1
|
Guo Y, Xie W, Ye Z, Xu K, Zhang Z, Xiao Z, Miao J, Zou Y, Zhong C, Yin X, Yang C, Cao X. Simple Boron-Nitrogen Covalent Bond Constructs Multi-Resonance TADF Emitters: Ultra-Narrowband Deep-Blue Electroluminescence. Angew Chem Int Ed Engl 2025; 64:e202503320. [PMID: 40096340 DOI: 10.1002/anie.202503320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
High-efficiency, pure deep-blue emitters are critically needed to meet the rising demands of ultra-high-definition displays. Although high-order B/N-doped polycyclic aromatic hydrocarbons (PAHs) leveraging multi-resonance (MR) effects show promise, their complex syntheses and large molecular weights hinder practical application. Here, we report a compact MR framework featuring three nitrogen-linked boron centers, synthesized at the gram scale via a single-step, amine-directed borylation. This emitter displays deep-blue emission with an ultra-narrow full-width at half-maximum (FWHM) of 13 nm and achieves an order-of-magnitude increase in the reverse intersystem crossing rate constant (kRISC) compared to previous BN-bond-based blue MR emitters. Theoretical studies reveal that its π-extended framework and partially distorted geometry synergistically minimize structural relaxation to reduce FWHM and enhance spin-orbit coupling to facilitate efficient spin-flip processes. As a result, the corresponding deep-blue organic light-emitting diodes exhibit an FWHM of 15 nm and a high maximum external quantum efficiency (ηEQE,max) approaching 30% at color coordinates of (0.155, 0.060), rivaling the leading performance of deep-blue OLEDs based on conventional B/N-doped frameworks.
Collapse
Affiliation(s)
- Yuxi Guo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Wentao Xie
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, P.R. China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhenghao Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhengqi Xiao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
2
|
Zhang H, Duan L, Zhang D. Phosphor-Assisted TADF-Sensitized Fluorescence (pTSF) OLEDs: Faster Excitons, Brighter Futures. Chemistry 2025:e202501500. [PMID: 40393923 DOI: 10.1002/chem.202501500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/22/2025]
Abstract
The impressive efficiency and lifetime under ultrahigh luminance remain a long-standing challenge for organic light-emitting diodes (OLEDs), as conventional fluorescent, phosphorescent, and thermally activated delayed fluorescent (TADF) systems universally suffer from accelerated bimolecular annihilation at elevated exciton densities. Recently, phosphor-assisted TADF-sensitized fluorescence (pTSF) has emerged as a groundbreaking architecture that synergistically integrates exciton utilization enhancement and radiative decay acceleration through breaking the singlet-triplet spin-flip cycles in thermally activated delayed fluorescence (TADF) hosts via multiple sensitizations. The OLEDs based on pTSF achieve not only a nearly roll-off-free on external quantum efficiency but also a remarkable power efficiency, even when operating at ultrahigh luminance levels exceeding 100,000 cd m-2. In this review, we delve into the intricacies of pTSF technology, examining its material design principles, energy transfer dynamics, and exciton management processes. Eventually, we critically assess the challenges in implementing pTSF for blue-emitting OLEDs and propose strategic research directions to harness the full potential of this transformative technology.
Collapse
Affiliation(s)
- Hai Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Wu X, Ni S, Wang CH, Zhu W, Chou PT. Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs. Chem Rev 2025. [PMID: 40344420 DOI: 10.1021/acs.chemrev.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Fluorescence emitters with a multiple-resonant (MR) effect have become a research hotspot. These MR emitters mainly consist of polycyclic aromatic hydrocarbons with boron/nitrogen, nitrogen/carbonyl, and indolocarbazole frameworks. The staggered arrangement of the highest occupied molecular orbital and the lowest unoccupied molecular orbital facilitates MR, resulting in smaller internal reorganization energy and a narrower emission bandwidth. Optimal charge separation suppresses the energy gap between singlet and triplet excited states, favoring thermally activated delayed fluorescence (TADF). These MR-TADF materials, due to color purity and high emission efficiency, are excellent candidates for organic light-emitting diodes. Nevertheless, significant challenges remain; in particular, the limitation imposed by the alternated core configuration hinders their diversity and versatility. Most existing MR-TADF materials are concentrated in the blue-green range, with only a few in red and near-infrared spectra. This review provides a timely and comprehensive screening of MR emitters from their pioneering work to the present. Our goal is to gain understandings of the MR-TADF structure-performance relationship from both basic and advanced perspectives. Special emphasis is placed on exploring the correlations between chemical structure, photophysical properties and electroluminescent performance in both depth and breadth with an aim to promote the future development of MR emitters.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Songqian Ni
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Chih-Hsing Wang
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Pi-Tai Chou
- National Taiwan University, Department of Chemistry, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Wang Q, Zhang H, Zhou J, Dai H, Mai M, Huang T, Wang L, Wang X, Zhang D, Duan L. Linear Annulation Engineering of Indolocarbazole Multiple Resonance Emitter to Overcome Efficiency-Stability-Color Purity Trilemma in Deep-Blue OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503839. [PMID: 40348598 DOI: 10.1002/adma.202503839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Indexed: 05/14/2025]
