1
|
Linehan WM, Ricketts CJ, Crooks DR, Schmidt LS. The Critical Role of FLCN, TFE3, and TFEB in Bioenergetic and Nutrient Sensing, Renal Cancer Tumorigenesis and Metabolic Health. Eur Urol 2025:S0302-2838(25)00281-7. [PMID: 40382298 DOI: 10.1016/j.eururo.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Affiliation(s)
- W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| | | | - Daniel R Crooks
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Wu H, Cao L, Wen X, Fan J, Wang Y, Hu H, Ji S, Zhang Y, Ye C, Xie W, Zhang J, Xu H, Fu X. Lysosomal catabolic activity promotes the exit of murine totipotent 2-cell state by silencing early-embryonic retrotransposons. Dev Cell 2025; 60:512-523.e7. [PMID: 39561778 DOI: 10.1016/j.devcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/03/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
During mouse preimplantation development, a subset of retrotransposons/genes are transiently expressed in the totipotent 2-cell (2C) embryos. These 2C transcripts rapidly shut down their expression beyond the 2C stage of embryos, promoting the embryo to exit from the 2C stage. However, the mechanisms regulating this shutdown remain unclear. Here, we identified that lysosomal catabolism played a role in the exit of the totipotent 2C state. Our results showed that the activation of embryonic lysosomal catabolism promoted the embryo to exit from the 2C stage and suppressed 2C transcript expression. Mechanistically, our results indicated that lysosomal catabolism suppressed 2C transcripts through replenishing cellular amino-acid levels, thereby inactivating transcriptional factors TFE3/TFEB and abolishing their transcriptional activation of 2C retrotransposons, MERVL (murine endogenous retrovirus-L)/MT2_Mm. Collectively, our study identified that lysosomal activity modulated the transcriptomic landscape and development in mouse embryos and identified an unanticipated layer of transcriptional control on early-embryonic retrotransposons from lysosomal signaling.
Collapse
Affiliation(s)
- Hao Wu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Lanrui Cao
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Jiawei Fan
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Heyong Hu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jin Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Haoxing Xu
- Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang 310000, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
3
|
Sambri I, Ferniani M, Ballabio A. Ragopathies and the rising influence of RagGTPases on human diseases. Nat Commun 2024; 15:5812. [PMID: 38987251 PMCID: PMC11237164 DOI: 10.1038/s41467-024-50034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Marco Ferniani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
4
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Xiao L, Yin Y, Sun Z, Liu J, Jia Y, Yang L, Mao Y, Peng S, Xie Z, Fang L, Li J, Xie X, Gan Z. AMPK phosphorylation of FNIP1 (S220) controls mitochondrial function and muscle fuel utilization during exercise. SCIENCE ADVANCES 2024; 10:eadj2752. [PMID: 38324677 PMCID: PMC10849678 DOI: 10.1126/sciadv.adj2752] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Exercise-induced activation of adenosine monophosphate-activated protein kinase (AMPK) and substrate phosphorylation modulate the metabolic capacity of mitochondria in skeletal muscle. However, the key effector(s) of AMPK and the regulatory mechanisms remain unclear. Here, we showed that AMPK phosphorylation of the folliculin interacting protein 1 (FNIP1) serine-220 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Loss of FNIP1 in skeletal muscle resulted in increased mitochondrial content and augmented metabolic capacity, leading to enhanced exercise endurance in mice. Using skeletal muscle-specific nonphosphorylatable FNIP1 (S220A) and phosphomimic (S220D) transgenic mouse models as well as biochemical analysis in primary skeletal muscle cells, we demonstrated that exercise-induced FNIP1 (S220) phosphorylation by AMPK in muscle regulates mitochondrial electron transfer chain complex assembly, fuel utilization, and exercise performance without affecting mechanistic target of rapamycin complex 1-transcription factor EB signaling. Therefore, FNIP1 is a multifunctional AMPK effector for mitochondrial adaptation to exercise, implicating a mechanism for exercise tolerance in health and disease.
