1
|
He LJ, Yang HH, Lai WY. Insights into the pressure-engineered structure-property relationship of organic-inorganic hybrid perovskites through high-throughput first-principles calculations. Dalton Trans 2025; 54:7726-7733. [PMID: 40245089 DOI: 10.1039/d5dt00365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Development of novel organic-inorganic hybrid perovskite materials with long-term stability and excellent optoelectronic properties is the current focus of the optoelectronic field. High pressure, as a special thermodynamic parameter, offers a promising avenue for discovering and designing materials with optimized performance. However, data-driven investigations on pressure-engineered structure-property relationships remain scarce, leading to an insufficient understanding of the physical rules by which pressure regulation influences the microstructure and electronic properties of materials. In this study, we conducted high-throughput first-principles calculations to construct a database of hundreds of cubic ABX3 candidates and evaluate their property evolutions under pressures ranging from 0 to 10 GPa. Through systematic assessments of the crystallographic stabilities, thermodynamic stabilities, and electronic properties, we obtained the following findings: the B-site metal predominantly determined the crystal structure stability; the X-site halogen governed the thermodynamic stability; and the ionic radius of the A-site organic cation played a pivotal role in modulating the electronic properties. Based on extensive theoretical calculations, this study confirmed the influence of the "single-component" effect, further enriching the existing knowledge that the synergistic changes in bond length or bond angle between the B-site and X-site under pressure are the main factors affecting the material properties. The insights derived from the current analysis provide a valuable foundation for the rational design of optimized OIHP materials under pressure.
Collapse
Affiliation(s)
- Ling-Jun He
- State Key Laboratory of Flexible Electronics (LoEF), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Huan-Huan Yang
- State Key Laboratory of Flexible Electronics (LoEF), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wen-Yong Lai
- State Key Laboratory of Flexible Electronics (LoEF), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang T, Yin Y, Yang X, Li N, Wang W, Yang Y, Tian W, Bai F, Zou B. Space-confined charge transfer turns on multicolor emission in metal-organic frameworks via pressure treatment. Nat Commun 2025; 16:4166. [PMID: 40324977 PMCID: PMC12053663 DOI: 10.1038/s41467-025-59552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Single-component multi-emissive materials with stimuli-responsive properties offer unique advantages in the field of multicolor-tunable photoluminescence (PL). However, precisely modulating the emission of each component and achieving high-efficiency emission present a formidable challenge. Herein, we demonstrate that space-confined charge transfer (CT) turns on bright blue-green-white emission in initially faintly emissive metal-organic frameworks (MOFs) at ambient conditions through pressure treatments. Pressure treatments induce a transition from the initial long-range CT to a space-confined mode, significantly amplifying radiative transitions. Furthermore, the space-confined CT, which occurs between mutually perpendicular ligands, significantly influences the spin-orbit charge transfer intersystem crossing. Precise tuning of space-confined CT kinetics via multi-level pressure treatments allows us to modulate the fluorescence-to-phosphorescence ratio, achieving multicolor-tunable emission in the target MOFs. Our work advances the development of multicolor-tunable smart PL materials and unlocks the potential for their application in atmospheric environments.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of High Pressure and Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xinyi Yang
- State Key Laboratory of High Pressure and Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| | - Nuonan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China
| | - Weibin Wang
- State Key Laboratory of High Pressure and Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Yunfeng Yang
- State Key Laboratory of High Pressure and Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China.
| | - Bo Zou
- State Key Laboratory of High Pressure and Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Liu B, Duan T, Guo S, Bu K, Luo J, Wang Y, Liu J, Yang W, Zhang J, Lü X. The pressure-induced photoconductivity enhancement of black-TiO 2. Chem Commun (Camb) 2025; 61:6807-6810. [PMID: 40208260 DOI: 10.1039/d5cc00043b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The pressure-induced enhancement of the optoelectronic properties of black-TiO2 nanocrystals is presented. The underlying mechanisms are elucidated by comparing the behavior with that of white-TiO2. The disordered layer in black-TiO2 contributes to the enhanced photoconductivity, while the crystal structure dominates in relation to photoconductivity variations. Our findings provide valuable insights for gaining a fundamental understanding of black-TiO2.
Collapse
Affiliation(s)
- Bingyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Tianfeng Duan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Jiabing Luo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yiming Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Junxiu Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China.
