1
|
Cheng HS, Tey YH, Hu SY, Yeo AYN, Ngo ZH, Kim JHS, Tan NS. Advancements and Challenges in Modeling Mechanobiology in Intestinal Host-Microbiota Interaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40382722 DOI: 10.1021/acsami.4c20961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The gastrointestinal tract is a dynamic biomechanical environment where physical forces, cellular processes, and microbial interactions converge to shape the gut health and disease. In this review, we examine the unique mechanical properties of the gut, including peristalsis, viscoelasticity, shear stress, and tissue stiffness, and their roles in modulating host mechanosignaling and microbial behavior under physiological and pathological conditions. We discuss how these mechanical forces regulate gut epithelial integrity, immune responses, and microbial colonization, leading to distinct ecological niches across different intestinal segments. Furthermore, we highlight recent advancements in 3D culture systems and gut-on-a-chip models that accurately recapitulate the complex interplay between biomechanics and gut microbiota. By elucidating the intricate relationship between mechanobiology and gut function, this review underscores the potential for mechanotherapeutic strategies to modulate host-microbe interactions, offering promising avenues for the prevention and treatment of disorders such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Yee Han Tey
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Si Yuan Hu
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Alethea Yen Ning Yeo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Zong Heng Ngo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Joseph Han Sol Kim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| |
Collapse
|
2
|
Kuang C, Cao J, Zhou Y, Zhang H, Wang Y, Zhou J. HL-TRP channel is required for various repellents for the parthenogenetic Haemaphysalis longicornis. Parasit Vectors 2025; 18:139. [PMID: 40229849 PMCID: PMC11995592 DOI: 10.1186/s13071-025-06776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Ticks can transmit a wide range of pathogens that endanger human and animal health. Although repellents are commonly used for tick control, understanding their mechanisms aren't complete. METHODS The repellent effects of N, N-diethyl-meta-toluamide (DEET); sec-butyl 2-(2-hydroxyethyl) piperidine-1-carboxylate (icaridin); N, N-diethyl-3-methylbenzamide (IR3535); and cinnamaldehyde on the parthenogenetic tick Haemaphysalis longicornis at the nymph stage were assessed using Y-tubes. The involvement of transient receptor potential (HL-TRP) channel molecules in the repellent mechanism was investigated through in situ hybridization, subcellular localization, real-time fluorescence quantitative polymerase chain reaction (PCR), RNA interference, and electroantennography. In addition, the binding affinity of HL-TRP molecules to repellents was predicted using AlphaFold3. RESULTS DEET, icaridin, IR3535, and cinnamaldehyde have been shown to effectively repel nymphs. HL-TRP channel is shared among various arthropods, particularly several species of ticks. It is localized to the cell membrane and Haller's organ. Moreover, microinjection of double-stranded RNA elicited tick repellency behavior, and the electroantennogram responses to those repellents were significantly decreased. The TYR783 site was proposed as an essential binding site to establish hydrogen bonds with icaridin, DEET, and cinnamaldehyde. CONCLUSIONS This exploration of ticks and repellents found that HL-TRP channel functions as a chemosensory receptor for repellents and, thereby, mediates avoidance behavior.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
3
|
Kim H, Lee SH, Yang JY. Mechanobiological Approach for Intestinal Mucosal Immunology. BIOLOGY 2025; 14:110. [PMID: 40001878 PMCID: PMC11852114 DOI: 10.3390/biology14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025]
Abstract
The intestinal area is composed of diverse cell types that harmonize gut homeostasis, which is influenced by both endogenous and exogenous factors. Notably, the environment of the intestine is exposed to several types of mechanical forces, including shear stress generated by fluid flow, compression and stretch generated by luminal contents and peristaltic waves of the intestine, and stiffness attributed to the extracellular matrix. These forces play critical roles in the regulation of cell proliferation, differentiation, and migration. Many efforts have been made to simulate the actual intestinal environment in vitro. The three-dimensional organoid culture system has emerged as a powerful tool for studying the mechanism of the intestinal epithelial barrier, mimicking rapidly renewing epithelium from intestinal stem cells (ISCs) in vivo. However, many aspects of how mechanical forces, such as shear stress, stiffness, compression, and stretch forces, influence the intestinal area remain unresolved. Here, we review the recent studies elucidating the impact of mechanical forces on intestinal immunity, interaction with the gut microbiome, and intestinal diseases.