Abstract
Deep-blue emitters for organic light-emitting diodes (OLEDs) still confront the critical challenge of balancing high efficiency, operational stability, and color purity, particularly for the ones with peak wavelengths (λmax) ≤ 460 nm. Here, the study demonstrates deep-blue devices featuring ultrapure emission (λmax = 458 nm, full-width at half-maximum = 19 nm), high maximum external quantum efficiency of 34.3% with small roll-off (26.9% at 1 000 cd m- 2; 20.9% at 5 000 cd m- 2), and long operational LT80 (time to 80% of the initial luminance) of 101 hours at 1,000 cd m- 2, being one of the longest lifetime among OLEDs with λmax ≤ 460 nm and EQE >20%. This breakthrough stems from an indolocarbazole narrowband emitter employing a linear annulation strategy, which not only narrows spectral bandwidth while red-shifting emission peak through multiple resonance framework extension, but also energetically and dynamically enhances device longevity via triplet energy reduction. Furthermore, strategic integration of steric hindrance on the emitting backbone suppresses intermolecular interactions and directs reactivity pathways. This emitter concurrently achieves a λmax of 456 nm, FWHM of 15 nm and photoluminescence (PL) quantum yield of 98% in dilute toluene. The work highlights linear annulation engineering as a potential approach to resolve the efficiency-stability-color purity trilemma in deep-blue OLEDs.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hai Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Minqiang Mai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xuewen Wang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Yan J, Wu Y, Huang M, Cheng L, Pan Y, Wu C, Yeh C, Li J, Lin Y, Chi Y, Yang C, Chou P, Lau KC. Iridium(III) Carbene Complexes Featuring Either Metal-to-Ligand Charge Transfer (MLCT) or Through-Space Charge Transfer (TSCT) Blue Luminescence. Angew Chem Int Ed Engl 2025; 64:e202424694. [PMID: 40066986 PMCID: PMC12087841 DOI: 10.1002/anie.202424694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Through-space charge transfer (TSCT), rather than the commonly postulated metal-to-ligand charge transfer (MLCT) process, was proposed in getting the lowest lying excited state of newly designed Ir(III) blue phosphors. Accordingly, two benzo[d]imidazolylidene pro-chelates, L12H2 + and L13H2 +, one with two cyano groups at the peri-benzo and N-aryl pendent and the other with its peri-cyano group being replaced with methyl substituent, were employed in syntheses of Ir(III) complexes f-ct12b,c and f-ct13b,c. Notably, complexes f-ct12b,c exhibited the traditional MLCT process, while f-ct13b,c were dominated by the TSCT transition, resulting in a smaller S1-T1 energy gap ΔEST. Next, it prompted us to explore whether their long-lived emission originated from phosphorescence or thermally activated delayed fluorescence (TADF). Although temperature-dependent emission studies favor TADF, the unresolved concerns are still discussed in depth. For application, OLED with the TSCT-based dopant f-ct13b delivered a maximum external quantum efficiency (EQE) of 22.2% and a max. luminance of 10 000 cd m‒2, together with CIExy of (0.155, 0.120). Moreover, the hyper-OLED with f-ct13c sensitizer and v-DABNA terminal emitter exhibited a max. EQE of 28.2% and CIExy of (0.123, 0.129), demonstrating a new approach in developing efficient Ir(III) blue phosphors.
Collapse
Affiliation(s)
- Jie Yan
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| | - Yixin Wu
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518055P.R. China
| | - Lin Cheng
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| | - Yi Pan
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| | - Chi‐Chi Wu
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Chia‐Hsun Yeh
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Jian‐Liang Li
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yan‐Ding Lin
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Yun Chi
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518055P.R. China
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Kai Chung Lau
- Department of Chemistry, Department of Materials Science and Engineering, and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong KongHong Kong SARP.R. China
| |
Collapse
|
6
|
Meng QY, Wen XL, Qiao J. "Impossible Trinity" between Efficiency, Stability, and Color Purity for Blue OLEDs: Challenges and Opportunities. J Phys Chem Lett 2024; 15:12571-12583. [PMID: 39680682 DOI: 10.1021/acs.jpclett.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Organic light-emitting diodes (OLEDs) have become the cutting-edge technology in the display market. However, compared with green and red stacks, blue stacks still remain an obstacle for OLED technology. There seems to be an "impossible trinity" between efficiency, stability, and color-purity for blue OLEDs. In this trilemma, advances in device stability have lagged far behind. In this Perspective, focusing on the critical role of bond-dissociation energy (BDE), we first summarize recent advances in the chemical degradation mechanism of high-efficiency blue OLED materials and then highlight strategies to improve the intrinsic stability and device lifetime from the material point-of-view. Finally, future challenges and opportunities for developing robust blue OLED materials and devices are envisioned, including the rational design of robust blue materials with high BDEs, two-pronged approaches from both thermodynamic and kinetic aspects, the great need for robust host materials, deep insights into host-guest interactions, collaborative efforts from the aspect of devices, and data-driven screening and iteration development.
