1
|
Luo H, Shi XL, Liu Y, Li M, Zhang M, Luo X, Wang M, Huang X, Hu L, Chen ZG. Metavalent alloying and vacancy engineering enable state-of-the-art cubic GeSe thermoelectrics. Nat Commun 2025; 16:3136. [PMID: 40169673 PMCID: PMC11961766 DOI: 10.1038/s41467-025-58387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Conventional alloying strategies often require high alloying concentrations, leading to impurity phases and additional phase transition that limit the figure of merit of thermoelectric materials. Here, we introduce metavalent alloying and vacancy engineering as transformative strategies to facilitate the orthorhombic-to-cubic phase transition, in which we stabilize pure cubic GeSe under ambient conditions with just 10% alloying concentration using Sb2Te3 as an effective alloying agent. Compared to the covalently bonded orthorhombic phase, the metavalently bonded cubic GeSe features lower cation vacancy formation energy, reduced bandgap, enhanced band degeneracy, weaker chemical bonding, stronger lattice anharmonicity, and multiple phonon scattering centers. These properties synergistically improve the power factor and suppress the lattice thermal conductivity. Subsequent trace Pb doping further reduces the lattice thermal conductivity, achieving an unprecedented ZT of 1.38 at 723 K in cubic (Ge0.95Pb0.05Se)0.9(Sb2Te3)0.1, along with a remarkable energy conversion efficiency of 6.13% under a 430 K temperature difference. These results advance the practical application of GeSe-based alloys for medium-temperature power generation and provide critical insights into the orthorhombic-to-cubic phase transition mechanism in chalcogenides.
Collapse
Affiliation(s)
- Haoran Luo
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yongqiang Liu
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Min Zhang
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaohuan Luo
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Moran Wang
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Xiaopei Huang
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China
| | - Lipeng Hu
- College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
| | - Zhi-Gang Chen
- School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Aryana K, Popescu CC, Sun H, Aryana K, Kim HJ, Julian M, Islam MR, Ríos Ocampo CA, Gu T, Hu J, Hopkins PE. Thermal Transport in Chalcogenide-Based Phase Change Materials: A Journey from Fundamental Physics to Device Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414031. [PMID: 39924804 DOI: 10.1002/adma.202414031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Indexed: 02/11/2025]
Abstract
Advancements in nanofabrication processes have propelled nonvolatile phase change materials (PCMs) beyond storage-class applications. They are now making headway in fields such as photonic integrated circuits (PIC), free-space optics, and plasmonics. This shift is owed to their distinct electrical, optical, and thermal properties between their different atomic structures, which can be reversibly switched through thermal stimuli. However, the reliability of PCM-based optical components is not yet on par with that of storage-class devices. This is in part due to the challenges in maintaining a uniform temperature distribution across the PCM volume during phase transformation, which is essential to mitigate stress and element segregation as the device size exceeds a few micrometers. Understanding thermal transport in PCM-based devices is thus crucial as it dictates not only the durability but also the performance and power consumption of these devices. This article reviews recent advances in the development of PCM-based photonic devices from a thermal transport perspective and explores potential avenues to enhance device reliability. The aim is to provide insights into how PCM-based technologies can evolve beyond storage-class applications, maintain their functionality, and achieve longer lifetimes.
Collapse
Affiliation(s)
- Kiumars Aryana
- NASA Langley Research Center, Hampton, VA, 23666, USA
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Cosmin Constantin Popescu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongyi Sun
- Department of Materials Science & Engineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Research in Electronics & Applied Physics, University of Maryland, College Park, MD, 20742, USA
| | - Kiarash Aryana
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Hyun Jung Kim
- NASA Langley Research Center, Hampton, VA, 23666, USA
- Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | | | - Md Rafiqul Islam
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Carlos A Ríos Ocampo
- Department of Materials Science & Engineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Research in Electronics & Applied Physics, University of Maryland, College Park, MD, 20742, USA
| | - Tian Gu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Juejun Hu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Hoff F, Kerres P, Veslin T, Jalil AR, Schmidt T, Ritarossi S, Köttgen J, Bothe L, Frank J, Schön C, Xu Y, Kim D, Mertens J, Mayer J, Mazzarello R, Wuttig M. Bond Confinement-Dependent Peierls Distortion in Epitaxially Grown Bismuth Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416938. [PMID: 39740119 PMCID: PMC11837888 DOI: 10.1002/adma.202416938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Indexed: 01/02/2025]
Abstract
A systematic study of the impact of film thickness on the properties of thin Bi films is presented. To this end, epitaxial films of high quality have been grown on a Si (111) substrate with thicknesses ranging from 1.9 to 29.9 nm. Broadband optical spectroscopy reveals a notable decline in the optical dielectric constant and the absorption peak height as the film thickness decreases, alongside a shift of the absorption maximum to higher photon energies. Raman and pump-probe spectroscopy show that the phonon mode frequencies increase upon decreasing film thickness, with the in-plane mode frequency rising by 10% from the thickest to the thinnest sample. The X-ray diffraction analysis reveals an increasing Peierls distortion for thinner films, explaining the observed property changes. Quantum chemical bonding analysis and density functional theory calculations show that the properties of thin bismuth are influenced by the interplay between electron localization and delocalization, characteristic of metavalently bonded solids. This study shows that for solids that utilize metavalent bonding, a thickness reduction leads to significant property changes. The effect can even be employed to tailor material properties without the need to change material stoichiometry.