Collapse
Affiliation(s)
- Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; (H.K.); (S.-H.L.)
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Tu JJ, Zang YY, Shi YS, Teng XY. The TMEM63B Channel Facilitates Intestinal Motility and Enhances Proliferation of Intestinal Stem Cells. Cells 2024; 13:1784. [PMID: 39513891 PMCID: PMC11545518 DOI: 10.3390/cells13211784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The intestines are in a constant state of motion and self-renewal. The mechanical breakdown of food facilitates intestinal movement and aids digestion. It is believed that mechanical stimulation, triggered by changes in osmotic pressure within the intestines, plays a crucial role in regulating gastrointestinal motility. While TRPs and PIEZO1/2 have been identified as mechanosensitive ion channels involved in this process, there still exist numerous unidentified channels with similar properties. In this study, we demonstrate that the TMEM63B expressed in intestinal stem cells contributes to the regulation of intestinal motility and digestion. The deletion of TMEM63B in intestinal stem cells not only decelerates intestinal motility and impairs digestion but also attenuates the proliferation of intestinal stem cells and exacerbates DSS-induced colitis in mice. Collectively, our findings unveil the pivotal role of TMEM63B in governing optimal digestive function and modulating intestinal motility.
Collapse
Affiliation(s)
- Jing-Jing Tu
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yan-Yu Zang
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
| | - Yun Stone Shi
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Xiao-Yu Teng
- Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (J.-J.T.); (Y.-Y.Z.)
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| |
Collapse
|
5
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
6
|
Tekulapally KR, Lee JY, Kim DS, Rahman MM, Park CK, Kim YH. Dual role of transient receptor potential ankyrin 1 in respiratory and gastrointestinal physiology: From molecular mechanisms to therapeutic targets. Front Physiol 2024; 15:1413902. [PMID: 39022308 PMCID: PMC11251976 DOI: 10.3389/fphys.2024.1413902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel plays a pivotal role in the respiratory and gastrointestinal tracts. Within the respiratory system, TRPA1 exhibits diverse distribution patterns across key cell types, including epithelial cells, sensory nerves, and immune cells. Its activation serves as a frontline sensor for inhaled irritants, triggering immediate protective responses, and influencing airway integrity. Furthermore, TRPA1 has been implicated in airway tissue injury, inflammation, and the transition of fibroblasts, thereby posing challenges in conditions, such as severe asthma and fibrosis. In sensory nerves, TRPA1 contributes to nociception, the cough reflex, and bronchoconstriction, highlighting its role in both immediate defense mechanisms and long-term respiratory reflex arcs. In immune cells, TRPA1 may modulate the release of pro-inflammatory mediators, shaping the overall inflammatory landscape. In the gastrointestinal tract, the dynamic expression of TRPA1 in enteric neurons, epithelial cells, and immune cells underscores its multifaceted involvement. It plays a crucial role in gut motility, visceral pain perception, and mucosal defense mechanisms. Dysregulation of TRPA1 in both tracts is associated with various disorders such as asthma, Chronic Obstructive Pulmonary Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Disease. This review emphasizes the potential of TRPA1 as a therapeutic target and discusses the efficacy of TRPA1 antagonists in preclinical studies and their promise for addressing respiratory and gastrointestinal conditions. Understanding the intricate interactions and cross-talk of TRPA1 across different cell types provides insight into its versatile role in maintaining homeostasis in vital physiological systems, offering a foundation for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kavya Reddy Tekulapally
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Dong Seop Kim
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon, Republic of Korea
| | - Md. Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
7
|
Dates J, Kolosov D. Voltage-gated ion channels as novel regulators of epithelial ion transport in the osmoregulatory organs of insects. FRONTIERS IN INSECT SCIENCE 2024; 4:1385895. [PMID: 38835480 PMCID: PMC11148248 DOI: 10.3389/finsc.2024.1385895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Voltage-gated ion channels (VGICs) respond to changes in membrane potential (Vm) and typically exhibit fast kinetic properties. They play an important role in signal detection and propagation in excitable tissues. In contrast, the role of VGICs in non-excitable tissues like epithelia is less studied and less clear. Studies in epithelia of vertebrates and invertebrates demonstrate wide expression of VGICs in epithelia of animals. Recently, VGICs have emerged as regulators of ion transport in the Malpighian tubules (MTs) and other osmoregulatory organs of insects. This mini-review aims to concisely summarize which VGICs have been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects to date, and highlight select groups for further study. We have also speculated on the roles VGICs may potentially play in regulating processes connected directly to ion transport in insects (e.g., acid-base balance, desiccation, thermal tolerance). This review is not meant to be exhaustive but should rather serve as a thought-provoking collection of select existing highlights on VGICs, and to emphasize how understudied this mechanism of ion transport regulation is in insect epithelia.
