1
|
Luo Z, Qiu H, Peng X, Tan Q, Chen B, Gu Q, Liu H, Zhou H. Development of potent inhibitors targeting bacterial prolyl-tRNA synthetase through fluorine scanning-directed activity tuning. Eur J Med Chem 2025; 291:117647. [PMID: 40253792 DOI: 10.1016/j.ejmech.2025.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
As essential enzymes encoded by single genes, aminoacyl-tRNA synthetases (aaRSs) have long been considered promising drug targets for combating microbial infections. In this study, we developed a novel class of amino acid-ATP dual-site inhibitors of prolyl-tRNA synthetase (ProRS) through the structural simplification of the intermediate product prolyl adenylate and its non-hydrolyzable mimic. The co-crystal structures of the compound PAA-5 bound to both Pseudomonas aeruginosa and human cytoplasmic ProRSs (PaProRS and HsPrors) were solved to high resolution. Utilizing the structural information gained, a fluorine scanning (F-scanning) strategy was applied to PAA-5, and the biochemical and biophysical assays demonstrated that fluorine substitutions at specific positions of PAA-5 selectively enhanced its activity against bacterial ProRS. The dual-fluorinated derivative PAA-38 exhibited the highest antibacterial potency, with a Kd value of 0.399 ± 0.074 nM and an IC50 value of 4.97 ± 0.98 nM against PaProRS and an MIC value of 4-8 μg mL-1 against tested bacterial strains. Our study provides a novel lead compound for the development of aaRS-based antibiotics and highlights F-scanning as a powerful strategy for lead optimization, particularly in pinpointing the subtle fluorophilic environments within the protein pocket to achieve better activity and selectivity.
Collapse
Affiliation(s)
- Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haipeng Qiu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoying Peng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Tan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongwei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, China.
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Fenwick MK, Mayclin SJ, Seibold S, DeRocher AE, Subramanian S, Phan IQ, Dranow DM, Lorimer DD, Abramov AB, Choi R, Hewitt SN, Edwards TE, Bullard JM, Battaile KP, Wower IK, Soe AC, Tsutakawa SE, Lovell S, Myler PJ, Wower J, Staker BL. Architecture of Pseudomonas aeruginosa glutamyl-tRNA synthetase defines a subfamily of dimeric class Ib aminoacyl-tRNA synthetases. Proc Natl Acad Sci U S A 2025; 122:e2504757122. [PMID: 40343997 DOI: 10.1073/pnas.2504757122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
The aminoacyl-tRNA synthetases (AaRSs) are an ancient family of structurally diverse enzymes that are divided into two major classes. The functionalities of most AaRSs are inextricably linked to their oligomeric states. While GluRSs were previously classified as monomers, the current investigation reveals that the form expressed in Pseudomonas aeruginosa is a rotationally pseudosymmetrical homodimer featuring intersubunit tRNA binding sites. Both subunits display a highly bent, "pipe strap" conformation, with the anticodon binding domain directed toward the active site. The tRNA binding sites are similar in shape to those of the monomeric GluRSs, but are formed through an approximately 180-degree rotation of the anticodon binding domains and dimerization via the anticodon and D-arm binding domains. As a result, each anticodon binding domain is poised to recognize the anticodon loop of a tRNA bound to the adjacent protomer. Additionally, the anticodon binding domain has an α-helical C-terminal extension containing a conserved lysine-rich consensus motif positioned near the predicted location of the acceptor arm, suggesting dual functions in tRNA recognition. The unique architecture of PaGluRS broadens the structural diversity of the GluRS family, and member synthetases of all bacterial AaRS subclasses have now been identified that exhibit oligomerization.
