1
|
Zhang Q, Zhu L, Li H, Chen Q, Li N, Li J, Zhao Z, Xiao D, Tang T, Bi C, Zhang Y, Zhang H, Zhang G, Li M, Zhu Y, Zhang J, Kong J. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review. PeerJ 2024; 12:e18712. [PMID: 39703920 PMCID: PMC11657192 DOI: 10.7717/peerj.18712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
GABA (γ-aminobutyric acid) is a non-protein amino acid that occurs naturally in the human brain, animals, plants and microorganisms. It is primarily produced by the irreversible action of glutamic acid decarboxylase (GAD) on the α-decarboxylation of L-glutamic acid. As a major neurotransmitter in the brain, GABA plays a crucial role in behavior, cognition, and the body's stress response. GABA is mainly synthesized through the GABA shunt and the polyamine degradation pathways. It works through three receptors (GABAA, GABAB, and GABAC), each exhibiting different pharmacological and physiological characteristics. GABA has a variety of physiological roles and applications. In plants, it regulates growth, development and stress responses. In mammals, it influences physiological functions such as nervous system regulation, blood pressure equilibrium, liver and kidneys enhancement, hormone secretion regulation, immunity enhancement, cancer prevention, as well as anti-aging effects. As a biologically active ingredient, GABA possesses unique physiological effects and medicinal value, leading to its widespread application and substantially increased market demand in the food and pharmaceutical industries. GABA is primarily produced through chemical synthesis, plant enrichment and microbial fermentation. In this review, we first make an overview of GABA, focusing on its synthesis, metabolism, GABA receptors and physiological functions. Next, we describe the industrial production methods of GABA. Finally, we discuss the development of ligands for the GABA receptor binding site, the prospects of GABA production and application, as well as its clinical trials in potential drugs or compounds targeting GABA for the treatment of epilepsy. The purpose of this review is to attract researchers from various fields to focus on GABA research, promote multidisciplinary communications and collaborations, break down disciplinary barriers, stimulate innovative research ideas and methods, and advance the development and application of GABA in medicine, agriculture, food and other fields.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Hailong Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Qu Chen
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Nan Li
- Department of Rehabilitation, Qingdao Binhai College Affiliated Hospital, Qingdao, China
| | - Jiansheng Li
- Department of Nephrology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Zichu Zhao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Di Xiao
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Tingting Tang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Chunhua Bi
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Haili Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Guizhen Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Mingyang Li
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Yanli Zhu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingjing Zhang
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| | - Jingjing Kong
- Department of Medicine, Qingdao Binhai University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Šardzíková S, Gajewska M, Gałka N, Štefánek M, Baláž A, Garaiová M, Holič R, Świderek W, Šoltys K. Can longer lifespan be associated with gut microbiota involvement in lipid metabolism? FEMS Microbiol Ecol 2024; 100:fiae135. [PMID: 39354675 PMCID: PMC11503954 DOI: 10.1093/femsec/fiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Biological aging is linked to altered body composition and reduced neuroactive steroid hormones like dehydroepiandrosterone sulfate (DHEAS), which can stimulate the GABA signaling pathway via gut microbiota. Our study examined the association of gut microbiota with lifespan in mice through comprehensive analysis of its composition and functional involvement in cholesterol sulfate, a precursor of DHEAS, metabolism. We used 16S rRNA and metagenomic sequencing, followed by metabolic pathway prediction and thin layer chromatography and MALDI-TOF cholesterol sulfate identification. Significant increases in bacteria such as Bacteroides, typical for long-lived and Odoribacter and Colidextribacter, specific for short-lived mice were detected. Furthermore, for males (Rikenella and Alloprevotella) and females (Lactobacillus and Bacteroides), specific bacterial groups emerged as predictors (AUC = 1), highlighting sex-specific patterns. Long-lived mice showed a strong correlation of Bacteroides (0.918) with lipid and steroid hormone metabolism, while a negative correlation of GABAergic synapse with body weight (-0.589). We found that several Bacteroides species harboring the sulfotransferase gene and gene cluster for sulfonate donor synthesis are involved in converting cholesterol to cholesterol sulfate, significantly higher in the feces of long-lived individuals. Overall, we suggest that increased involvement of gut bacteria, mainly Bacteroides spp., in cholesterol sulfate synthesis could ameliorate aging through lipid metabolism.