Collapse
Affiliation(s)
- Qing-Yu Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xue-Liang Wen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
8
|
Yan J, Wu C, Tong KN, Zhou F, Chen Y, Pan Y, Xie G, Chi Y, Lau KC, Wei G. Structural Engineering of Iridium(III) Phosphors with Imidazo[4,5-b]pyrazin-2-ylidene Cyclometalates for Efficient Blue Electroluminescence. SMALL METHODS 2024; 8:e2301555. [PMID: 38185747 DOI: 10.1002/smtd.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Iridium(III) complexes are particularly noted for their excellent potentials in fabrication of blue organic light-emitting diodes (OLEDs), but the severe efficiency roll-off largely hampered their practical applications. To reveal the underlying characteristics, three Ir(III) complexes, namely f-ct5c, f-ct5d, and f-ct11, bearing imidazo[4,5-b]pyrazin-2-ylidene cyclometalates are prepared and characterized in detail. Both f-ct5c and f-ct5d (also their mixture f-ct5mix) gave intensive blue emissions peaking at ≈465 nm with short radiative lifetimes of 1.76 and 2.45 µs respectively, in degassed toluene. Alternatively, f-ct11 with two 4-tert-butylphenyl substituents on each imidazo[4,5-b]pyrazin-2-ylidene entity, possessed a bluish-green emission (508 nm) together with an extended radiative lifetime of 34.3 µs in the dispersed PMMA matrix. Consequently, the resulting solution-processed OLED with f-ct11 delivered a maximum external quantum efficiency (EQEmax) of 6.5% with serious efficiency roll-offs. In contrast, f-ct5mix based device achieved a high EQEmax of 27.2% and the EQE maintained at 23.0% of 1000 cd m-2. Furthermore, the hyper-OLEDs with f-ct5mix as the sensitizer and v-DABNA as the terminal emitter afford narrowed emission with a considerably high EQEmax exceeding 32%, affirming the potential of f-ct5mix to serve as both the emitter and sensitizer in OLEDs.
Collapse
Affiliation(s)
- Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Chengcheng Wu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Kai-Ning Tong
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Fan Zhou
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Yidong Chen
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Yi Pan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Guohua Xie
- The Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Kai-Chung Lau
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, 999077, HONG KONG
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
9
|
Meng QY, Shao HY, Wang R, Yao CY, Wang YL, Wen XL, Xu JY, Dai Y, Qiao J. Synergistic Intramolecular Non-Covalent Interactions Enable Robust Pure-Blue TADF Emitters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407882. [PMID: 39285807 DOI: 10.1002/adma.202407882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Indexed: 11/08/2024]
Abstract
Stability-issues of organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) require further advancements, especially in pure-blue range of CIEy < 0.20, existing a dilemma between color purity and device lifetime. Though improving bond-dissociation-energy (BDE) can effectively improve material intrinsic stability, strategies to simultaneously improve BDE and photophysical performances are still lacking. Herein, it is disclosed that synergistic intramolecular non-covalent interactions (Intra-NI) can achieve not only the highest C─N BDE among blue TADF materials, but enhanced molecular-rigidity, near-unity photoluminescent quantum yields and short delayed lifetime. Pure-blue TADF-OLEDs based on proof-of-concept TADF material realize high external-quantum-efficiency and record-high LT80@500 cd m-2 of 109 h with CIEy = 0.16. Furthermore, deep-blue TADF-sensitized devices exhibit high LT80@500 cd m-2 of 81 h with CIEy = 0.10. The findings provide new insight into the critical role of Intra-NI in OLED materials and open the way to tackling vexing stability issues for developing robust pure-blue organic emitters and other functional materials.
Collapse
Affiliation(s)
- Qing-Yu Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hao-Yun Shao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng-Yu Yao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi-Lei Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xue-Liang Wen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing-Yi Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Lee H, Park B, Han GR, Mun MS, Kang S, Hong WP, Oh HY, Kim T. Superbly Efficient and Stable Ultrapure Blue Phosphorescent Organic Light-Emitting Diodes with Tetradentate Pt(II) Complex with Vibration Suppression Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409394. [PMID: 39263757 DOI: 10.1002/adma.202409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Blue phosphorescent organic light-emitting diodes (PHOLEDs) are on the brink of commercialization for decades. However, the external quantum efficiency (EQE) and operational lifetime of PHOLEDs are not yet reached industrial standards. Here, a novel tetradentate Pt(II) emitter with a spirofluorene onto the carbazole unit that minimizes the vibration modes, corresponding to the structural relaxation during the de-excitation, called the vibration suppression effect is reported. This modification reduces the intensity of the second peak in the spectrum and Shockley-Read-Hall recombination by blocking direct hole injection into the emitter while enhancing Förster resonance energy transfer, resulting in 451 h of LT50 (the time until a 50% decrease in initial luminance at 1000 cd m-2) and 25.1% of the maximum EQE (EQEmax). Thanks to the vibration suppression effect, an extremely narrow full width at half a maximum of 22 nm is obtained. In phosphor-sensitized thermally activated delayed fluorescent OLED, ultra-pure blue emission with Commission internationale de l'Eclairage (CIE) coordinates of (0.136, 0.096) is obtained with 28.1% of EQEmax. Furthermore, 50.3% of the EQEmax and 589 h of LT70 are simultaneously recorded with the two-stack tandem PHOLED, which is the highest EQEmax among 2-tandem and bottom-emission PHOLEDs with CIEy < 0.15.