Collapse
Affiliation(s)
- Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| |
Collapse
|
8
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
9
|
Xiao R, Liu J, Xu XZS. Mechanosensitive GPCRs and ion channels in shear stress sensing. Curr Opin Cell Biol 2023; 84:102216. [PMID: 37595342 PMCID: PMC10528224 DOI: 10.1016/j.ceb.2023.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
As a universal mechanical cue, shear stress plays essential roles in many physiological processes, ranging from vascular morphogenesis and remodeling to renal transport and airway barrier function. Disrupted shear stress is commonly regarded as a major contributor to various human diseases such as atherosclerosis, hypertension, and chronic kidney disease. Despite the importance of shear stress in physiology and pathophysiology, our current understanding of mechanosensors that sense shear stress is far from complete. An increasing number of candidate mechanosensors have been proposed to mediate shear stress sensing in distinct cell types, including G protein-coupled receptors (GPCRs), G proteins, receptor tyrosine kinases, ion channels, glycocalyx proteins, and junctional proteins. Although multiple types of mechanosensors might be able to convert shear stress into downstream biochemical signaling events, in this review, we will focus on discussing the mechanosensitive GPCRs (angiotensin II type 1 receptor, GPR68, histamine H1 receptor, adhesion GPCRs) and ion channels (Piezo, TRP) that have been reported to be directly activated by shear stress.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Physiology and Aging, Institute on Aging, Center for Smell and Taste, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Ozkan AD, Wijerathne TD, Gettas T, Lacroix JJ. Force-induced motions of the PIEZO1 blade probed with fluorimetry. Cell Rep 2023; 42:112837. [PMID: 37471225 PMCID: PMC10530446 DOI: 10.1016/j.celrep.2023.112837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Mechanical forces are thought to activate mechanosensitive PIEZO channels by changing the conformation of a large transmembrane blade domain. Yet, whether different stimuli induce identical conformational changes in this domain remains unclear. Here, we repurpose a cyclic permuted green fluorescent protein as a conformation-sensitive probe to track local rearrangements along the PIEZO1 blade. Two independent probes, one inserted in an extracellular site distal to the pore and the other in a distant intracellular proximal position, elicit sizable fluorescence signals when the tagged channels activate in response to fluid shear stress of low intensity. Neither cellular indentations nor osmotic swelling of the cell elicit detectable fluorescence signals from either probe, despite the ability of these stimuli to activate the tagged channels. High-intensity flow stimuli are ineffective at eliciting fluorescence signals from either probe. Together, these findings suggest that low-intensity fluid shear stress causes a distinct form of mechanical stress to the cell.
Collapse
Affiliation(s)
- Alper D Ozkan
- Department of Pharmaceutical Microbiology, Bahçeşehir University, Yıldız, Çırağan Cd, 34349 Beşiktaş/İstanbul, Turkey
| | - Tharaka D Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Tina Gettas
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA
| | - Jérôme J Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, 309 E. Second St, Pomona, CA 91766, USA.
| |
Collapse
|