Collapse
Affiliation(s)
- Felix Hoff
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Peter Kerres
- Peter Grünberg Institute – JARA‐Institute Energy Efficient Information Technology (PGI‐10)Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Timo Veslin
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Abdur Rehman Jalil
- Peter Grünberg Institute – JARA‐Institute Energy Efficient Information Technology (PGI‐10)Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Thomas Schmidt
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Simone Ritarossi
- Dipartimento di FisicaSapienza University of RomePiazzale Aldo Moro 5Rome00185Italy
| | - Jan Köttgen
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Lucas Bothe
- Peter Grünberg Institute – JARA‐Institute Energy Efficient Information Technology (PGI‐10)Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Jonathan Frank
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Carl‐Friedrich Schön
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Yazhi Xu
- Department of Applied PhysicsSchool of ScienceChang'an UniversityXi'an710064China
| | - Dasol Kim
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Julian Mertens
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Joachim Mayer
- Central Facility for Electron MicroscopyRWTH Aachen UniversityAhornstr. 5552074AachenGermany
| | - Riccardo Mazzarello
- Dipartimento di FisicaSapienza University of RomePiazzale Aldo Moro 5Rome00185Italy
| | - Matthias Wuttig
- Institute of Physics (IA)RWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
- Peter Grünberg Institute – JARA‐Institute Energy Efficient Information Technology (PGI‐10)Wilhelm‐Johnen‐Straße52428JülichGermany
| |
Collapse
|
4
|
Talwar DN, Becla P. Microhardness, Young's and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides. MATERIALS (BASEL, SWITZERLAND) 2025; 18:494. [PMID: 39942167 PMCID: PMC11818265 DOI: 10.3390/ma18030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 02/16/2025]
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials' use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11-c122), bond-stretching α and bond-bending β force constants, Kleinmann's internal displacement ζ, and Born's transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young's modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices.
Collapse
Affiliation(s)
- Devki N. Talwar
- Department of Physics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224-7699, USA
- Department of Physics, Indiana University of Pennsylvania, 975 Oakland Avenue, 56 Weyandt Hall, Indiana, PA 15705-1087, USA
| | - Piotr Becla
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
5
|
Cojocaru‐Mirédin O, Yu Y, Köttgen J, Ghosh T, Schön C, Han S, Zhou C, Zhu M, Wuttig M. Atom Probe Tomography: a Local Probe for Chemical Bonds in Solids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403046. [PMID: 39520347 PMCID: PMC11636162 DOI: 10.1002/adma.202403046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Atom probe tomography is frequently employed to characterize the elemental distribution in solids with atomic resolution. Here the potential of this technique to locally probe chemical bonds is reviewed and discussed. Two processes characterize the bond rupture in laser-assisted field emission, the probability of molecular ions (PMI), i.e., the probability that molecular ions are evaporated instead of single (atomic) ions, and the probability of multiple events (PME), i.e., the correlated field-evaporation of more than a single fragment upon laser- or voltage pulse excitation. Here it is demonstrated that one can clearly distinguish solids with metallic, covalent, and metavalent bonds based on their bond rupture, i.e., their PME and PMI values. These findings open new avenues in understanding and designing advanced materials, since they allow a quantification of bonds in solids on a nanometer scale, as will be shown for several examples. These possibilities would even justify calling the present approach bonding probe tomography (BPT).