Collapse
Affiliation(s)
- Hakjun Lee
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
| | - Bubae Park
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
| | - Ga Ram Han
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Min Sik Mun
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Sunwoo Kang
- Department of Chemistry, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hyoung Yun Oh
- LORDIN, 614 Dongtangiheung-ro, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Taekyung Kim
- Department of Information Display, Hongik University, Seoul, 04066, Republic of Korea
- Department of Materials Science and Engineering, Hongik University, Sejong, 30016, Republic of Korea
| |
Collapse
|
11
|
Huang T, Wang Q, Zhang H, Xin Y, Zhang Y, Chen X, Zhang D, Duan L. Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence. NATURE MATERIALS 2024; 23:1523-1530. [PMID: 39266678 DOI: 10.1038/s41563-024-02004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/19/2024] [Indexed: 09/14/2024]
Abstract
Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m-2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l'Eclairage coordinates of (0.14, 0.17).
Collapse
Affiliation(s)
- Tianyu Huang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Qi Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hai Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yangyang Xin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Xiankai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Kang J, Lee HL, Jeon SO, Bae HJ, Kim SC, Han S, Lee JY. Spin-Flip-Restricted Multiple-Resonance Emitters for Extended Device Lifetime in Indolocarbazole-Based Blue Organic Light-Emitting Diodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405604. [PMID: 39206882 PMCID: PMC11515912 DOI: 10.1002/advs.202405604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In this study, a multiple-resonance (MR) core structure is developed with a spin-flip-restricted emission mechanism based on a fused indolo[3,2,1-jk]carbazole (ICz) framework as emitters to improve the lifetime of blue organic light-emitting diodes. The molecular skeleton modulation approach applied to the conjugated π-system effectively stabilizes the triplet energy of the fused ICz emitters and narrows the full-width-at-half maximum (<20 nm). In addition, the emitters exhibit higher exciton stability than conventional boron-based MR emitters. The fused ICz-based blue fluorescent device exhibits a high external quantum efficiency of 7.2%, a blue index of 68.6 cd A-1 at a Commission internationale de l'éclairage y coordinate (CIEy) of 0.075, and a device lifetime 1.8 times longer than that of a boron-based emitter. In addition, a phosphor-sensitized fluorescent device based on the ICz emitter exhibited an improved external quantum efficiency of 20.6% with a CIEy coordinate of 0.076.
Collapse
Affiliation(s)
- Jihoon Kang
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Ha Lim Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Soon Ok Jeon
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of TechnologySamsung Electronics Co., Ltd130 Samsung‐ro, Yeongtong‐guSuwonGyeonggi16678Republic of Korea
| | - Seung Chan Kim
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Seungwon Han
- Department of Display Convergence EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| | - Jun Yeob Lee
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
- SKKU Institute of Energy Science and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi16419Republic of Korea
| |
Collapse
|
13
|
Cheong K, Han SW, Lee JY. Tetradentate Pt(II) Complexes with Bulky Carbazole Moieties for High-Efficiency and Narrow-Emitting Blue Organic Light-Emitting Devices. SMALL METHODS 2024; 8:e2301710. [PMID: 38368260 DOI: 10.1002/smtd.202301710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Blue tetradentate Pt(II) complexes, Pt-tBuCz and Pt-dipCz, are synthesized by introducing carbazoles with bulky substituents for improving the rigidity and inhibiting intermolecular interactions of phosphorescent emitter. tert-Butyl and 2,6-diisopropylphenyl groups are substituted as the blocking groups at 3 position of the carbazole in Pt-tBuCz and Pt-dipCz, respectively. These new phosphorescent emitters exhibit a narrow full width at half maximum (FWHM) and a high horizontal emitting dipole orientation ratio. Pt-dipCz demonstrates a small FWHM of 24 nm, a high emitting dipole orientation ratio of 81%, and a high photoluminescence quantum yield value of 94%. As a result, the Pt-tBuCz and Pt-dipCz devices exhibited external quantum efficiencies (EQEs) of 23.7% and 25.0% with small FWHMs of 25 and 22 nm, respectively. For the Pt-dipCz device, the small FWHM and high EQE of >20% are maintained even at a doping concentration of 20 wt%. Furthermore, phosphor-sensitized organic light-emitting diodes fabricated using Pt-dipCz as a sensitizer achieved a high EQE of 31.4% with an FWHM of 18 nm. This result indicates that the 2,6-diisopropylphenyl group is a effective blocking group for Pt(II) complexes to develop highly efficient, color stable, doping concentration resistant, and efficiently sensitizing blue phosphors.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Won Han
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Display Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
14
|
Karak P, Manna P, Banerjee A, Ruud K, Chakrabarti S. Reverse Intersystem Crossing Dynamics in Vibronically Modulated Inverted Singlet-Triplet Gap System: A Wigner Phase Space Study. J Phys Chem Lett 2024; 15:7603-7609. [PMID: 39028946 DOI: 10.1021/acs.jpclett.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We inspect the origin of the inverted singlet-triplet gap (INVEST) and slow change in the reverse intersystem crossing (rISC) rate with temperature, as recently observed. A Wigner phase space study reveals that, though INVEST is found at equilibrium geometry, variation in the exchange interaction and the doubles-excitation for other geometries in the harmonic region leads to non-INVEST behavior. This highlights the importance of nuclear degrees of freedom for the INVEST phenomenon, and in this case, geometric puckering of the studied molecule determines INVEST and the associated rISC dynamics.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Pradipta Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| | - Ambar Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Kolkata 700091, India