Collapse
Affiliation(s)
- Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Baer SB, Dorn AD, Osborne DM. Sex differences in response to obesity and caloric restriction on cognition and hippocampal measures of autophagic-lysosomal transcripts and signaling pathways. BMC Neurosci 2024; 25:1. [PMID: 38166559 PMCID: PMC10759648 DOI: 10.1186/s12868-023-00840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Obesity rates in the U.S. continue to increase, with nearly 50% of the population being either obese or morbidly obese. Obesity, along with female sex, are leading risk factors for sporadic Alzheimer's Disease (AD) necessitating the need to better understand how these variables impact cellular function independent of age or genetic mutations. Animal and clinical studies both indicate that autophagy-lysosomal pathway (ALP) dysfunction is among the earliest known cellular systems to become perturbed in AD, preceding cognitive decline, yet little is known about how obesity and sex affects these cellular functions in the hippocampus, a brain region uniquely susceptible to the negative effects of obesity. We hypothesized that obesity would negatively affect key markers of ALP in the hippocampus, effects would vary based on sex, and that caloric restriction would counteract obesity effects. METHODS Female and male mice were placed on an obesogenic diet for 10 months, at which point half were switched to caloric restriction for three months, followed by cognitive testing in the Morris watermaze. Hippocampus was analyzed by western blot and qPCR. RESULTS Cognitive function in female mice responded differently to caloric restriction based on whether they were on a normal or obesogenic diet; male cognition was only mildly affected by caloric restriction and not obesity. Significant male-specific changes occurred in cellular markers of autophagy, including obesity increasing pAkt, Slc38a9, and Atg12, while caloric restriction reduced pRPS6 and increased Atg7. In contrast females experienced changes due to diet/caloric restriction predominately in lysosomal markers including increased TFE3, FLCN, FNIP2, and pAMPK. CONCLUSIONS Results support that hippocampal ALP is a target of obesity and that sex shapes molecular responses, while providing insight into how dietary manipulations affect learning and memory based on sex.
Collapse
Affiliation(s)
- Sadie B Baer
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | - Adrianah D Dorn
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, USA
| | | |
Collapse
|
7
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
8
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
9
|
Zoncu R, Perera RM. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 2023; 9:817-827. [PMID: 37400313 DOI: 10.1016/j.trecan.2023.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.
Collapse
Affiliation(s)
- Roberto Zoncu
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Rushika M Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Linde-Garelli KY, Rogala KB. Structural mechanisms of the mTOR pathway. Curr Opin Struct Biol 2023; 82:102663. [PMID: 37572585 DOI: 10.1016/j.sbi.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
The mTOR signaling pathway is essential for regulating cell growth and mammalian metabolism. The mTOR kinase forms two complexes, mTORC1 and mTORC2, which respond to external stimuli and regulate differential downstream targets. Cellular membrane-associated translocation mediates function and assembly of the mTOR complexes, and recent structural studies have begun uncovering the molecular basis by which the mTOR pathway (1) regulates signaling inputs, (2) recruits substrates, (3) localizes to biological membranes, and (4) becomes activated. Moreover, indications of dysregulated mTOR signaling are implicated in a wide range of diseases and an increasingly comprehensive understanding of structural mechanisms is driving novel translational development.
Collapse
Affiliation(s)
- Karen Y Linde-Garelli
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Schmidt LS, Vocke CD, Ricketts CJ, Blake Z, Choo KK, Nielsen D, Gautam R, Crooks DR, Reynolds KL, Krolus JL, Bashyal M, Karim B, Cowen EW, Malayeri AA, Merino MJ, Srinivasan R, Ball MW, Zbar B, Marston Linehan W. PRDM10 RCC: A Birt-Hogg-Dubé-like Syndrome Associated With Lipoma and Highly Penetrant, Aggressive Renal Tumors Morphologically Resembling Type 2 Papillary Renal Cell Carcinoma. Urology 2023; 179:58-70. [PMID: 37331486 PMCID: PMC10592549 DOI: 10.1016/j.urology.2023.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE To characterize the clinical manifestations and genetic basis of a familial cancer syndrome in patients with lipomas and Birt-Hogg-Dubé-like clinical manifestations including fibrofolliculomas and trichodiscomas and kidney cancer. METHODS Genomic analysis of blood and renal tumor DNA was performed. Inheritance pattern, phenotypic manifestations, and clinical and surgical management were documented. Cutaneous, subcutaneous, and renal tumor pathologic features were characterized. RESULTS Affected individuals were found to be at risk for a highly penetrant and lethal form of bilateral, multifocal papillary renal cell carcinoma. Whole genome sequencing identified a germline pathogenic variant in PRDM10 (c.2029 T>C, p.Cys677Arg), which cosegregated with disease. PRDM10 loss of heterozygosity was identified in kidney tumors. PRDM10 was predicted to abrogate expression of FLCN, a transcriptional target of PRDM10, which was confirmed by tumor expression of GPNMB, a TFE3/TFEB target and downstream biomarker of FLCN loss. In addition, a sporadic papillary RCC from the TCGA cohort was identified with a somatic PRDM10 mutation. CONCLUSION We identified a germline PRDM10 pathogenic variant in association with a highly penetrant, aggressive form of familial papillary RCC, lipomas, and fibrofolliculomas/trichodiscomas. PRDM10 loss of heterozygosity and elevated GPNMB expression in renal tumors indicate that PRDM10 alteration leads to reduced FLCN expression, driving TFE3-induced tumor formation. These findings suggest that individuals with Birt-Hogg-Dubé-like manifestations and subcutaneous lipomas, but without a germline pathogenic FLCN variant, should be screened for germline PRDM10 variants. Importantly, kidney tumors identified in patients with a pathogenic PRDM10 variant should be managed with surgical resection instead of active surveillance.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Zoë Blake