Collapse
Affiliation(s)
- Oana Cojocaru‐Mirédin
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
- INATECHUniversity of FreiburgGeorges‐Köhler Allee 10279110FreiburgGermany
| | - Yuan Yu
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Jan Köttgen
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Tanmoy Ghosh
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
- Department of Sciences and HumanitiesRajiv Gandhi Institute of Petroleum Technology (RGIPT)JaisAmethiUP229304India
| | - Carl‐Friedrich Schön
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
| | - Shuai Han
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi'an710072China
| | - Chongjian Zhou
- State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi'an710072China
| | - Min Zhu
- National Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystems and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Matthias Wuttig
- Physikalisches Institut IARWTH Aachen UniversitySommerfeldstraße 1452074AachenGermany
- Peter Grünberg Institute – JARA‐Institute Energy Efficient Information Technology (PGI‐10)Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Straße52428JülichGermany
| |
Collapse
|
6
|
Moesgaard J, Fujita T, Wei S. Unveiling the boson peaks in amorphous phase-change materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:025101. [PMID: 39332450 DOI: 10.1088/1361-648x/ad80ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
The boson peak is a universal phenomenon in amorphous solids. It can be observed as an anomalous contribution to the low-temperature heat capacity over the Debye model. Amorphous phase-change materials (PCMs) such as Ge-Sb-Te are a family of poor glass formers with fast crystallization kinetics, being of interest for phase-change memory applications. So far, whether boson peaks exist in PCMs is unknown and, if they do, their relevance to PCM properties is unclear. Here, we investigate the thermodynamic properties of the pseudo-binary compositions on the tie-line between Ge15Te85and Ge15Sb85from a few Kelvins to the liquidus temperatures. Our results demonstrate the evidence of the pronounced boson peaks in heat capacity below 10 K in the amorphous phase of all compositions. By fitting the data using the Debye model combined with a modification of the Einstein model, we can extract the characteristic parameters of the boson peaks and attribute their origin to the excess vibrational modes of dynamic defects in the amorphous solids. We find that these parameters correlate almost linearly with the Sb-content of the alloys, despite the nonmonotonic behaviors in glass forming abilities and thermal stabilities. In a broader context, we show that the correlations of the characteristic parameters of the boson peaks withTgand kinetic fragility, vary according to the type of bonding. Specifically, metallic glasses and conventional covalent glasses exhibit distinct patterns of dependence, whereas PCMs manifest characteristics that lie in between. A deeper understanding of the boson peaks in PCMs holds the promise to enable predictions of material properties at higher temperatures based on features observed in low-temperature heat capacity.
Collapse
Affiliation(s)
- Jens Moesgaard
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Tomoki Fujita
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Shuai Wei
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
- iMAT Centre for Integrated Materials Research, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Shvalagin V, Tarakina N, Badamdorj B, Lahrsen IM, Bargiacchi E, Bardow A, Deng Z, Wang W, Phillips DL, Guo Z, Zhang G, Tang J, Savateev O. Simultaneous Photocatalytic Production of H 2 and Acetal from Ethanol with Quantum Efficiency over 73% by Protonated Poly(heptazine imide) under Visible Light. ACS Catal 2024; 14:14836-14854. [PMID: 39386918 PMCID: PMC11459976 DOI: 10.1021/acscatal.4c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
In this work, protonated poly(heptazine imide) (H-PHI) was obtained by adding acid to the suspension of potassium PHI (K-PHI) in ethanol. It was established that the obtained H-PHI demonstrates very high photocatalytic activity in the reaction of hydrogen formation from ethanol in the presence of Pt nanoparticles under visible light irradiation in comparison with K-PHI. This enhancement can be attributed to improved efficiency of photogenerated charge transfer to the photocatalyst's surface, where redox processes occur. Various factors influencing the system's activity were evaluated. Notably, it was discovered that the conditions of acid introduction into the system can significantly affect the size of Pt (cocatalyst metal) deposition on the H-PHI surface, thereby enhancing the photocatalytic system's stability in producing molecular hydrogen. It was established that the system can operate efficiently in the presence of air without additional components on the photocatalyst surface to block air access. Under optimal conditions, the apparent quantum yield of molecular hydrogen production at 410 nm is around 73%, the highest reported value for carbon nitride materials to date. The addition of acid not only increases the activity of the reduction part of the system but also leads to the formation of a value-added product from ethanol-1,1-diethoxyethane (acetal) with high selectivity.
Collapse
Affiliation(s)
- Vitaliy Shvalagin
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Nadezda Tarakina
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Bolortuya Badamdorj
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Inga-Marie Lahrsen
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Eleonora Bargiacchi
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Andre Bardow
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Ziqi Deng
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wenchao Wang
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhengxiao Guo
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Guigang Zhang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fujian 350116, China
| | - Junwang Tang
- Industrial
Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Oleksandr Savateev
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New
Territories, Kowloon 999077, Hong Kong
| |
Collapse
|
8
|
Peng S, Cui G, Li J, Li F, Ji M, Zhang C, Meng T, Li J, Man J. Combined role of stearic acid and maleic anhydride in the development of thermoplastic starch-based materials with ultrahigh ductility and durability. Carbohydr Polym 2024; 339:122296. [PMID: 38823896 DOI: 10.1016/j.carbpol.2024.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
The diverse properties reported for starch-based materials indicate their potential for use in the preparation of biodegradable flexible actuators. However, their natural brittleness and lack of durability after modification limit their practical application. Therefore, we propose a strategy for preparing flexible starch-based composites. The results of macro/micro property characterizations and molecular dynamics simulations indicated that using starch, maleic anhydride, and stearic acid (SA), the mobility of the starch chains was enhanced and retrogradation was inhibited through the synergistic effects induced by chain breaking, complex formation with SA, and esterification of the starch molecules. In addition, the elongation at break of the modified starch (MS) reached 2070 %, and considerable ductility (>1000 %) as well as well-complexed structure were maintained after six months. Furthermore, the MS was able to undergo self-healing after fracture or a temperature-controlled stiffness transition. Moreover, it underwent complete degradation in soil within 30 d. Finally, an actuator was prepared by doping the MS with nano-Fe3O4 particles to realize a dual magnetic and optical response. Dynamic monitoring was also achieved based on the electrical signal, thereby demonstrating the broad application scope of this material in the development of biodegradable flexible actuators.