| |
Collapse
|
4
|
Sun ME, Wang F, He M, Yang YN, Yang JK, Zhu MJ, Wan QY, Chen G, Wang Y, Fu Y, Li Q, Wang Z, Jiang L, Wu Y, Zang SQ. Pressure-Driven Circularly Polarized Luminescence Enhancement and Chirality Amplification. J Am Chem Soc 2025; 147:10706-10714. [PMID: 40069953 DOI: 10.1021/jacs.5c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Achieving ultrahigh-color-purity circularly polarized luminescence (CPL) in low-dimensional chiral perovskites is challenging due to strong electron-phonon coupling caused by lead halide octahedral distortion. Herein, the circularly polarized piezoluminescence behaviors of six novel chiral perovskites, (S/R-3-XPEA)2PbBr4 (PEA = phenethylamine; X = F, Cl, Br), were systematically investigated. Upon compression, (S/R-3-ClPEA)2PbBr4 exhibits significant piezofluorochromic behaviors, transforming from yellow CPL to ultrahigh-color-purity deep-blue CPL. At 2.5 GPa, the deep-blue CPL intensity increases by an order of magnitude and its luminescence asymmetry factors (glum) are amplified from the initial ±0.03 to ±0.1. (S/R-3-BrPEA)2PbBr4 presents a similar piezochromic response, realizing deep-blue CPL at 1.7 GPa, while (S/R-3-FPEA)2PbBr4 retains a yellow CPL under high pressure. High-pressure structural characterization and theoretical calculations confirm that pressure-enhanced halogen bonds reduce the penetration depth of S/R-3-BrPEA+ and S/R-3-ClPEA+ into the [PbBr6]4- frameworks, significantly suppressing electron-phonon coupling and increasing magnetic transition dipole moment in (S/R-3-BrPEA)2PbBr4 and (S/R-3-ClPEA)2PbBr4, which are responsible for the ultrahigh-purity deep-blue CPL and chirality amplification, respectively.
Collapse
Affiliation(s)
- Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Fei Wang
- International Laboratory for Quantum Functional Materials of Henan, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Manman He
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya-Ni Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ji-Kun Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Jie Zhu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Yang Wan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Gaosong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi Li
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenling Wang
- Henan International Joint Laboratory of Rare Earth Composite Materials, College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Li ZG, Dong XH, Song HP, Huang SS, Hu H, Li W, Yu MH, Even J, Bu XH. Broadband Emission Induced by Band-Edge Carrier Reconfiguration in 2D Hybrid Lead Halide Perovskites. SMALL METHODS 2025; 9:e2301662. [PMID: 38634221 DOI: 10.1002/smtd.202301662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Indexed: 04/19/2024]
Abstract
Broadband emission in hybrid lead halide perovskites (LHPs) has gained significant attention due to its potential applications in optoelectronic devices. The origin of this broadband emission is primarily attributed to the interactions between electrons and phonons. Most investigations have focused on the impact of structural characteristics of LHPs on broadband emission, while neglecting the role of electronic mobility. In this work, the study investigates the electronic origins of broadband emission in a family of 2D LHPs. Through spectroscopic experiments and density functional theory calculations, the study unveils that the electronic states of the organic ligands with conjugate effect in LHPs can extend to the band edges. These band-edge carriers are no longer localized only within the inorganic layers, leading to electronic coupling with molecular states in the barrier and giving rise to additional interactions with phonon modes, thereby resulting in broadband emission. The high-pressure photoluminescence measurements and theoretical calculations reveal that hydrostatic pressure can induce the reconfiguration of band-edge states of charge carriers, leading to different types of band alignment and achieving macroscopic control of carrier dynamics. The findings can provide valuable guidance for targeted synthesis of LHPs with broadband emission and corresponding design of state-of-the-art optoelectronic devices.
Collapse
Affiliation(s)
- Zhi-Gang Li
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiao-Hui Dong
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300450, China
| | - Hai-Peng Song
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China
| | - Shi-Shuang Huang
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Huan Hu
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Li
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mei-Hui Yu
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes, F-35000, France
| | - Xian-He Bu
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
6
|
Guo S, Zhang Y, Bu K, Zhan Y, Lü X. High-pressure chemistry of functional materials. Chem Commun (Camb) 2025; 61:1773-1789. [PMID: 39745263 DOI: 10.1039/d4cc05905k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Functional materials, possessing specific properties and performing particular functions beyond their mechanical or structural roles, are the foundation of modern matter science including energy, environment, and quantum sciences. The atomic and electronic structures of these materials can be significantly altered by external stimuli such as pressure. High-pressure techniques have been extensively utilized to deepen our understanding of structure-property relationships of materials, while also enabling emergent or enhanced properties. In this feature article, we review the transformative impact of high pressure on the chemical and physical properties of functional materials, including perovskite materials, low-dimensional metal halides, metal chalcogenides, metal oxides, and inorganic molecular crystals. By analyzing recent advancements and methodological approaches in high-pressure research, we provide insights into the mechanisms driving structural and property changes in these materials. We also emphasize the significance of translating the knowledge gained from high pressure research to the design of new functional materials. Finally, we highlight the potential of high-pressure chemistry and nano-architectonics in advancing functional materials and discuss the future directions and challenges in this field.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yifan Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| | - Yiqiang Zhan
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| |
Collapse
|
7
|
Yang Q, Wang W, Yang Y, Li P, Yang X, Bai F, Zou B. Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination. Nat Commun 2025; 16:696. [PMID: 39814792 PMCID: PMC11736072 DOI: 10.1038/s41467-025-55978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.3% via boosting triplet excitons distribution through pressure treatment in single-component Zn-IPA metal-organic frameworks. A novel metal-ligand asymmetrical chelate coordination is successfully integrated into the Zn-IPA after a high-pressure treatment over ~20.0 GPa. This modification unexpectedly endows the targeted sample with a new emergent electronic state to narrow the singlet-triplet energy gap, which effectively accelerates the spin-flipping process for boosted triplet excitons population. Time delay phosphor-converted light-emitting diodes are fabricated with long emission time up to ~7 s after switching off, providing significant advancements for white-light and time-delay lighting applications.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Weibin Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Yunfeng Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Pengyuan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China.