Collapse
Affiliation(s)
- Michael K Fenwick
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Stephen J Mayclin
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Union Chimique Belge/Beryllium Discovery, Bainbridge Island, WA 98110
| | - Steve Seibold
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047
| | - Amy E DeRocher
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Union Chimique Belge/Beryllium Discovery, Bainbridge Island, WA 98110
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Union Chimique Belge/Beryllium Discovery, Bainbridge Island, WA 98110
| | - Ariel B Abramov
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
| | - Stephen Nakazawa Hewitt
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Union Chimique Belge/Beryllium Discovery, Bainbridge Island, WA 98110
| | - James M Bullard
- Chemistry Department, The University of Texas-Pan American, Edinburg, TX 78539
| | | | - Iwona K Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849
| | - Aimee C Soe
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS 66047
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Biomedical Information and Medical Education, University of Washington, Seattle, WA 98195
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL 36849
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle Children's Research Institute, Seattle, WA 98109
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| |
Collapse
|
3
|
Kant S, Nithin C, Mukherjee S, Maity A, Bahadur RP. Protein-RNA Docking Benchmark v3.0 Integrated With Binding Affinity. Proteins 2025. [PMID: 40202108 DOI: 10.1002/prot.26825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
We introduce an updated non-redundant protein-RNA docking benchmark version 3.0 (PRDBv3.0) containing 197 test cases curated from 288 unique protein-RNA complexes available in the Protein Data Bank until July 2024. Among these, 27 are unbound-unbound (UU) type where both the binding partners are available in their unbound states, 160 are unbound-bound (UB) type where only the protein is available in unbound state and remaining 10 are bound-unbound (BU) type where only the RNA is available in unbound state. The benchmark is categorized into three classes based on the conformational flexibility of the protein interface: 117 rigid-body (R) complexes with minimal structural changes, 41 semi-flexible (S) complexes showing moderate conformational changes and 29 full-flexible (F) complexes with significant conformational changes. The current benchmark represents a 62% increase in the number of test cases compared to its previous version. Binding affinity (Kd) values for a subset of 105 protein-RNA complexes from PRDBv3.0 are catalogued along with additional experimental details to develop a comprehensive protein-RNA affinity benchmark. Moreover, a total of 255 unique RNA-binding domains, present in RNA-binding proteins, are also catalogued in this updated benchmark. PRDBv3.0 will facilitate the evaluation of both rigid-body and flexible docking methods as well as the methods that aim to predict binding affinity. The updated benchmark is freely available at http://www.csb.iitkgp.ac.in/applications/PRDBv3/PRDBv3.php.
Collapse
Affiliation(s)
- Shri Kant
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandran Nithin
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Atanu Maity
- Bioinformatics Center, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
- Bioinformatics Center, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Gade P, Chang C, Pryde DS, Fletcher D, Niven S, Magalhaes LG, Robinson D, Saini J, Ibrahim PEGF, Forte B, Wower J, Bodkin MJ, Baragaña B, Gilbert IH, Michalska K, Joachimiak A. Different chemical scaffolds bind to L-phe site in Mycobacterium tuberculosis Phe-tRNA synthetase. Eur J Med Chem 2025; 287:117335. [PMID: 39919438 DOI: 10.1016/j.ejmech.2025.117335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mt), is one of the deadliest infectious diseases. The rise of multidrug-resistant strains represents a major public health threat, requiring new therapeutic options. Bacterial aminoacyl-tRNA synthetases (aaRS) have been shown to be highly promising drug targets, including for TB treatment. These enzymes play an essential role in translating the DNA gene code into protein sequence by attaching specific amino acid to their cognate tRNAs. They have multiple binding sites that can be targeted for inhibitor discovery: amino acid binding pocket, ATP binding pocket, tRNA binding site and an editing domain. Recently we reported several high-resolution structures of M. tuberculosis phenylalanyl-tRNA synthetase (MtPheRS) complexed with tRNAPhe and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. Here, using Nucleic Magnetic Resonance (NMR) and Surface Plasmon Resonance (SPR) we identified fragments that bind to MtPheRS and we determined crystal structures of their complexes with MtPheRS/tRNAPhe. All the binders interact with the L-Phe amino acid binding site. The analysis of interactions of the new compounds combined with adenylate analog structure provides insights for the rational design of anti-tuberculosis drugs. The 3' arm of the tRNAPhe in all the structures was disordered with exception of one complex with D-735 compound. In this structure the 3' CCA end of the acceptor stem is observed in the editing domain of MtPheRS providing insights regarding the post-transfer editing activity of class II aaRS.
Collapse
Affiliation(s)
- Priyanka Gade
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Changsoo Chang
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Denise S Pryde
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Daniel Fletcher
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Sarah Niven
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Luma Godoy Magalhaes
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - David Robinson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jagmohan Saini
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Peter E G F Ibrahim
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Barbara Forte
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jacek Wower
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael J Bodkin
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Karolina Michalska
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60367, USA.
| |
Collapse
|
5
|
Carter CW, Tang GQ, Patra SK, Betts L, Dieckhaus H, Kuhlman B, Douglas J, Wills PR, Bouckaert R, Popovic M, Ditzler MA. WITHDRAWN: Structural Enzymology, Phylogenetics, Differentiation, and Symbolic Reflexivity at the Dawn of Biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628912. [PMID: 39763899 PMCID: PMC11702779 DOI: 10.1101/2024.12.17.628912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This manuscript was posted without the final consent of all authors. The authors have therefore withdrawn it. The authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author, carter@med.unc.edu .