Collapse
Affiliation(s)
- Sixian Peng
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Guanghui Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Tianshuo Meng
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
9
|
Sarkar D, Bhui A, Maria I, Dutta M, Biswas K. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chem Soc Rev 2024; 53:6100-6149. [PMID: 38717749 DOI: 10.1039/d4cs00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The long-range periodic atomic arrangement or the lack thereof in solids typically dictates the magnitude and temperature dependence of their lattice thermal conductivity (κlat). Compared to crystalline materials, glasses exhibit a much-suppressed κlat across all temperatures as the phonon mean free path reaches parity with the interatomic distances therein. While the occurrence of such glass-like thermal transport in crystalline solids captivates the scientific community with its fundamental inquiry, it also holds the potential for profoundly impacting the field of thermoelectric energy conversion. Therefore, efficient manipulation of thermal transport and comprehension of the microscopic mechanisms dictating phonon scattering in crystalline solids are paramount. As quantized lattice vibrations (i.e., phonons) drive κlat, atomistic insights into the chemical bonding characteristics are crucial to have informed knowledge about their origins. Recently, it has been observed that within the highly symmetric 'averaged' crystal structures, often there are hidden locally asymmetric atomic motifs (within a few Å), which exert far-reaching influence on phonon transport. Phenomena such as local atomic off-centering, atomic rattling or tunneling, liquid-like atomic motion, site splitting, local ordering, etc., which arise within a few Å scales, are generally found to drastically disrupt the passage of heat carrying phonons. Despite their profound implication(s) for phonon dynamics, they are often overlooked by traditional crystallographic techniques. In this review, we provide a brief overview of the fundamental aspects of heat transport and explore the status quo of innately low thermally conductive crystalline solids, wherein the phonon dynamics is majorly governed by local structural phenomena. We also discuss advanced techniques capable of characterizing the crystal structure at the sub-atomic level. Subsequently, we delve into the emergent new ideas with examples linked to local crystal structure and lattice dynamics. While discussing the implications of the local structure for thermal conductivity, we provide the state-of-the-art examples of high-performance thermoelectric materials. Finally, we offer our viewpoint on the experimental and theoretical challenges, potential new paths, and the integration of novel strategies with material synthesis to achieve low κlat and realize high thermoelectric performance in crystalline solids via local structure designing.
Collapse
Affiliation(s)
- Debattam Sarkar
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Animesh Bhui
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Ivy Maria
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Moinak Dutta
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| | - Kanishka Biswas
- New Chemistry Unit, School of Advanced Materials and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
10
|
Wuttig M, Schön C, Kim D, Golub P, Gatti C, Raty J, Kooi BJ, Pendás ÁM, Arora R, Waghmare U. Metavalent or Hypervalent Bonding: Is There a Chance for Reconciliation? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308578. [PMID: 38059800 PMCID: PMC10853697 DOI: 10.1002/advs.202308578] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/08/2023]
Abstract
A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.
Collapse
Affiliation(s)
- Matthias Wuttig
- I. Institute of PhysicsPhysics of Novel MaterialsRWTH Aachen University52056AachenGermany
- Jülich‐Aachen Research Alliance (JARA FIT and JARA HPC)RWTH Aachen University52056AachenGermany
- Green IT (PGI 10)Forschungszentrum Jülich GmbH52428JülichGermany
| | - Carl‐Friedrich Schön
- I. Institute of PhysicsPhysics of Novel MaterialsRWTH Aachen University52056AachenGermany
| | - Dasol Kim
- I. Institute of PhysicsPhysics of Novel MaterialsRWTH Aachen University52056AachenGermany
| | - Pavlo Golub
- Department of Theoretical ChemistryJ. Heyrovský Institute of Physical ChemistryDolejškova 2155/3Prague18223Czech Republic
| | - Carlo Gatti
- CNR‐SCITECIstituto di Scienze e Tecnologie Chimiche “Giulio Natta”sezione di via Golgi, via Golgi 19Milano20133Italy
| | | | - Bart J. Kooi
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | | | - Raagya Arora
- Theoretical Sciences UnitSchool of Advanced MaterialsJNCASRJakkurBangalore560064India
| | - Umesh Waghmare
- Theoretical Sciences UnitSchool of Advanced MaterialsJNCASRJakkurBangalore560064India
| |
Collapse
|
11
|
Stenz C, Pries J, Surta TW, Gaultois MW, Wuttig M. Evolution of Short-Range Order of Amorphous GeTe Upon Structural Relaxation Obtained by TEM Diffractometry and RMC Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304323. [PMID: 37908162 PMCID: PMC10754132 DOI: 10.1002/advs.202304323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Indexed: 11/02/2023]
Abstract
Glasses frequently reveal structural relaxation that leads to changes in their physical properties including enthalpy, specific volume, and resistivity. Analyzing the short-range order (SRO) obtained from electron diffraction by transmission electron microscopy (TEM) in combination with Reverse-Monte-Carlo (RMC) simulations is shown to provide information on the atomic arrangement. The technique elaborated here features several benefits including reliability, accessibility, and allows for obtaining detailed structural data quickly. This is demonstrated with a detailed view of the structural changes in the as-deposited amorphous phase change material (PCM) GeTe. The data show a significant increase in the average bond angle upon thermal treatment. At the same time the fraction of tetrahedrally coordinated Ge atoms decreases due to an increase in octahedrally distorted and pyramidal motifs. This finding provides further evidence for the atomic processes that govern structural relaxation in amorphous GeTe and other PCMs. A thorough literature review finally unveils possible origins of the large discrepancies reported on the structure of amorphous GeTe.