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Wang S, Yang Z, Sun X, Wu M, Sheng K, Zhang L, Yang B, Wang K, Sui Y, Zou B. Anomalous Pressure-Induced Blue-Shifted Emission of Ionic Copper-Iodine Clusters: The Competitive Effect between Cuprophilic Interactions and Through-Space Interactions. Angew Chem Int Ed Engl 2025; 64:e202414810. [PMID: 39322938 DOI: 10.1002/anie.202414810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Developing ionic copper-iodine clusters with multiple emitting is crucial for enriching lighting and display materials with various colors. However, the luminescent properties of traditional ionic copper-iodine clusters are often closely associated with low-energy cluster-centered triplet emission, which will redshift further as the Cu⋅⋅⋅Cu bond length decreases. This article utilizes a pressure-treated strategy to achieve an anomalous pressure-induced blue-shifted luminescence phenomenon in ionic Cu4I6(4-dimethylamino-1-ethylpyridinium)2 crystals for the first time, which is based on dominant through-space charge-transfer (TSCT). Herein, we reveal that the more advantageous through-space interactions in the competition between cuprophilic interactions and through-space interactions can lead to a blue-shifted luminescence. High-pressure angle-dispersive X-ray diffraction and high-pressure infrared experiments show that the enhanced through-space interactions mainly originate from forming new intermolecular C-H⋅⋅⋅I hydrogen bonds and the enhancement of van der Waals interactions between organic cations and anionic clusters. Theoretical calculations and experimental studies of excited-state dynamics confirm that the blue-shifted emission is due to the increased energy gap between the excited triplet and ground states caused by the electron delocalization under stronger through-space interactions. This work deepens previous understanding and provides a new avenue to design and synthetic ionic copper-iodine clusters with high-energy TSCT emission.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuening Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Min Wu
- Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Kaiyang Sheng
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130012, China
- School of Electro-optical Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Kai Wang
- Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Yongming Sui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Yu X, Fang Y, Sun X, Xie Y, Liu C, Wang K, Xiao G, Zou B. Pressure-Tuning Localized Excitons Toward Enhanced Emission, Photocurrent Enhancement and Piezochromism in Unconventional ACI-Type 2D Hybrid Perovskites. Angew Chem Int Ed Engl 2024; 63:e202412756. [PMID: 39107973 DOI: 10.1002/anie.202412756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 09/25/2024]
Abstract
Simultaneous enhancement of free excitons (FEs) emission and self-trapped excitons (STEs) emission remains greatly challenging because of the radiative pathway competition. Here, a significant fluorescence improvement, associated with the radiative recombination of both FEs and STEs is firstly achieved in an unconventional ACI-type hybrid perovskite, (ACA)(MA)PbI4 (ACA=acetamidinium) crystals with {PbI6} octahedron units, through hydrostatic pressure processing. Note that (ACA)(MA)PbI4 exhibits a 91.5-fold emission enhancement and considerable piezochromism from green to red in a mild pressure interval of 1 atm to 2.5 GPa. The substantial distortion of both individual halide octahedron and the Pb-I-Pb angles between two halide octahedra under high pressure indeed determines the pressure-tuning localized excitons behavior. Upon higher pressure, photocurrent enhancement is also observed, which is attributed to the promoted electronic connectivity in (ACA)(MA)PbI4. The anisotropic compaction reduces the distance between neighboring organic molecules and {PbI6} octahedra, leading to the enhancement of hydrogen bonding interactions. This work not only offers a deep understanding of the structure-optical relationships of ACI-type perovskites, but also presents insights into breaking the limits of luminescent efficiency by pressure-suppressed nonradiative recombination.
