
Collapse
Affiliation(s)
- Mareike Schenk
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Karin Mörl
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
4
|
Wang D, Kang X, Zhang L, Guo Y, Zhang Z, Ren H, Yuan G. TRIB2-Mediated Modulation of AMPK Promotes Hepatic Insulin Resistance. Diabetes 2024; 73:1199-1214. [PMID: 38394623 DOI: 10.2337/db23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Insulin resistance and its linked health complications are increasing in prevalence. Recent work has caused the role of Tribbles2 (TRIB2) in metabolism and cellular signaling to be increasingly appreciated, but its role in the progression of insulin resistance has not been elucidated. Here, we explore the functions of TRIB2 in modulating insulin resistance and the mechanism involved in insulin-resistant mice and palmitic acid-treated HepG2 cells. We demonstrate that whole-body knockout and hepatic-specific TRIB2 deficiency protect against diet-induced insulin resistance, inflammation, and endoplasmic reticulum stress. Accordingly, upregulation of TRIB2 in the liver aggravates these metabolic disturbances in high-fat diet-induced mice and ob/ob mice. Mechanistically, TRIB2 directly binds to the αγ-SBS domain of PRKAB through its pseudokinase domain, subsequently inhibiting the formation and activity of the AMPK complex. Moreover, the results of intervention against AMPK suggest that the effects of TRIB2 depend on AMPK. Our findings reveal that TRIB2 is a novel target for the treatment of insulin resistance and its associated metabolic complications and clarify the function of TRIB2 as a regulatory component of AMPK activity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaonan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaoyao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ziyin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huihui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Xiao YX, Lee SY, Aguilera-Uribe M, Samson R, Au A, Khanna Y, Liu Z, Cheng R, Aulakh K, Wei J, Farias AG, Reilly T, Birkadze S, Habsid A, Brown KR, Chan K, Mero P, Huang JQ, Billmann M, Rahman M, Myers C, Andrews BJ, Youn JY, Yip CM, Rotin D, Derry WB, Forman-Kay JD, Moses AM, Pritišanac I, Gingras AC, Moffat J. The TSC22D, WNK, and NRBP gene families exhibit functional buffering and evolved with Metazoa for cell volume regulation. Cell Rep 2024; 43:114417. [PMID: 38980795 DOI: 10.1016/j.celrep.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Aaron Au
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yukti Khanna
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Zetao Liu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kamaldeep Aulakh
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taylor Reilly
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Saba Birkadze
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Habsid
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maximilian Billmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Iva Pritišanac
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Shi H, Zhou C, Zhao Y. Establishment of a diagnostic model of endometriosis based on disulfidptosis-related genes. J Obstet Gynaecol Res 2024; 50:1201-1207. [PMID: 38644543 DOI: 10.1111/jog.15945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/30/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES We aimed to establish a diagnostic model of endometriosis (EM) based on disulfidptosis-related genes (DRGs). MATERIALS AND METHODS The mRNA expression data of EM were downloaded from the gene expression omnibus database and subjected to differential analysis, and co-expression analysis was performed based on 10 disulfidptosis genes to acquire DRGs. The differentially expressed DRGs were subjected to biofunctional analysis. Lasso analysis and support vector machine-recursive feature elimination (SVM-RFE) analysis were employed to extract the intersection of feature genes as biomarkers, and the diagnostic values of biomarkers for EM were evaluated based on receiver operating characteristic curves. The correlations between biomarkers and the immune microenvironment were assessed by Pearson analysis of biomarkers and immune cell infiltration levels. RESULTS Transforming growth factor β stimulated protein clone 22 domain family member 4 (TSC22D4), and F-box/SPRY domain-containing protein 1 (FBXO45) worked as the diagnostic classifiers in EM, with an obvious decrease in FBXO45 expression and an evident increase in TSC22D4 expression. The areas under the curves of FBXO45 and TSC22D4 were 0.752 and 0.706, respectively, and the area of FBXO45 combined with TSC22D4 reached 0.865, suggesting that TSC22D4 and FBXO45 had high predictive values. The diagnostic markers were closely correlated with immune cell infiltration. CONCLUSION The diagnostic markers constructed based on disulfidptosis are good predictors for EM, which have close correlations with EM.