Collapse
Affiliation(s)
- Christian Stenz
- Institute of Physics IARWTH Aachen University52074AachenGermany
| | - Julian Pries
- Institute of Physics IARWTH Aachen University52074AachenGermany
| | | | - Michael W. Gaultois
- Leverhulme Research Centre for Functional Materials DesignUniversity of Liverpool, Materials Innovation FactoryLiverpoolL69 7ZDUK
| | - Matthias Wuttig
- Institute of Physics IARWTH Aachen University52074AachenGermany
- Peter Grünberg Institute (PGI 10)Forschungszentrum Jülich GmbH52425JülichGermany
| |
Collapse
|
12
|
Yao W, Zhang Y, Lyu T, Huang W, Huang N, Li X, Zhang C, Liu F, Wuttig M, Yu Y, Hong M, Hu L. Two-step phase manipulation by tailoring chemical bonds results in high-performance GeSe thermoelectrics. Innovation (N Y) 2023; 4:100522. [PMID: 37915362 PMCID: PMC10616397 DOI: 10.1016/j.xinn.2023.100522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
In thermoelectrics, phase engineering serves a crucial function in determining the power factor by affecting the band degeneracy. However, for low-symmetry compounds, the mainstream one-step phase manipulation strategy, depending solely on the valley or orbital degeneracy, is inadequate to attain a high density-of-states effective mass and exceptional zT. Here, we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe. Initially, we amplify the valley degeneracy via CdTe alloying, which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion. Subsequently, we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion. Additionally, the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass, leading to increased carrier concentration and mobility. This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity. Consequently, this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Ge0.80Pb0.20Se(CdTe)0.25. This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.
Collapse
Affiliation(s)
- Wenqing Yao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yihua Zhang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tu Lyu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weibo Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nuoxian Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiang Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chaohua Zhang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fusheng Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
- PGI 10 (Green IT), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Min Hong
- Center for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Lipeng Hu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Zhu Y, Yu Y, Zhang H, Qin Y, Wang ZY, Zhan S, Liu D, Lin N, Tao Y, Hong T, Wang S, Ge ZH, Wuttig M, Zhao LD. Large Mobility Enables Higher Thermoelectric Cooling and Power Generation Performance in n-type AgPb 18+xSbTe 20 Crystals. J Am Chem Soc 2023. [PMID: 37922502 DOI: 10.1021/jacs.3c09655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The room-temperature thermoelectric performance of materials underpins their thermoelectric cooling ability. Carrier mobility plays a significant role in the electronic transport property of materials, especially near room temperature, which can be optimized by proper composition control and growing crystals. Here, we grow Pb-compensated AgPb18+xSbTe20 crystals using a vertical Bridgman method. A large weighted mobility of ∼410 cm2 V-1 s-1 is achieved in the AgPb18.4SbTe20 crystal, which is almost 4 times higher than that of the polycrystalline counterpart due to the elimination of grain boundaries and Ag-rich dislocations verified by atom probe tomography, highlighting the significant benefit of growing crystals for low-temperature thermoelectrics. Due to the largely promoted weighted mobility, we achieve a high power factor of ∼37.8 μW cm-1 K-2 and a large figure of merit ZT of ∼0.6 in AgPb18.4SbTe20 crystal at 303 K. We further designed a 7-pair thermoelectric module using this n-type crystal and a commercial p-type (Bi, Sb)2Te3-based material. As a result, a high cooling temperature difference (ΔT) of ∼42.7 K and a power generation efficiency of ∼3.7% are achieved, revealing promising thermoelectric applications for PbTe-based materials near room temperature.