Collapse
Affiliation(s)
- Xihan Yu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P. R. China
| | - Yuanyuan Fang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, 252000, Liaocheng, P. R. China
| | - Xuening Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P. R. China
| | - Ying Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Cailong Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, 252000, Liaocheng, P. R. China
| | - Kai Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, 252000, Liaocheng, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
10
|
Ren Q, Zhou G, Mao Y, Zhang N, Zhang J, Zhang XM. Optical activity levels of metal centers controlling multi-mode emissions in low-dimensional hybrid metal halides for anti-counterfeiting and information encryption. Chem Sci 2024:d4sc05041j. [PMID: 39323518 PMCID: PMC11417954 DOI: 10.1039/d4sc05041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
In-depth insight into the electronic competition principles between inorganic units and organic ligands proves to be extremely challenging for controlling multi-mode emissions in low-dimensional hybrid metal halides (LHMHs). Herein, an efficient blue emission from organic ligand was engineered in (DppyH)2MCl4 (Dppy = diphenyl-2-pyridylphosphine, M = Zn2+, Cd2+) due to the reverse type I band alignment constructed by optically inert units with nd10 shell electrons. By contrast, the optically active [MnCl4]2- with semi-fully filled 3d5 shell electrons prompts the band alignment of type II, resulting in the narrowband green emission of Mn2+, along with an energy transfer from DppyH+ to [MnCl4]2-. Beyond that, the band alignment of (DppyH)SbCl4 is further reversed to type I due to the strong stereochemical activity of 5s2 lone-pair electrons, resulting in the triplet-state (3P1 → 1S0) self-trapped exciton (STE) emission of [SbCl4]-. The conclusion is that the electronic configurations of metal centers govern the optical activity levels of inorganic units, which in turn controls the multi-mode emissions by maneuvering the band alignments. This research provides an enlightening perspective on the multi-mode emissions with tunable photoluminescence and resulting electronic transitions of LHMHs, whose derived emitters can be employed in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan Shanxi 030024 P. R. China
| |
Collapse
|
11
|
Cong M, Zhao D, Yang J, Xiao G, Zou B. Identifying Organic-Inorganic Interaction Sites Toward Emission Enhancement in Non-Hydrogen-Bonded Hybrid Perovskite via Pressure Engineering. RESEARCH (WASHINGTON, D.C.) 2024; 7:0476. [PMID: 39286735 PMCID: PMC11403357 DOI: 10.34133/research.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The interaction between organic and inorganic components in metal hybrid perovskites fundamentally determines the intrinsic optoelectronic performance. However, the underlying interaction sites have still remained elusive, especially for those non-hydrogen-bonded hybrid perovskites, thus largely impeding materials precise design with targeted properties. Herein, high pressure is utilized to elucidate the interaction mechanism between organic and inorganic components in the as-synthesized one-dimensional hybrid metal halide (DBU)PbBr3 (DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene). The interaction sites are identified to be the N from DBU and the Br from inorganic framework by the indicative of enhanced Raman mode under high pressure. The change in interaction strength is indeed derived from the pressure modulation on both distance and spatial arrangement of the nearest Br and N, rather than traditional hydrogen-bonding effect. Furthermore, the enhanced interaction increased charge transfer, resulting in a cyan emission with photoluminescence quantum yields (PLQYs) of 86.6%. The enhanced cyan emission is particularly important for underwater communication due to the much less attenuation in water than at other wavelength emissions. This study provides deep insights into the underlying photophysical mechanism of non-hydrogen-bonded hybrid metal halides and is expected to impart innovative construction with superior performance.
Collapse
Affiliation(s)
- Ming Cong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Dianlong Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jiayi Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Xu B, Li Y, Hong P, Zhang P, Han J, Xiao Z, Quan Z. Pressure-controlled free exciton and self-trapped exciton emission in quasi-one-dimensional hybrid lead bromides. Nat Commun 2024; 15:7403. [PMID: 39191775 DOI: 10.1038/s41467-024-51836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Hybrid metal halides represent a novel type of semiconductor light emitters with intriguing excitonic emission properties, including free exciton emission and self-trapped exciton emission. Achieving precise control over these two excitonic emissions in hybrid metal halides is highly desired yet remains challenging. Here, the complete transformation from intrinsically broadband self-trapped exciton emission to distinctively sharp free exciton emission in a quasi-one-dimensional hybrid metal halide (C2H10N2)8[Pb4Br18]·6Br with a ribbon width of n = 4, is successfully achieved based on high-pressure method. During compression, pressure-induced phonon hardening continuously reduces exciton-phonon coupling, therefore suppressing excitonic localization and quenching the original self-trapped exciton emission. Notably, further compression triggers excitonic delocalization to induce intense free exciton emission, accompanied with reduced carrier effective masses and improved charge distribution. Controlled high-pressure investigations indicate that the ribbon width of n > 2 is necessary to realize excitonic delocalization and generate free exciton emissions in similar quasi-one-dimensional hybrid metal halides. This work presents an important photophysical process of excitonic transitions from self-trapped exciton emission to free exciton emission in quasi-one-dimensional hybrid metal halides without chemical regulation, promoting the rational synthesis of hybrid metal halides with desired excitonic emissions.