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kristin K Choo
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deborah Nielsen
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rabindra Gautam
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Krista L Reynolds
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Janis L Krolus
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Meena Bashyal
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Clinical Research Center, National Institutes of Health, Bethesda, MD
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Berton Zbar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
12
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Healy MD, McNally KE, Butkovič R, Chilton M, Kato K, Sacharz J, McConville C, Moody ERR, Shaw S, Planelles-Herrero VJ, Yadav SKN, Ross J, Borucu U, Palmer CS, Chen KE, Croll TI, Hall RJ, Caruana NJ, Ghai R, Nguyen THD, Heesom KJ, Saitoh S, Berger I, Schaffitzel C, Williams TA, Stroud DA, Derivery E, Collins BM, Cullen PJ. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 2023; 186:2219-2237.e29. [PMID: 37172566 PMCID: PMC10187114 DOI: 10.1016/j.cell.2023.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Collapse
Affiliation(s)
- Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | - Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Joanna Sacharz
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Calum McConville
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Edmund R R Moody
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Shrestha Shaw
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | | | - Sathish K N Yadav
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Jennifer Ross
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Ufuk Borucu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kai-En Chen
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ryan J Hall
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Institute of Health and Sport (iHeS), Victoria University, Melbourne, VIC Australia
| | - Rajesh Ghai
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Thi H D Nguyen
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; Max Planck Bristol Centre for Minimal Biology, Department of Chemistry, University of Bristol, BS8 1TS Bristol, UK
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia
| | | | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK.
| |
Collapse
|
14
|
Iliopoulos O. Diseases of Hereditary Renal Cell Cancers. Urol Clin North Am 2023; 50:205-215. [PMID: 36948667 DOI: 10.1016/j.ucl.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Germline mutations in tumor suppressor genes and oncogenes lead to hereditary renal cell carcinoma (HRCC) diseases, characterized by a high risk of RCC and extrarenal manifestations. Patients of young age, those with a family history of RCC, and/or those with a personal and family history of HRCC-related extrarenal manifestations should be referred for germline testing. Identification of a germline mutation will allow for testing of family members at risk, as well as personalized surveillance programs to detect the early onset of HRCC-related lesions. The latter allows for more targeted and therefore more effective therapy and better preservation of renal parenchyma.
Collapse
Affiliation(s)
- Othon Iliopoulos
- VHL Comprehensive Clinical Care Center and Hemangioblastoma Center; Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wang G, Chen L, Lei X, Qin S, Geng H, Zheng Y, Xia C, Yao J, Meng T, Deng L. Role of FLCN Phosphorylation in Insulin-Mediated mTORC1 Activation and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206826. [PMID: 37083230 DOI: 10.1002/advs.202206826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
The amino acid-stimulated Rag GTPase pathway is one of the main pathways that regulate mechanistic target of rapamycin complex 1 (mTORC1) activation and function, but little is known about the effects of growth factors on Rag GTPase-mediated mTORC1 activation. Here, a highly conserved insulin-responsive phosphorylation site on folliculin (FLCN), Ser62, that is phosphorylates by AKT1 is identified and characterized. mTORC2-AKT1 is localized on lysosomes, and RagD-specific recruitment of mTORC2-AKT1 on lysosomes is identified as an essential step in insulin-AKT1-mediated FLCN phosphorylation. Additionally, FLCN phosphorylation inhibits the activity of RagC GTPase and is essential for insulin-induced mTORC1 activation. Functionally, phosphorylated FLCN promotes cell viability and induces autophagy, and also regulates in vivo tumor growth in an mTORC1-dependent manner. Its expression is also positively correlated with mTORC1 activity in colon cancer, clear cell renal cell carcinoma, and chordoma. These results indicate that FLCN is an important intermediate for cross-talk between the amino acid and growth factor pathways. Further, FLCN phosphorylation may be a promising therapeutic target for diseases characterized by mTORC1 dysregulation.