Collapse
Affiliation(s)
- Yingcai Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Huaide Zhang
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Yongxin Qin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zi-Yuan Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shaoping Zhan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Dongrui Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Nan Lin
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Yinghao Tao
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Tao Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Siqi Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhen-Hua Ge
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074 Aachen, Germany
| | - Li-Dong Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province (2021E10022), Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
14
|
Prabhathan P, Sreekanth KV, Teng J, Ko JH, Yoo YJ, Jeong HH, Lee Y, Zhang S, Cao T, Popescu CC, Mills B, Gu T, Fang Z, Chen R, Tong H, Wang Y, He Q, Lu Y, Liu Z, Yu H, Mandal A, Cui Y, Ansari AS, Bhingardive V, Kang M, Lai CK, Merklein M, Müller MJ, Song YM, Tian Z, Hu J, Losurdo M, Majumdar A, Miao X, Chen X, Gholipour B, Richardson KA, Eggleton BJ, Sharda K, Wuttig M, Singh R. Roadmap for phase change materials in photonics and beyond. iScience 2023; 26:107946. [PMID: 37854690 PMCID: PMC10579438 DOI: 10.1016/j.isci.2023.107946] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Phase Change Materials (PCMs) have demonstrated tremendous potential as a platform for achieving diverse functionalities in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum, ranging from terahertz to visible frequencies. This comprehensive roadmap reviews the material and device aspects of PCMs, and their diverse applications in active and reconfigurable micro-nanophotonic devices across the electromagnetic spectrum. It discusses various device configurations and optimization techniques, including deep learning-based metasurface design. The integration of PCMs with Photonic Integrated Circuits and advanced electric-driven PCMs are explored. PCMs hold great promise for multifunctional device development, including applications in non-volatile memory, optical data storage, photonics, energy harvesting, biomedical technology, neuromorphic computing, thermal management, and flexible electronics.
Collapse
Affiliation(s)
- Patinharekandy Prabhathan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kandammathe Valiyaveedu Sreekanth
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yubin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Shoujun Zhang
- DELL, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
| | - Tun Cao
- DELL, School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Cosmin-Constantin Popescu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Mills
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tian Gu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuoran Fang
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Rui Chen
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Hao Tong
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang He
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Yitao Lu
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Liu
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Avik Mandal
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Yihao Cui
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Abbas Sheikh Ansari
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Viraj Bhingardive
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Myungkoo Kang
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Choon Kong Lai
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | - Moritz Merklein
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | | | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Anti-Viral Research Center, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Zhen Tian
- DELL, Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University, Tianjin 300072, China
| | - Juejun Hu
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Losurdo
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, CNR-ICMATE, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Arka Majumdar
- Department of Electrical & Computer Engineering, University of Washington, Washington, Seattle, USA
| | - Xiangshui Miao
- Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Behrad Gholipour
- Nanoscale Optics Lab, ECE Department, University of Alberta, Edmonton, Canada
| | - Kathleen A. Richardson
- CREOL, College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Benjamin J. Eggleton
- Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, New South Wales, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, New South Wales, NSW 2006, Australia
| | - Kanudha Sharda
- iScience, Cell Press, 125 London Wall, Barbican, London EC2Y 5AJ, UK
- iScience, Cell Press, RELX India Pvt Ltd., 14th Floor, Building No. 10B, DLF Cyber City, Phase II, Gurugram, Haryana 122002, India
| | - Matthias Wuttig
- Institute of Physics IA, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ranjan Singh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
15
|
Naik AA, Ertural C, Dhamrait N, Benner P, George J. A Quantum-Chemical Bonding Database for Solid-State Materials. Sci Data 2023; 10:610. [PMID: 37696882 PMCID: PMC10495449 DOI: 10.1038/s41597-023-02477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
An in-depth insight into the chemistry and nature of the individual chemical bonds is essential for understanding materials. Bonding analysis is thus expected to provide important features for large-scale data analysis and machine learning of material properties. Such chemical bonding information can be computed using the LOBSTER software package, which post-processes modern density functional theory data by projecting the plane wave-based wave functions onto an atomic orbital basis. With the help of a fully automatic workflow, the VASP and LOBSTER software packages are used to generate the data. We then perform bonding analyses on 1520 compounds (insulators and semiconductors) and provide the results as a database. The projected densities of states and bonding indicators are benchmarked on standard density-functional theory computations and available heuristics, respectively. Lastly, we illustrate the predictive power of bonding descriptors by constructing a machine learning model for phononic properties, which shows an increase in prediction accuracies by 27% (mean absolute errors) compared to a benchmark model differing only by not relying on any quantum-chemical bonding features.
Collapse
Affiliation(s)
- Aakash Ashok Naik
- Federal Institute for Materials Research and Testing, Department Materials Chemistry, Berlin, 12205, Germany
- Friedrich Schiller University Jena, Institute of Condensed Matter Theory and Solid-State Optics, Jena, 07743, Germany
| | - Christina Ertural
- Federal Institute for Materials Research and Testing, Department Materials Chemistry, Berlin, 12205, Germany
| | - Nidal Dhamrait
- Federal Institute for Materials Research and Testing, Department Materials Chemistry, Berlin, 12205, Germany
| | - Philipp Benner
- Federal Institute for Materials Research and Testing, eScience Group, Berlin, 12205, Germany
| | - Janine George
- Federal Institute for Materials Research and Testing, Department Materials Chemistry, Berlin, 12205, Germany.