Collapse
Affiliation(s)
- Bin Xu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yawen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peibin Hong
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Peijie Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jiang Han
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Bu K, Feng X, Wang D, Fu T, Ma Y, Guo S, Luo H, Ding Y, Zhai T, Lü X. Quantifying Structural Polarization by Continuous Regulation of Lone-Pair Electron Expression in Molecular Crystals. J Am Chem Soc 2024; 146:22469-22475. [PMID: 39090075 DOI: 10.1021/jacs.4c05927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rational design of structural polarization is vital for modern technologies, as it allows the physical properties of functional materials to be tailored. An effective approach for governing polarization involves the utilization of stereochemical lone-pair electrons (LPEs). However, despite the recognized significance of LPEs in controlling structural polarization, there remains a lack of understanding regarding the quantitative relationship between their expression and the extent of structural polarization. Here, by using pressure to continuously tune the LPE expression, we achieve the precise control and quantification of structural polarization, which brings enhanced second harmonic generation (SHG) of the molecular crystal SbI3·3S8. We introduce the I-Sb-I angle (α̅) that describes the degree of LPE expression and establishes a quantitative relationship between α̅ and structural polarization. That is, decreasing α̅ shapes LPE expression from delocalization to localization, which repels the bonding pairs of electrons and thus enhances the structural polarization. In addition, we extend this quantified relationship to a series of molecular crystals and demonstrate its applicability to the design of structural polarization by tailoring LPE expression.
Collapse
Affiliation(s)
- Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Yiran Ma
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
14
|
Geuchies JJ, Klarbring J, Virgilio LD, Fu S, Qu S, Liu G, Wang H, Frost JM, Walsh A, Bonn M, Kim H. Anisotropic Electron-Phonon Interactions in 2D Lead-Halide Perovskites. NANO LETTERS 2024; 24:8642-8649. [PMID: 38976834 PMCID: PMC11261630 DOI: 10.1021/acs.nanolett.4c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic metal halide perovskites offer enhanced stability for perovskite-based applications. Their crystal structure's soft and ionic nature gives rise to strong interaction between charge carriers and ionic rearrangements. Here, we investigate the interaction of photogenerated electrons and ionic polarizations in single-crystal 2D perovskite butylammonium lead iodide (BAPI), varying the inorganic lamellae thickness in the 2D single crystals. We determine the directionality of the transition dipole moments (TDMs) of the relevant phonon modes (in the 0.3-3 THz range) by the angle- and polarization-dependent THz transmission measurements. We find a clear anisotropy of the in-plane photoconductivity, with a ∼10% reduction along the axis parallel with the transition dipole moment of the most strongly coupled phonon. Detailed calculations, based on Feynman polaron theory, indicate that the anisotropy originates from directional electron-phonon interactions.
Collapse
Affiliation(s)
| | - Johan Klarbring
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
| | | | - Shuai Fu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Sheng Qu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Guangyu Liu
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hai Wang
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jarvist M. Frost
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Heejae Kim
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Department
of Physics, Pohang University of Science
and Technology, 37673 Pohang, Korea
| |
Collapse
|
15
|
Zhang XJ, Sun ME, Sun F, Jin Y, Dong XY, Li S, Li HY, Chen G, Fu Y, Wang Y, Tang Q, Wu Y, Jiang L, Zang SQ. Vibration-Dependent Dual-Phosphorescent Cu 4 Nanocluster with Remarkable Piezochromic Behavior. Angew Chem Int Ed Engl 2024; 63:e202401724. [PMID: 38691401 DOI: 10.1002/anie.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H⋅⋅⋅N and N-H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.
Collapse
Affiliation(s)
- Xiao-Jing Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Meng-En Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, 451191, Zhengzhou, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331, Chongqing, China
| | - Yan Jin
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454000, Jiaozuo, China
| | - Si Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Gaosong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, 401331, Chongqing, China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100871, Beijing, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100871, Beijing, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
16
|
Wang JP, Chen X, Zhao Q, Fang Y, Liu Q, Fu J, Liu Y, Xu X, Zhang J, Zhen L, Xu CY, Huang F, Meixner AJ, Zhang D, Gou G, Li Y. Out-of-plane Emission Dipole of Second Harmonic Generation in Odd- and Even-layered vdWs Janus Nb 3SeI 7. ACS NANO 2024; 18:16274-16284. [PMID: 38867607 DOI: 10.1021/acsnano.4c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Integration of atomically thin nonlinear optical (NLO) devices demands an out-of-plane (OP) emission dipole of second harmonic generation (SHG) to enhance the spontaneous emission for nanophotonics. However, the research on van der Waals (vdWs) materials with an OP emission dipole of SHG is still in its infancy. Here, by coupling back focal plane (BFP) imaging with numerical simulations and density functional theory (DFT) calculations, we demonstrate that vdWs Janus Nb3SeI7, ranging from bulk to the monolayer limit, exhibits a dominant OP emission dipole of SHG owing to the breaking of the OP symmetry. Explicitly, even-layered Nb3SeI7 with C6v symmetry is predicted to exhibit a pure OP emission dipole attributed to the only second-order susceptibility coefficient χzxx. Meanwhile, although odd-layered Nb3SeI7 with C3v symmetry has both OP and IP dipole components (χzxx and χyyy), the value of χzxx is 1 order of magnitude greater than that of χyyy, leading to an approximate OP emission dipole of SHG. Moreover, the crystal symmetry and OP emission dipole can be preserved under hydrostatic pressure, accompanied by the enhanced χzxx and the resulting 3-fold increase in SHG intensity. The reported stable OP dipole in 2D vdWs Nb3SeI7 can facilitate the rapid development of chip-integrated NLO devices.