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian Defence Research Establishment, P.O. Box 25, 2027 Kjeller, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
15
|
Madushani B, Mamada M, Goushi K, Katagiri H, Nakanotani H, Hatakeyama T, Adachi C. Hexacarbazolylbenzene: An Excellent Host Molecule Causing Strong Guest Molecular Orientation and the High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402275. [PMID: 38865445 DOI: 10.1002/adma.202402275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Hexacarbazolylbenzene (6CzPh), which is benzene substituted by six carbazole rings, is a simple and attractive compound. Despite the success of a wide variety of carbazole derivatives in organic light-emitting diodes (OLEDs), 6CzPh has not received attention so far. Here, excellent performances of 6CzPh are revealed as a host material in OLEDs regarding conventional host materials. Various strategies are implemented to improve the performance of OLEDs, e.g., triplet utilization by thermally activated delayed fluorescence (TADF) and phosphorescence emitters for maximizing internal quantum efficiency, and molecular orientation control for increasing outcoupling efficiency. The present host material is suited for both criteria. Robustness of the structure and sufficiently high triplet energy enables a high external quantum efficiency with a long device lifetime. Besides, the host material boosts the horizontal molecular orientations of several guest emitters. It is noteworthy that disk-shaped 4CzIPN marks the complete horizontal molecular orientations (Θh = 100%, S = -0.50). These results provide an effective way of improving efficiencies without sacrificing device durability for future OLEDs.
Collapse
Affiliation(s)
- Bhagya Madushani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Hiroshi Katagiri
- Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata, 992-8510, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
16
|
Park JY, Lee S, Bi JC, Lee JS, Hwang YH, Kang B, Seok J, Park S, Lim D, Park YW, Ju BK. Selective Enhancement of Viewing Angle Characteristics and Light Extraction Efficiency of Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes through an Easily Tailorable Si 3N 4 Nanofiber Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27566-27575. [PMID: 38743438 DOI: 10.1021/acsami.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We selectively improved the viewing angle characteristics and light extraction efficiency of blue thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) by tailoring a nanofiber-shaped Si3N4 layer, which was used as an internal scattering layer. The diameter of the polymer nanofibers changed according to the mass ratio of polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) in the polymer solution for electrospinning. The Si3N4 nanofiber (SNF) structure was fabricated by etching an Si3N4 film using the PAN/PMMA nanofiber as a mask, making it easier to adjust parameters, such as the diameter, open ratio, and height, even though the SNF structure was randomly shaped. The SNF structures exhibited lower transmittance and higher haze with increasing diameter, showing little correlation with their height. However, all the structures demonstrated a total transmittance of over 80%. Finally, by applying the SNF structures to the blue TADF OLEDs, the external quantum efficiency was increased by 15.6%. In addition, the current and power efficiencies were enhanced by 23.0% and 25.6%, respectively. The internal light-extracting SNF structure also exhibited a synergistic effect with the external light-extracting structure. Furthermore, when the viewing angle changed from 0° to 60°, the peak wavelength and CIE coordinate shift decreased from 20 to 6 nm and from 0.0561 to 0.0243, respectively. These trends were explained by the application of Snell's law to the light path and were ultimately validated through finite-difference time-domain simulations.
Collapse
Affiliation(s)
- Jun-Young Park
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seungwon Lee
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jian Cheng Bi
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Sung Lee
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Hyun Hwang
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byeongwoo Kang
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jiwon Seok
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seonghyeon Park
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dogi Lim
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
- Samsung Display Co., 1, Samsung-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17113, Republic of Korea
| | - Young Wook Park
- Department of Semiconductor and Display Engineering, Sun Moon University Asan-si 31460, Republic of Korea
| | - Byeong-Kwon Ju
- Display and Nanosensor Laboratory, Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Meng QY, Wang R, Shao HY, Wang YL, Wen XL, Yao CY, Qiao J. Precise Regulation on the Bond Dissociation Energy of Exocyclic C-N Bonds in Various N-Heterocycle Electron Donors via Machine Learning. J Phys Chem Lett 2024; 15:4422-4429. [PMID: 38626393 DOI: 10.1021/acs.jpclett.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C-N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C-N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C-N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron-N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.