Collapse
Affiliation(s)
- Hongyan Shi
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Caixia Zhou
- Reproductive Medical Center, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
| | - Yaoyao Zhao
- Department of Gynecology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
7
|
Li Z, Wu N, Wang J, Yue Y, Geng L, Zhang Q. Low molecular weight fucoidan restores diabetic endothelial glycocalyx by targeting neuraminidase2: A new therapy target in glycocalyx shedding. Br J Pharmacol 2024; 181:1404-1420. [PMID: 37994102 DOI: 10.1111/bph.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-β. CONCLUSION AND IMPLICATIONS NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
8
|
Li T, Ling J, Du X, Zhang S, Yang Y, Zhang L. Exploring the underlying mechanisms of fisetin in the treatment of hepatic insulin resistance via network pharmacology and in vitro validation. Nutr Metab (Lond) 2023; 20:51. [PMID: 37996895 PMCID: PMC10666360 DOI: 10.1186/s12986-023-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE To characterize potential mechanisms of fisetin on hepatic insulin resistance (IR) using network pharmacology and in vitro validation. METHODS Putative targets of fisetin were retrieved from the Traditional Chinese Medicine Systems Pharmacology database, whereas the potential genes of hepatic IR were obtained from GeneCards database. A protein-protein interaction (PPI) network was constructed according to the intersection targets of fisetin and hepatic IR using the Venn diagram. The biological functions and potential pathways related to genes were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cell experiments were also conducted to further verify the mechanism of fisetin on hepatic IR. RESULTS A total of 118 potential targets from fisetin were associated with hepatic IR. The areas of nodes and corresponding degree values of TP53, AKT1, TNF, IL6, CASP3, CTNNB1, JUN, SRC, epidermal growth factor receptor (EGFR), and HSP90AA1 were larger and could be easily found in the PPI network. Furthermore, GO analysis revealed that these key targets were significantly involved in multiple biological processes that participated in oxidative stress and serine/threonine kinase activity. KEGG enrichment analysis showed that the PI3K/AKT signaling pathway was a significant pathway involved in hepatic IR. Our in vitro results demonstrated that fisetin treatment increased the expressions of EGFR and IRS in HepG2 and L02 cells under normal or IR conditions. Western blot results revealed that p-AKT/AKT levels were significantly up-regulated, suggesting that fisetin was involved in the PI3K/AKT signaling pathway to regulate insulin signaling. CONCLUSION We explored the pharmacological actions and the potential molecular mechanism of fisetin in treating hepatic IR from a holistic perspective. Our study lays a theoretical foundation for the development of fisetin for type 2 diabetes.
Collapse
Affiliation(s)
- Tian Li
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Xingrong Du
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| | - Siyu Zhang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| | - Yan Yang
- Chongqing Tongnan NO.1 Middle School, Tongnan, 402660, China
| | - Liang Zhang
- Metabilic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China.
- Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
9
|
Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci 2023; 24:13381. [PMID: 37686185 PMCID: PMC10487533 DOI: 10.3390/ijms241713381] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus is a chronic multifaceted disease with multiple potential complications, the treatment of which can only delay and prolong the terminal stage of the disease, i.e., type 2 diabetes mellitus (T2DM). The World Health Organization predicts that diabetes will be the seventh leading cause of death by 2030. Although many antidiabetic medicines have been successfully developed in recent years, such as GLP-1 receptor agonists and SGLT-2 inhibitors, single-target drugs are gradually failing to meet the therapeutic requirements owing to the individual variability, diversity of pathogenesis, and organismal resistance. Therefore, there remains a need to investigate the pathogenesis of T2DM in more depth, identify multiple therapeutic targets, and provide improved glycemic control solutions. This review presents an overview of the mechanisms of action and the development of the latest therapeutic agents targeting T2DM in recent years. It also discusses emerging target-based therapies and new potential therapeutic targets that have emerged within the last three years. The aim of our review is to provide a theoretical basis for further advancement in targeted therapies for T2DM.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Yingsheng Luo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Lu Tang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China; (J.S.); (Y.L.); (S.H.); (L.T.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, Fujian Normal University, Fuzhou 350117, China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
10
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
11
|
D'Alessandro VF, Takeshita A, Yasuma T, Toda M, D'Alessandro-Gabazza CN, Okano Y, Tharavecharak S, Inoue C, Nishihama K, Fujimoto H, Kobayashi T, Yano Y, Gabazza EC. Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. Int J Mol Sci 2022; 23:ijms232214265. [PMID: 36430743 PMCID: PMC9693927 DOI: 10.3390/ijms232214265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus is a global health problem. Diabetic nephropathy is a common complication of diabetes mellitus and the leading cause of end-stage renal disease. The clinical course, response to therapy, and prognosis of nephropathy are worse in diabetic than in non-diabetic patients. The role of transforming growth factorβ1 in kidney fibrosis is undebatable. This study assessed whether the overexpression of transforming growth factorβ1 is associated with insulin resistance and the rapid progression of transforming growth factorβ1-mediated nephropathy under diabetic conditions. Diabetes mellitus was induced with streptozotocin in wild-type mice and transgenic mice with the kidney-specific overexpression of human transforming growth factorβ1. Mice treated with saline were the controls. Glucose tolerance and kidney fibrosis were evaluated. The blood glucose levels, the values of the homeostasis model assessment for insulin resistance, and the area of kidney fibrosis were significantly increased, and the renal function was significantly impaired in the diabetic transforming growth factorβ1 transgenic mice compared to the non-diabetic transgenic mice, diabetic wild-type mice, and non-diabetic mice. Transforming growth factorβ1 impaired the regulatory effect of insulin on glucose in the hepatocyte and skeletal muscle cell lines. This study shows that transforming growth factorβ1 overexpression is associated with insulin resistance and rapidly progressive kidney fibrosis under diabetic conditions in mice.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yuko Okano
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| |
Collapse
|