Collapse
Affiliation(s)
- Jia-Peng Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinfeng Chen
- Frontier Institute of Science and Technology & State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi' an 710049, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710199, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Jierui Fu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinlong Xu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Jia Zhang
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai 200050, China
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Gaoyang Gou
- Frontier Institute of Science and Technology & State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi' an 710049, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
17
|
Ou Z, Wang C, Tao ZG, Li Y, Li Z, Zeng Y, Li Y, Shi E, Chu W, Wang T, Xu H. Organic Ligand Engineering for Tailoring Electron-Phonon Coupling in 2D Hybrid Perovskites. NANO LETTERS 2024; 24:5975-5983. [PMID: 38726841 DOI: 10.1021/acs.nanolett.4c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.
Collapse
Affiliation(s)
- Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Cheng Wang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Zhi-Guo Tao
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhe Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yan Li
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Weibin Chu
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| |
Collapse
|
18
|
Cao R, Sun K, Liu C, Mao Y, Guo W, Ouyang P, Meng Y, Tian R, Xie L, Lü X, Ge Z. Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells. NANO-MICRO LETTERS 2024; 16:178. [PMID: 38656466 PMCID: PMC11043286 DOI: 10.1007/s40820-024-01401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.
Collapse
Affiliation(s)
- Ruikun Cao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kexuan Sun
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Chang Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Wei Guo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ping Ouyang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Ruijia Tian
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, People's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
19
|
Hong H, Guo S, Jin L, Mao Y, Chen Y, Gu J, Chen S, Huang X, Guan Y, Li X, Li Y, Lü X, Fu Y. Two-dimensional lead halide perovskite lateral homojunctions enabled by phase pinning. Nat Commun 2024; 15:3164. [PMID: 38605026 PMCID: PMC11009245 DOI: 10.1038/s41467-024-47406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Two-dimensional organic-inorganic hybrid halide perovskites possess diverse structural polymorphs with versatile physical properties, which can be controlled by order-disorder transition of the spacer cation, making them attractive for constructing semiconductor homojunctions. Here, we demonstrate a space-cation-dopant-induced phase stabilization approach to creating a lateral homojunction composed of ordered and disordered phases within a two-dimensional perovskite. By doping a small quantity of pentylammonium into (butylammonium)2PbI4 or vice versa, we effectively suppress the ordering transition of the spacer cation and the associated out-of-plane octahedral tilting in the inorganic framework, resulting in phase pining of the disordered phase when decreasing temperature or increasing pressure. This enables epitaxial growth of a two-dimensional perovskite homojunction with tunable optical properties under temperature and pressure stimuli, as well as directional exciton diffusion across the interface. Our results demonstrate a previously unexplored strategy for constructing two-dimensional perovskite heterostructures by thermodynamic tuning and spacer cation doping.
Collapse
Affiliation(s)
- Huilong Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Yuguang Chen
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shaochuang Chen
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xu Huang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaotong Li
- Department of Chemistry & Organic and Carbon Electronics Laboratories, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yan Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China.
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Guo S, Mihalyi-Koch W, Mao Y, Li X, Bu K, Hong H, Hautzinger MP, Luo H, Wang D, Gu J, Zhang Y, Zhang D, Hu Q, Ding Y, Yang W, Fu Y, Jin S, Lü X. Exciton engineering of 2D Ruddlesden-Popper perovskites by synergistically tuning the intra and interlayer structures. Nat Commun 2024; 15:3001. [PMID: 38589388 PMCID: PMC11001939 DOI: 10.1038/s41467-024-47225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Huilong Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yifan Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics & Planetology, University of Hawaii Manoa, Honolulu, HI, USA
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China.
| |
Collapse
|
21
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|
22
|
Zhang L, Li S, Sun H, Fang Y, Wang Y, Wang K, Jiang H, Sui L, Wu G, Yuan K, Zou B. Manipulating Lone-Pair-Driven Luminescence in 0D Tin Halides by Pressure-Tuned Stereochemical Activity from Static to Dynamic. Angew Chem Int Ed Engl 2023; 62:e202311912. [PMID: 37794619 DOI: 10.1002/anie.202311912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The excellent luminescence properties and structural dynamics driven by the stereoactivity of the lone pair in a variety of low-dimensional ns2 metal halides have attracted growing investigations for optoelectronic applications. However, the structural and photophysical aspects of the excited state associated with the lone pair expression are currently open questions. Herein, zero-dimensional Sn-based halides with static stereoactive 5 s2 lone pairs are selected as a model system to understand the correlations between the distinctive lone pair expression and the excited-state structural relaxation and charge carrier dynamics by continuous lattice manipulation. Lattice compression drives 5 s2 lone pair active switching and self-trapped exciton (STE) redistribution by suppressing excited-state structural deformation of the isolated SnBr4 2- units. Our results demonstrate that the static expression of the 5 s2 lone pair results in a red broadband triplet STE emission with a large Stokes shift, while its dynamic expression creates a sky-blue narrowband emission dominated by the radiative recombination of singlet STEs. Our findings and the photophysical mechanism proposed highlight the stereochemical effects of lone pair expression in controlling light emission properties and offer constructive guidelines for tuning the optoelectronic properties in diverse ns2 metal halides.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shuoxue Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huaiyang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuanyuan Fang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Yonggang Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China
| | - Hong Jiang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
23
|
Mao Y, Guo S, Huang X, Bu K, Li Z, Nguyen PQH, Liu G, Hu Q, Zhang D, Fu Y, Yang W, Lü X. Pressure-Modulated Anomalous Organic-Inorganic Interactions Enhance Structural Distortion and Second-Harmonic Generation in MHyPbBr 3 Perovskite. J Am Chem Soc 2023; 145:23842-23848. [PMID: 37859342 DOI: 10.1021/jacs.3c09375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.