Collapse
Affiliation(s)
- Qing-Yu Meng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Rui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hao-Yun Shao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi-Lei Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xue-Liang Wen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cheng-Yu Yao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Juan Qiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Cheong K, Jo U, Hong WP, Lee JY. Fused Cycloalkyl Unit-Functionalized Tetradentate Pt(II) Complexes for Efficient and Narrow-Emitting Deep Blue Organic Light-Emitting Diodes. SMALL METHODS 2024; 8:e2300862. [PMID: 37926779 DOI: 10.1002/smtd.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
A blue tetradentate Pt(II) complex named Pt-tmCyCz is developed by introducing a cycloalkyl unit fused to carbazole to improve the rigidity and bulkiness of the complex. The introduction of the tetramethylcyclohexyl (tmCy) group results in a narrow full width at half maximum (FWHM), a high horizontal emitting dipole orientation, doping concentration resistant stable spectrum, and extremely small efficiency roll-off, and little concentration quenching effect. Phosphorescent organic light-emitting diodes (OLEDs) doped with Pt-tmCyCz achieve a high external quantum efficiency (EQE) of 21.5%, with a small EQE roll-off of 3.8% up to 1000 cd m-2 , a small FWHM of 24 nm, and a color coordinate of (0.132, 0.138). Moreover, Pt-tmCyCz is investigated as a sensitizer in phosphor-sensitized OLEDs using N7 ,N7 ,N13 ,N13 ,5,9,11,15-octaphenyl-5,9,11,15-tetrahydro-5,9,11,15-tetraaza-19b,20b-diboradinaphtho[3,2,1-de:1',2',3'-jk]pentacene-7,13-diamine (νDABNA) as a terminal emitter. The Pt-tmCyCz:νDABNA device achieves a high EQE of 33.9%, with a small EQE roll-off of only 8.0% up to 1 000 cd m-2 . The results demonstrate that fused tmCy group in carbazole can be an effective building block for the development of high-performance Pt(II) complexes, which can be utilized as efficient phosphors or sensitizers in OLEDs.
Collapse
Affiliation(s)
- Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Unhyeok Jo
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Wan Pyo Hong
- Department of Chemistry, Gachon University, 1342, Seongnam-daero,Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
19
|
Lebedeva IV, Jornet-Somoza J. Optical properties and exciton transfer between N-heterocyclic carbene iridium(III) complexes for blue light-emitting diode applications from first principles. J Chem Phys 2024; 160:084107. [PMID: 38391015 DOI: 10.1063/5.0193161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
N-heterocyclic carbene (NHC) iridium(III) complexes are considered as promising candidates for blue emitters in organic light-emitting diodes. They can play the roles of the emitter as well as of electron and hole transporters in the same emission layer. We investigate optical transitions in such complexes with account of geometry and electronic structure changes upon excitation or charging and exciton transfer between the complexes from first principles. It is shown that excitation of NHC iridium complexes is accompanied by a large reorganization energy ∼0.7 eV and a significant loss in the oscillator strength, which should lead to low exciton diffusion. Calculations with account of spin-orbit coupling reveal a small singlet-triplet splitting ∼0.1 eV, whereas the oscillator strength for triplet excitations is found to be an order of magnitude smaller than for the singlet ones. The contributions of the Förster and Dexter mechanisms are analyzed via the explicit integration of transition densities. It is shown that for typical distances between emitter complexes in the emission layer, the contribution of the Dexter mechanism should be negligible compared to the Förster mechanism. At the same time, the ideal dipole approximation, although giving the correct order of the exciton coupling, fails to reproduce the result taking into account spatial distribution of the transition density. For charged NHC complexes, we find a number of optical transitions close to the emission peak of the blue emitter with high exciton transfer rates that can be responsible for exciton-polaron quenching. The nature of these transitions is analyzed.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Joaquim Jornet-Somoza
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Deka R, Dey S, Upadhyay M, Chawla S, Ray D. Conformational Effect of Catechol-Terephthalonitrile Emitters Leading to Ambient Violet Phosphorescence. J Phys Chem A 2024; 128:581-589. [PMID: 38206828 DOI: 10.1021/acs.jpca.3c06877] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Organic ambient violet phosphorescent (AVP) materials are of great interest due to their involvement of high energy and longer-lived triplet excitons. Here, we show three fused ring functionalized donor-acceptor-donor (D-A-D/D-A-D') emitters (BPT1-BPT3), in which two catechol-based donors (3,4-dihydroxybenzophenone, catechol, or 3,5-ditert-butylcatechol) are covalently fused to the terephthalonitrile acceptor via four O-C single bonds. Spectroscopic analysis revealed that all the molecules show AVP (∼390-394 nm, τAVP = 73-101 μs) with phosphorescence quantum yields (ϕP) of 1.8-27.4% due to low singlet-triplet gaps (0.036-0.046 eV) and conformational effects. BPT3 with bulky tert-butyl groups increases AVP (ϕP = 27.4%). Quantum chemistry calculations reveal flat (F1) and twisted (F2) conformers (ground state) with a low energy difference (∼4-5 kcal/mol) for all molecules; the F1 conformer is responsible for efficient AVP, while weak blue thermally activated delayed fluorescence with longer-lived delayed components is realized from the F2 conformer. This approach may provide important clues for the design of high-energy organic phosphorescent materials.
Collapse
Affiliation(s)
- Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi NCR, NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
22
|
Caine JR, Choi H, Hojo R, Hudson ZM. Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles. Chemistry 2024; 30:e202302861. [PMID: 38015005 DOI: 10.1002/chem.202302861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 11/29/2023]
Abstract
Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.