Collapse
Affiliation(s)
- Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
16
|
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Novak SW, Yu J, Gilson R, Hellberg K, Fang L, Sheridan A, Hah N, Shadel GS, Manor U, Shaw RJ. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023; 380:eabj5559. [PMID: 37079666 PMCID: PMC10794112 DOI: 10.1126/science.abj5559] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Nazma Malik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bibiana I. Ferreira
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo E. Hollstein
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie D. Curtis
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Gilson
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lingjing Fang
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arlo Sheridan
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
17
|
Cui Z, Joiner AMN, Jansen RM, Hurley JH. Amino acid sensing and lysosomal signaling complexes. Curr Opin Struct Biol 2023; 79:102544. [PMID: 36804703 DOI: 10.1016/j.sbi.2023.102544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023]
Abstract
Amino acid pools in the cell are monitored by dedicated sensors, whose structures are now coming into view. The lysosomal Rag GTPases are central to this pathway, and the regulation of their GAP complexes, FLCN-FNIP and GATOR1, have been worked out in detail. For FLCN-FNIP, the entire chain of events from the arginine transporter SLC38A9 to substrate-specific mTORC1 activation has been visualized. The structure GATOR2 has been determined, hinting at an ordering of amino acid signaling across a larger size scale than anticipated. The centerpiece of lysosomal signaling, mTORC1, has been revealed to recognize its substrates by more nuanced and substrate-specific mechanisms than previous appreciated. Beyond the well-studied Rag GTPase and mTORC1 machinery, another lysosomal amino acid sensor/effector system, that of PQLC2 and the C9orf72-containing CSW complex, is coming into structural view. These developments hold promise for further insights into lysosomal physiology and lysosome-centric therapeutics.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Aaron M N Joiner
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Rachel M Jansen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Jansen RM, Hurley JH. Longin domain GAP complexes in nutrient signalling, membrane traffic and neurodegeneration. FEBS Lett 2023; 597:750-761. [PMID: 36367440 PMCID: PMC10050129 DOI: 10.1002/1873-3468.14538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Small GTPases act as molecular switches and control numerous cellular processes by their binding and hydrolysis of guanosine triphosphate (GTP). The activity of small GTPases is coordinated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Recent structural and functional studies have characterized a subset of GAPs whose catalytic units consist of longin domains. Longin domain containing GAPs regulate small GTPases that facilitate nutrient signalling, autophagy, vesicular trafficking and lysosome homeostasis. All known examples in this GAP family function as part of larger multiprotein complexes. The three characterized mammalian protein complexes in this class are FLCN:FNIP, GATOR1 and C9orf72:SMCR8. Each complex carries out a unique cellular function by regulating distinct small GTPases. In this article, we explore the roles of longin domain GAPs in nutrient sensing, membrane dynamic, vesicular trafficking and disease. Through a structural lens, we examine the mechanism of each longin domain GAP and highlight potential therapeutic applications.
Collapse
Affiliation(s)
- Rachel M. Jansen
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Nakamura J, Yamamoto T, Takabatake Y, Namba-Hamano T, Minami S, Takahashi A, Matsuda J, Sakai S, Yonishi H, Maeda S, Matsui S, Matsui I, Hamano T, Takahashi M, Goto M, Izumi Y, Bamba T, Sasai M, Yamamoto M, Matsusaka T, Niimura F, Yanagita M, Nakamura S, Yoshimori T, Ballabio A, Isaka Y. TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. JCI Insight 2023; 8:162498. [PMID: 36649084 PMCID: PMC9977505 DOI: 10.1172/jci.insight.162498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Maiko Goto
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, and.,Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, and.,Laboratory of Immunoparasitology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Basic Medical Science, and
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Shuhei Nakamura
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences.,Institute for Advanced Co-Creation Studies, and
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|