Collapse
Affiliation(s)
- Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xu Huang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Zhongyang Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Phuong Q H Nguyen
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Gang Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
24
|
Sun J, Wang K, Ma K, Park JY, Lin ZY, Savoie BM, Dou L. Emerging Two-Dimensional Organic Semiconductor-Incorporated Perovskites─A Fascinating Family of Hybrid Electronic Materials. J Am Chem Soc 2023; 145:20694-20715. [PMID: 37706467 DOI: 10.1021/jacs.3c02143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Halide perovskites have attracted a great amount of attention owing to their unique materials chemistry, excellent electronic properties, and low-cost manufacturing. Two-dimensional (2D) halide perovskites, originating from three-dimensional (3D) perovskite structures, are structurally more diverse and therefore create functional possibilities beyond 3D perovskites. The much less restrictive size constraints on the organic component of these hybrid materials particularly provide an exciting platform for designing unprecedented materials and functionalities at the molecular level. In this Perspective, we discuss the concept and recent development of a sub-class of 2D perovskites, namely, organic semiconductor-incorporated perovskites (OSiPs). OSiPs combine the electronic functionality of organic semiconductors with the soft and dynamic halide perovskite lattice, offering opportunities for tailoring the energy landscape, lattice and carrier dynamics, and electron/ion transport properties for various fundamental studies, as well as device applications. Specifically, we summarize recent advances in the design, synthesis, and structural analysis of OSiPs with various organic conjugated moieties as well as the application of OSiPs in photovoltaics, light-emitting devices, and transistors. Lastly, challenges and further opportunities for OSiPs in molecular design, integration of novel functionality, film quality, and stability issues are addressed.
Collapse
Affiliation(s)
- Jiaonan Sun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zih-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Luo H, Bu K, Yin Y, Wang D, Shi C, Guo S, Fu T, Liang J, Liu B, Zhang D, Xu LJ, Hu Q, Ding Y, Jin S, Yang W, Ma B, Lü X. Anomalous Charge Transfer from Organic Ligands to Metal Halides in Zero-Dimensional [(C 6 H 5 ) 4 P] 2 SbCl 5 Enabled by Pressure-Induced Lone Pair-π Interaction. Angew Chem Int Ed Engl 2023; 62:e202304494. [PMID: 37464980 DOI: 10.1002/anie.202304494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.
Collapse
Affiliation(s)
- Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Cuimi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Bingyan Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology University of Hawaii Manoa Honolulu, 96822, Honolulu, HI, USA
| | - Liang-Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, 32306, Tallahassee, FL, USA
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| |
Collapse
|
26
|
Fu T, Bu K, Sun X, Wang D, Feng X, Guo S, Sun Z, Fang Y, Hu Q, Ding Y, Zhai T, Huang F, Lü X. Manipulating Peierls Distortion in van der Waals NbOX 2 Maximizes Second-Harmonic Generation. J Am Chem Soc 2023. [PMID: 37467160 DOI: 10.1021/jacs.3c04971] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials, featuring relaxed phase-matching conditions and highly tunable optical nonlinearity, endow them with potential applications in nanoscale nonlinear optical (NLO) devices. Despite significant progress, fundamental questions in 2D NLO materials remain, such as how structural distortion affects second-order NLO properties, which call for advanced regulation and in situ diagnostic tools. Here, by applying pressure to continuously tune the displacement of Nb atoms in 2D vdW NbOI2, we effectively modulate the polarization and achieve a 3-fold boost of the second-harmonic generation (SHG) at 2.5 GPa. By introducing a Peierls distortion parameter, λ, we establish a quantitative relationship between λ and SHG intensity. Importantly, we further demonstrate that the SHG enhancement can be achieved under ambient conditions by anionic substitution to tune the distortion in NbO(I1-xBrx)2 (x = 0-1) compounds, where the chemical tailoring simulates the pressure effects on the structural optimization. Consequently, NbO(I0.60Br0.40)2 with λ = 0.17 exhibits a giant SHG of over 2 orders of magnitude higher than that in monolayer WSe2, reaching the record-high value among reported 2D vdW NLO materials. This work unambiguously demonstrates the correlation between Peierls distortion and SHG property and, more broadly, opens new paths for the development of advanced NLO materials by manipulating the structure distortions.