Collapse
Affiliation(s)
- Jana R Caine
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| |
Collapse
|
23
|
Hu Y, Huang M, Liu H, Miao J, Yang C. Narrowband Fluorescent Emitters Based on BN-Doped Polycyclic Aromatic Hydrocarbons for Efficient and Stable Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202312666. [PMID: 37775920 DOI: 10.1002/anie.202312666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) using conventional fluorescent emitters are currently attracting considerable interests due to outstanding stability and abundant raw materials. To construct high-performance narrowband fluorophores to satisfy requirements of ultra-high-definition displays, a strategy fusing multi-resonance BN-doped moieties to naphthalene is proposed to construct two novel narrowband fluorophores. Green Na-sBN and red Na-dBN, manifest narrow full-width at half-maxima of 31 nm, near-unity photoluminescence quantum yields and molecular horizontal dipole ratios above 90 %. Their OLEDs exhibit the state-of-the-art performances including high external quantum efficiencies (EQE), ultra-low efficiency roll-off and long operational lifetimes. The Na-sBN-based device achieves EQE as high as 28.8 % and remains 19.8 % even at luminance of 100,000 cd m-2 , and Na-dBN-based device acquires a record-high EQE of 25.2 % among all red OLEDs using pure fluorescent emitters.
Collapse
Affiliation(s)
- Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
24
|
Wu C, Tong K, Shi K, Jin Z, Wu Y, Mu Y, Huo Y, Tang M, Yang C, Meng H, Kang F, Wei G. New [3+2+1] Iridium Complexes as Effective Phosphorescent Sensitizers for Efficient Narrowband Saturated-Blue Hyper-OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301112. [PMID: 37653609 PMCID: PMC10582407 DOI: 10.1002/advs.202301112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Indexed: 09/02/2023]
Abstract
Two newly designed and synthesized [3+2+1] iridium complexes through introducing bulky trimethylsiliyl (TMS) groups are doped with a terminal emitter of v-DABNA to form an coincident overlapping spectra between the emission of these two phosphors and the absorption of v-DABNA, creating cascade resonant energy transfer for efficient triplet harvesting. To boost the color quality and efficiency, the fabricated hyper-OLEDs have been optimized to achieve a high external quantum efficiency of 31.06%, which has been among the highest efficiency results reported for phosphor sensitized saturated-blue hyper-OLEDs, and pure blue emission peak at 467 nm with the full width at half maxima (FWHM) as narrow as 18 nm and the CIEy values down to 0.097, satisfying the National Institute of Standards and Technology (NIST) requirement for saturated blue OLEDs display. Surprisingly, such hyper-OLEDs have obtained the converted lifetime (LT50 ) up to 4552 h at the brightness of 100 cd m-2 , demonstrating effective Förster resonance energy transfer (FRET) process. Therefore, employing these new bulky TMS substituent [3+2+1] iridium(III) complexes for effective sensitizers can greatly pave the way for further development of high efficiency and stable blue OLEDs in display and lighting applications.
Collapse
Affiliation(s)
- Chengcheng Wu
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kai‐Ning Tong
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Kefei Shi
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zhaoyun Jin
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Yuan Wu
- PURI Materials, IncShenzhen518133China
| | - Yingxiao Mu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006China
| | - Man‐Chung Tang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Chen Yang
- PURI Materials, IncShenzhen518133China
| | - Hong Meng
- School of Advanced MaterialsShenzhen Graduate SchoolPeking UniversityShenzhen518055China
| | - Feiyu Kang
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guodan Wei
- Tsinghua–Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhen518055China
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
25
|
Gu J, Shi W, Zheng H, Chen G, Wei B, Wong WY. The Novel Organic Emitters for High-Performance Narrow-Band Deep Blue OLEDs. Top Curr Chem (Cham) 2023; 381:26. [PMID: 37632653 DOI: 10.1007/s41061-023-00436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Narrow-band deep-blue organic light-emitting diodes (OLEDs) have played a key role in the field of high-quality full-color displays. However, because of the considerable challenges of inherent band gaps, unbalanced carrier injection and the lack of molecular structures, narrow-band deep-blue emitters develop slowly compared with red- and green-emitting materials. Encouragingly, with the continuous efforts of scientists in recent years, great progress has been made in the molecule design and material synthesis of highly efficient narrow-band deep-blue emitters. The typical deep-blue emitters which exhibit narrow emission with a full width at half maximum of < 50 nm are summarized in this article. They are divided into the three categories: fluorescence, phosphorescence and thermally activated delayed fluorescence. The methods of molecular design for realizing narrow-band deep-blue emission are described in detail and future research directions are also discussed in this article.