Collapse
Affiliation(s)
- Sára Šardzíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Marta Gajewska
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Norbert Gałka
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Matúš Štefánek
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Andrej Baláž
- Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
| | - Martina Garaiová
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 84005 Bratislava, Slovakia
| | - Wiesław Świderek
- Institute of Animal Sciences, Department of Animal Genetics and Conservation, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
3
|
Jiang Q, Zou W, Li S, Qiu X, Zhu L, Kang L, Müller U. Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities. Neuron 2024; 112:2922-2937.e8. [PMID: 38986620 PMCID: PMC11377162 DOI: 10.1016/j.neuron.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C. elegans expresses two TMCs (TMC-1 and TMC-2), which mediate mechanosensation, egg laying, and alkaline sensing. The mechanisms by which nematode TMCs contribute to such diverse physiological processes and their functional relationship to mammalian mTMCs is unclear. Here, we show that association with accessory proteins tunes nematode TMC-1 to divergent sensory functions. In addition, distinct TMC-1 domains enable touch and alkaline sensing. Strikingly, these domains are segregated in mammals between mTMC1 and mTMC3. Consistent with these findings, mammalian mTMC1 can mediate mechanosensation in nematodes, while mTMC3 can mediate alkaline sensation. We conclude that sequence diversification and association with accessory proteins has led to the emergence of TMC protein complexes with diverse properties and physiological functions.
Collapse
Affiliation(s)
- Qiang Jiang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wenjuan Zou
- Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China
| | - Shitian Li
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Linhui Zhu
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lijun Kang
- Department of Neurology of the Fourth Affiliated Hospital and School of Brain Science and Brain Medicine, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Clark S, Jeong H, Posert R, Goehring A, Gouaux E. The structure of the Caenorhabditis elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. Proc Natl Acad Sci U S A 2024; 121:e2314096121. [PMID: 38354260 PMCID: PMC10895266 DOI: 10.1073/pnas.2314096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily conserved family of membrane proteins whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. TMC1 and TMC2 are components of ion channel complexes, but the molecular features that tune these complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here, we present the single-particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex highlights conserved protein-lipid interactions, as well as a π-helical structural motif in the pore-forming helices, that together suggest a mechanism for TMC-mediated mechanosensory transduction.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Hanbin Jeong
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Rich Posert
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
- HHMI, Oregon Health and Science University, Portland, OR97239
| |
Collapse
|
5
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
6
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Clark S, Jeong H, Goehring A, Kang Y, Gouaux E. Large-scale growth of C. elegans and isolation of membrane protein complexes. Nat Protoc 2023; 18:2699-2716. [PMID: 37495753 DOI: 10.1038/s41596-023-00852-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/02/2023] [Indexed: 07/28/2023]
Abstract
Purification of membrane proteins for biochemical and structural studies is commonly achieved by recombinant overexpression in heterologous cell lines. However, many membrane proteins do not form a functional complex in a heterologous system, and few methods exist to purify sufficient protein from a native source for use in biochemical, biophysical and structural studies. Here, we provide a detailed protocol for the isolation of membrane protein complexes from transgenic Caenorhabditis elegans. We describe how to grow a genetically modified C. elegans line in abundance using standard laboratory equipment, and how to optimize purification conditions on a small scale using fluorescence-detection size-exclusion chromatography. Optimized conditions can then be applied to a large-scale preparation, enabling the purification of adequate quantities of a target protein for structural, biochemical and biophysical studies. Large-scale worm growth can be accomplished in ~9 d, and each optimization experiment can be completed in less than 1 d. We have used these methods to isolate the transmembrane channel-like protein 1 complex, as well as three additional protein complexes (transmembrane-like channel 2, lipid transfer protein and 'Protein S'), from transgenic C. elegans, demonstrating the utility of this approach in purifying challenging, low-abundance membrane protein complexes.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Hanbin Jeong
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Clark S, Jeong H, Posert R, Goehring A, Gouaux E. Structure of C. elegans TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553618. [PMID: 37645790 PMCID: PMC10462014 DOI: 10.1101/2023.08.16.553618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mechanotransduction is the process by which a mechanical force, such as touch, is converted into an electrical signal. Transmembrane channel-like (TMC) proteins are an evolutionarily-conserved family of ion channels whose function has been linked to a variety of mechanosensory processes, including hearing and balance sensation in vertebrates and locomotion in Drosophila. The molecular features that tune homologous TMC ion channel complexes to diverse mechanical stimuli are unknown. Caenorhabditis elegans express two TMC homologs, TMC-1 and TMC-2, both of which are the likely pore-forming subunits of mechanosensitive ion channels but differ in their expression pattern and functional role in the worm. Here we present the single particle cryo-electron microscopy structure of the native TMC-2 complex isolated from C. elegans. The complex is composed of two copies each of the pore-forming TMC-2 subunit, the calcium and integrin binding protein CALM-1 and the transmembrane inner ear protein TMIE. Comparison of the TMC-2 complex to the recently published cryo-EM structure of the C. elegans TMC-1 complex reveals differences in subunit composition and highlights conserved protein-lipid interactions, as well as other structural features, that together suggest a mechanism for TMC-mediated mechanosensory transduction.
Collapse
Affiliation(s)
- Sarah Clark
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Hanbin Jeong
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Rich Posert
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - April Goehring
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|