Collapse
Affiliation(s)
- Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xuzhou Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Dong Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
| |
Collapse
|
27
|
Fang Y, Wang J, Zhang L, Niu G, Sui L, Wu G, Yuan K, Wang K, Zou B. Tailoring the high-brightness "warm" white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition. Chem Sci 2023; 14:2652-2658. [PMID: 36908947 PMCID: PMC9993844 DOI: 10.1039/d2sc06982b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/05/2023] [Indexed: 02/08/2023] Open
Abstract
Efficient warm white light emission is an ideal characteristic of single-component materials for light-emitting applications. Although two-dimensional hybrid perovskites are promising candidates for light-emitting diodes, as they possess broadband self-trapped emission and outstanding stability, they rarely achieve a high photoluminescence quantum yield of warm white light emissions. Here, an unusual pressure-induced warm white emission enhancement phenomenon from 2.1 GPa to 9.9 GPa was observed in two-dimensional perovskite (2meptH2)PbCl4, accompanied by a large increase in the relative quantum yield of photoluminescence. The octahedral distortions, accompanied with the evolution of organic cations, triggered the structural collapse, which caused the sudden emission enhancement at 2.1 GPa. Afterwards, the further intra-octahedral collapse promotes the formation of self-trapped excitons and the substantial suppression of nonradiative transitions are responsible for the continuous pressure-induced photoluminescence enhancement. This study not only clearly illustrates the relationship between crystal structure and photoluminescence, but also provides an experimental basis for the synthesis of high-quality warm white light-emitting 2D metal halide perovskite materials.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Jingtian Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University Liaocheng 252000 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| |
Collapse
|
28
|
Shao W, Yang S, Wang K, Dou L. Light-Emitting Organic Semiconductor-Incorporated Perovskites: Fundamental Properties and Device Applications. J Phys Chem Lett 2023; 14:2034-2046. [PMID: 36795485 DOI: 10.1021/acs.jpclett.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, organic semiconductor-incorporated perovskites (OSiPs) have emerged as a new subclass of next-generation organic-inorganic hybrid materials. OSiPs combine the advantages of organic semiconductors, such as large design windows and tunable optoelectronic functionalities, with the excellent charge-transport properties of the inorganic metal-halide counterparts. OSiPs provide a new materials platform for the exploitation of charge and lattice dynamics at the organic-inorganic interfaces for various applications. This Perspective reviews recent achievements in OSiPs highlighting the benefits from organic semiconductor incorporation and elucidates the fundamental light-emitting mechanism, energy transfer, as well as band alignment structures at the organic-inorganic interface. Insights on the emission tunability lead toward a discussion of the potential of OSiPs in light-emitting applications, such as perovskite light-emitting diodes or lasing systems.
Collapse
Affiliation(s)
- Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seokjoo Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Feng X, Bu K, Liu T, Guo S, Sun Z, Fu T, Xu Y, Liu K, Yang S, Zhao Y, Li H, Lü X, Zhai T. Giant Tunability of Charge Transport in 2D Inorganic Molecular Crystals by Pressure Engineering. Angew Chem Int Ed Engl 2023; 62:e202217238. [PMID: 36461902 DOI: 10.1002/anie.202217238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2 O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2 O3 flake shows a sharp drop by 5 orders of magnitude in 0-3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Teng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
30
|
Ratté J, Macintosh MF, DiLoreto L, Liu J, Mihalyi-Koch W, Hautzinger MP, Guzei IA, Dong Z, Jin S, Song Y. Spacer-Dependent and Pressure-Tuned Structures and Optoelectronic Properties of 2D Hybrid Halide Perovskites. J Phys Chem Lett 2023; 14:403-412. [PMID: 36622300 DOI: 10.1021/acs.jpclett.2c03555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with their 3D counterparts, 2D hybrid organic-inorganic halide perovskites (HOIPs) exhibit enhanced chemical stabilities and superior optoelectronic properties, which can be further tuned by the application of external pressure. Here, we report the first high-pressure study on CMA2PbI4 (CMA = cylcohexanemethylammonium), a 2D HOIP with a soft organic spacer cation containing a flexible cyclohexyl ring, using UV-visible absorption, photoluminescence (PL) and vibrational spectroscopy, and synchrotron X-ray microdiffraction, all aided with density functional theory (DFT) calculations. Substantial anisotropic compression behavior is observed, as characterized by unprecedented negative linear compressibility along the b axis. Moreover, the pressure dependence of optoelectronic properties is found to be in strong contrast with those of 2D HOIPs with rigid spacer cations. DFT calculations help to understand the compression mechanisms that lead to pressure-induced bandgap narrowing. These findings highlight the important role of soft spacer cations in the pressure-tuned optoelectronic properties and provide guidance to the design of new 2D HOIPs.
Collapse
Affiliation(s)
- Jesse Ratté
- Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada
| | | | - Lauren DiLoreto
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jingyan Liu
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew P Hautzinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zhaohui Dong
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, CAS, Shanghai, 201204, PR China
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yang Song
- Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|