Collapse
Affiliation(s)
- Jialu Gu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Wei Shi
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haixia Zheng
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Guo Chen
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Bin Wei
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
26
|
Jing YY, Li N, Cao X, Wu H, Miao J, Chen Z, Huang M, Wang X, Hu Y, Zou Y, Yang C. Precise modulation of multiple resonance emitters toward efficient electroluminescence with pure-red gamut for high-definition displays. SCIENCE ADVANCES 2023; 9:eadh8296. [PMID: 37506207 PMCID: PMC10381944 DOI: 10.1126/sciadv.adh8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoeletronic Engineering, Shenzhen University, Shenzhen, China
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
27
|
Meng QY, Wang R, Wang YL, Guo XW, Liu YQ, Wen XL, Yao CY, Qiao J. Longevity gene responsible for robust blue organic materials employing thermally activated delayed fluorescence. Nat Commun 2023; 14:3927. [PMID: 37400475 DOI: 10.1038/s41467-023-39697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
The 3rd-Gen OLED materials employing thermally-activated delayed fluorescence (TADF) combine advantages of first two for high-efficiency and low-cost devices. Though urgently needed, blue TADF emitters have not met stability requirement for applications. It is essential to elucidate the degradation mechanism and identify the tailored descriptor for material stability and device lifetime. Here, via in-material chemistry, we demonstrate chemical degradation of TADF materials involves critical role of bond cleavage at triplet state rather than singlet, and disclose the difference between bond dissociation energy of fragile bonds and first triplet state energy (BDE-ET1) is linearly correlated with logarithm of reported device lifetime for various blue TADF emitters. This significant quantitative correlation strongly reveals the degradation mechanism of TADF materials have general characteristic in essence and BDE-ET1 could be the shared "longevity gene". Our findings provide a critical molecular descriptor for high-throughput-virtual-screening and rational design to unlock the full potential of TADF materials and devices.
Collapse
Affiliation(s)
- Qing-Yu Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Rui Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yi-Lei Wang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xing-Wei Guo
- Department of Chemistry, Tsinghua University, Beijing, China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yu-Qi Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xue-Liang Wen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Cheng-Yu Yao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
- Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing, China.
| |
Collapse
|
28
|
Gawale Y, Ansari R, Naveen KR, Kwon JH. Forthcoming hyperfluorescence display technology: relevant factors to achieve high-performance stable organic light emitting diodes. Front Chem 2023; 11:1211345. [PMID: 37377883 PMCID: PMC10291061 DOI: 10.3389/fchem.2023.1211345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Over the decade, there have been developments in purely organic thermally activated delayed fluorescent (TADF) materials for organic light-emitting diodes (OLEDs). However, achieving narrow full width at half maximum (FWHM) and high external quantum efficiency (EQE) is crucial for real display industries. To overcome these hurdles, hyperfluorescence (HF) technology was proposed for next-generation OLEDs. In this technology, the TADF material was considered a sensitizing host, the so-called TADF sensitized host (TSH), for use of triplet excitons via the reverse intersystem crossing (RISC) pathway. Since most of the TADF materials show bipolar characteristics, electrically generated singlet and triplet exciton energies can be transported to the final fluorescent emitter (FE) through Förster resonance energy transfer (FRET) rather than Dexter energy transfer (DET). This mechanism is possible from the S1 state of the TSH to the S1 state of the final fluorescent dopant (FD) as a long-range energy transfer. Considering this, some reports are available based on hyperfluorescence OLEDs, but the detailed analysis for highly efficient and stable devices for commercialization was unclear. So herein, we reviewed the relevant factors based on recent advancements to build a highly efficient and stable hyperfluorescence system. The factors include an energy transfer mechanism based on spectral overlapping, TSH requirements, electroluminescence study based on exciplex and polarity system, shielding effect, DET suppression, and FD orientation. Furthermore, the outlook and future positives with new directions were discussed to build high-performance OLEDs.
Collapse
Affiliation(s)
| | | | | | - Jang Hyuk Kwon
- *Correspondence: Kenkera Rayappa Naveen, ; Jang Hyuk Kwon,
| |
Collapse
|
29
|
Effects of Electron Donating Ability of Substituents and Molecular Conjugation on the Electronic Structures of Organic Radicals. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
30
|
Zhao H, Kim J, Ding K, Jung M, Li Y, Ade H, Lee JY, Forrest SR. Control of Host-Matrix Morphology Enables Efficient Deep-Blue Organic Light-Emitting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210794. [PMID: 36638153 DOI: 10.1002/adma.202210794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Mixing a sterically bulky, electron-transporting host material into a conventional single host-guest emissive layer is demonstrated to suppress phase separation of the host matrix while increasing the efficiency and operational lifetime of deep-blue phosphorescent organic light-emitting diodes (PHOLEDs) with chromaticity coordinates of (0.14, 0.15). The bulky host enables homogenous mixing of the molecules comprising the emissive layer while suppressing single host aggregation; a significant loss channel of nonradiative recombination. By controlling the amorphous phase of the host-matrix morphology, the mixed-host device achieves a significant reduction in nonradiative exciton decay, resulting in 120 ± 6% increase in external quantum efficiency relative to an analogous, single-host device. In contrast to single host PHOLEDs where electrons are transported by the host and holes by the dopants, both charge carriers are conducted by the mixed host, reducing the probability of exciton annihilation, thereby doubling of the deep-blue PHOLED operational lifetime. These findings demonstrate that the host matrix morphology affects almost every aspect of PHOLED performance.
Collapse
Affiliation(s)
- Haonan Zhao
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jongchan Kim
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kan Ding
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mina Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 03063, Republic of Korea
| | - Yongxi Li
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harald Ade
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 03063, Republic of Korea
| | - Stephen R Forrest
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
31
|
Kim JM, Cheong K, Jiang J, Jeon SO, Hong WP, Lee JY. Tetradentate Pt complexes for organic light-emitting diodes. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|