- Friedrich Schiller University Jena, Institute of Condensed Matter Theory and Solid-State Optics, Jena, 07743, Germany.
| |
Collapse
|
16
|
Zhang W, Zhang H, Sun S, Wang X, Lu Z, Wang X, Wang J, Jia C, Schön C, Mazzarello R, Ma E, Wuttig M. Metavalent Bonding in Layered Phase-Change Memory Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300901. [PMID: 36995041 PMCID: PMC10214272 DOI: 10.1002/advs.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/04/2023] [Indexed: 05/27/2023]
Abstract
Metavalent bonding (MVB) is characterized by the competition between electron delocalization as in metallic bonding and electron localization as in covalent or ionic bonding, serving as an essential ingredient in phase-change materials for advanced memory applications. The crystalline phase-change materials exhibits MVB, which stems from the highly aligned p orbitals and results in large dielectric constants. Breaking the alignment of these chemical bonds leads to a drastic reduction in dielectric constants. In this work, it is clarified how MVB develops across the so-called van der Waals-like gaps in layered Sb2 Te3 and Ge-Sb-Te alloys, where coupling of p orbitals is significantly reduced. A type of extended defect involving such gaps in thin films of trigonal Sb2 Te3 is identified by atomic imaging experiments and ab initio simulations. It is shown that this defect has an impact on the structural and optical properties, which is consistent with the presence of non-negligible electron sharing in the gaps. Furthermore, the degree of MVB across the gaps is tailored by applying uniaxial strain, which results in a large variation of dielectric function and reflectivity in the trigonal phase. At last, design strategies are provided for applications utilizing the trigonal phase.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Hangming Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Suyang Sun
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiaozhe Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Zhewen Lu
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xudong Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jiang‐Jing Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Chunlin Jia
- School of MicroelectronicsState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | | | | | - En Ma
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Matthias Wuttig
- Institute of Physics IAJARA‐FITRWTH Aachen University52074AachenGermany
- Peter Grünberg Institute (PGI 10)Forschungszentrum Jülich GmbH52425JülichGermany
| |
Collapse
|
17
|
Yu Y, Zhou C, Ghosh T, Schön CF, Zhou Y, Wahl S, Raghuwanshi M, Kerres P, Bellin C, Shukla A, Cojocaru-Mirédin O, Wuttig M. Doping by Design: Enhanced Thermoelectric Performance of GeSe Alloys Through Metavalent Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300893. [PMID: 36920476 DOI: 10.1002/adma.202300893] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Indexed: 05/12/2023]
Abstract
Doping is usually the first step to tailor thermoelectrics. It enables precise control of the charge-carrier concentration and concomitant transport properties. Doping should also turn GeSe, which features an intrinsically a low carrier concentration, into a competitive thermoelectric. Yet, elemental doping fails to improve the carrier concentration. In contrast, alloying with Ag-V-VI2 compounds causes a remarkable enhancement of thermoelectric performance. This advance is closely related to a transition in the bonding mechanism, as evidenced by sudden changes in the optical dielectric constant ε∞ , the Born effective charge, the maximum of the optical absorption ε2 (ω), and the bond-breaking behavior. These property changes are indicative of the formation of metavalent bonding (MVB), leading to an octahedral-like atomic arrangement. MVB is accompanied by a thermoelectric-favorable band structure featuring anisotropic bands with small effective masses and a large degeneracy. A quantum-mechanical map, which distinguishes different types of chemical bonding, reveals that orthorhombic GeSe employs covalent bonding, while rhombohedral and cubic GeSe utilize MVB. The transition from covalent to MVB goes along with a pronounced improvement in thermoelectric performance. The failure or success of different dopants can be explained by this concept, which redefines doping rules and provides a "treasure map" to tailor p-bonded chalcogenides.
Collapse
Affiliation(s)
- Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Chongjian Zhou
- State Key Laboratory of Solidification Processing, and Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tanmoy Ghosh
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Carl-Friedrich Schön
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Yiming Zhou
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Sophia Wahl
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Mohit Raghuwanshi
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Peter Kerres
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
- PGI 10 (Green IT), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Christophe Bellin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 4 Place Jussieu, Paris, F-75005, France
| | - Abhay Shukla
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 4 Place Jussieu, Paris, F-75005, France
| | - Oana Cojocaru-Mirédin
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
- PGI 10 (Green IT), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Jülich - Aachen Research Alliance (JARA-FIT and JARA-HPC), RWTH Aachen University, 52056, Aachen, Germany
| |
Collapse
|
18
|
Wuttig M, Schön CF, Lötfering J, Golub P, Gatti C, Raty JY. Revisiting the Nature of Chemical Bonding in Chalcogenides to Explain and Design their Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208485. [PMID: 36456187 DOI: 10.1002/adma.202208485] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Indexed: 05/19/2023]
Abstract
Quantum chemical bonding descriptors have recently been utilized to design materials with tailored properties. Their usage to facilitate a quantitative description of bonding in chalcogenides as well as the transition between different bonding mechanisms is reviewed. More importantly, these descriptors can also be employed as property predictors for several important material characteristics, including optical and transport properties. Hence, these quantum chemical bonding descriptors can be utilized to tailor material properties of chalcogenides relevant for thermoelectrics, photovoltaics, and phase-change memories. Relating material properties to bonding mechanisms also shows that there is a class of materials, which are characterized by unconventional properties such as a pronounced anharmonicity, a large chemical bond polarizability, and strong optical absorption. This unusual property portfolio is attributed to a novel bonding mechanism, fundamentally different from ionic, metallic, and covalent bonding, which is called "metavalent." In the concluding section, a number of promising research directions are sketched, which explore the nature of the property changes upon changing bonding mechanism and extend the concept of quantum chemical property predictors to more complex compounds.
Collapse
Affiliation(s)
- Matthias Wuttig
- I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA FIT and JARA HPC), RWTH Aachen University, 52056, Aachen, Germany
- PGI 10 (Green IT), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Carl-Friedrich Schön
- I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany
| | - Jakob Lötfering
- I. Institute of Physics, Physics of Novel Materials, RWTH Aachen University, 52056, Aachen, Germany
| | - Pavlo Golub
- Department of Theoretical Chemistry, J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic
| | - Carlo Gatti
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", sezione di via Golgi, via Golgi 19, Milano, 20133, Italy
| | - Jean-Yves Raty
- CESAM B5, Université de Liège, Sart-Tilman, B4000, Belgium
| |
Collapse
|
19
|
Wu R, Yu Y, Jia S, Zhou C, Cojocaru-Mirédin O, Wuttig M. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nat Commun 2023; 14:719. [PMID: 36759611 PMCID: PMC9911745 DOI: 10.1038/s41467-023-36415-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Grain boundaries (GBs) play a significant role in controlling the transport of mass, heat and charge. To unravel the mechanisms underpinning the charge carrier scattering at GBs, correlative microscopy combined with local transport measurements is realized. For the PbTe material, the strength of carrier scattering at GBs depends on its misorientation angle. A concomitant change in the barrier height is observed, significantly increasing from low- to high-angle GBs. Atom probe tomography measurements reveal a disruption of metavalent bonding (MVB) at the dislocation cores of low-angle GBs, as evidenced by the abrupt change in bond-rupture behavior. In contrast, MVB is completely destroyed at high-angle GBs, presumably due to the increased Peierls distortion. The collapse of MVB is accompanied by a breakdown of the dielectric screening, which explains the enlarged GB barrier height. These findings correlate charge carrier scattering with bonding locally, promising new avenues for the design of advanced functional materials.
Collapse
Affiliation(s)
- Riga Wu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Yuan Yu
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| | - Shuo Jia
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany
| | - Chongjian Zhou
- State Key Laboratory of Solidification Processing, and Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Oana Cojocaru-Mirédin
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
| | - Matthias Wuttig
- Institute of Physics (IA), RWTH Aachen University, Sommerfeldstraße 14, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI 10), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
20
|
Lucas P, Takeda W, Pries J, Benke-Jacob J, Wuttig M. Fast crystallization below the glass transition temperature in hyperquenched systems. J Chem Phys 2023; 158:054502. [PMID: 36754790 DOI: 10.1063/5.0136306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature Tg exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting Tg value also rationalizes the presence of the pre-Tg relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub-Tg fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing).
Collapse
Affiliation(s)
- Pierre Lucas
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712, USA
| | - Wataru Takeda
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712, USA
| | - Julian Pries
- Institute of Physics IA, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Benke-Jacob
- Institute of Physics IA, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Wuttig
- Institute of Physics IA, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Jang S, Cha JE, Moon SJ, Albers JG, Seo MH, Choi YW, Kim JH. Experimental and Computational Approaches to Sulfonated Poly(arylene ether sulfone) Synthesis Using Different Halogen Atoms at the Reactive Site. MEMBRANES 2022; 12:1286. [PMID: 36557194 PMCID: PMC9785268 DOI: 10.3390/membranes12121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Engineering thermoplastics, such as poly(arylene ether sulfone), are more often synthesized using F-containing monomers rather than Cl-containing monomers because the F atom is considered more electronegative than Cl, leading to a better condensation polymerization reaction. In this study, the reaction's spontaneity improved when Cl atoms were used compared to the case using F atoms. Specifically, sulfonated poly(arylene ether sulfone) was synthesized by reacting 4,4'-dihydroxybiphenyl with two types of biphenyl sulfone monomers containing Cl and F atoms. No significant difference was observed in the structural, elemental, and chemical properties of the two copolymers based on nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and electrochemical impedance spectroscopy. However, the solution viscosity and mechanical strength of the copolymer synthesized with the Cl-terminal monomers were slightly higher than those of the copolymer synthesized with the F-terminal monomers due to higher reaction spontaneity. The first-principle study was employed to elucidate the underlying mechanisms of these reactions.
Collapse
Affiliation(s)
- Seol Jang
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Eun Cha
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
| | - Seung Jae Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Justin Georg Albers
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Winterbergstrasse 28, 01277 Dresden, Germany
| | - Min Ho Seo
- Department of Nanotechnology Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48547, Republic of Korea
| | - Young-Woo Choi
- Fuel Cell Research and Demonstration Center, Future Energy Research Division, Korea Institute of Energy Research, Daejeon 56332, Republic of Korea
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|