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
| | - Henry Dieckhaus
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jordan Douglas
- Department of Physics, Auckland University, Auckland, NZ
- Department of Computer Science, Auckland University, Auckland, NZ
| | - Peter R. Wills
- Department of Physics, Auckland University, Auckland, NZ
| | - Remco Bouckaert
- Department of Computer Science, Auckland University, Auckland, NZ
| | | | | |
Collapse
|
6
|
Chen B, Yi F, Luo Z, Lu F, Liu H, Luo S, Gu Q, Zhou H. The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition. Nat Commun 2024; 15:10817. [PMID: 39738040 PMCID: PMC11685878 DOI: 10.1038/s41467-024-55183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNAIle from tRNAMet solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS). ScIleRS utilizes a eukaryotic/archaeal-specific arginine as the H-bond donor to recognize the common carbonyl group (H-bond acceptor) of various N34s of tRNAIle, which induces mutual structural adaptations between ScIleRS and tRNAIle to achieve a preferable editing state. C34 of unmodified tRNAIle(CAU) (behaves like tRNAMet) lacks a relevant H-bond acceptor, which disrupts key H-bonding interactions and structural adaptations and suspends the ScIleRS·tRNAIle(CAU) complex in an initial non-reactive state. This wobble nucleotide recognition-based structural adaptation provides mechanistic insights into selective tRNA aminoacylation by AARSs.
Collapse
Affiliation(s)
- Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Yi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feihu Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongwei Liu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, China
| | - Siting Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Luo Z, Su J, Luo S, Ju Y, Chen B, Gu Q, Zhou H. Structure-guided inhibitor design targeting CntL provides the first chemical validation of the staphylopine metallophore system in bacterial metal acquisition. Eur J Med Chem 2024; 280:116991. [PMID: 39442338 DOI: 10.1016/j.ejmech.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
To survive in the metal-scarce environment within the host, pathogens synthesize various small molecular metallophores to facilitate the acquisition of transition metals. The cobalt and nickel transporter (Cnt) system synthesizes and transports staphylopine, a nicotianamine-like metallophore, and serves as a primary transition metal uptake system in Gram-positive bacteria including the human pathogen Staphylococcus aureus. In this study, we report the design of the first inhibitor of the Cnt system by targeting the key aminobutanoyltransferase CntL which is involved in the biosynthesis of staphylopine. Through structure-guided fragment linking and optimization, a class of acceptor-adenosine dual-site inhibitors against S. aureus CntL (SaCntL) were designed and synthesized. The most potent inhibitor, compound 9, demonstrated a ΔTm value of 9.4 °C, a Kd value of 0.021 ± 0.004 μM, and an IC50 value of 0.06 μM against SaCntL. The detailed mechanism by which compound 9 inhibits SaCntL has been elucidated through a high-resolution co-crystal structure. Treatment with compound 9 resulted in a moderate downregulation of intracellular concentrations of iron, nickel, and cobalt ions in the S. aureus cells cultured in the metal-scarce medium, providing the first chemical validation of the important role of Cnt system in bacterial metal acquisition. Our findings pave the way for the development of CntL-based antibacterial agents in future.
Collapse
Affiliation(s)
- Zhiteng Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingtian Su
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siting Luo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingchen Ju
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingyi Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiong Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huihao Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Patra S, Douglas J, Wills P, Betts L, Qing T, Carter C. A genomic database furnishes minimal functional glycyl-tRNA synthetases homologous to other, designed class II urzymes. Nucleic Acids Res 2024; 52:13305-13324. [PMID: 39494520 PMCID: PMC11602164 DOI: 10.1093/nar/gkae992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
The hypothesis that conserved core catalytic sites could represent ancestral aminoacyl-tRNA synthetases (AARS) drove the design of functional TrpRS, LeuRS, and HisRS 'urzymes'. We describe here new urzymes detected in the genomic record of the arctic fox, Vulpes lagopus. They are homologous to the α-subunit of bacterial heterotetrameric Class II glycyl-tRNA synthetase (GlyRS-B) enzymes. AlphaFold2 predicted that the N-terminal 81 amino acids would adopt a 3D structure nearly identical to our designed HisRS urzyme (HisCA1). We expressed and purified that N-terminal segment and the spliced open reading frame GlyCA1-2. Both exhibit robust single-turnover burst sizes and ATP consumption rates higher than those previously published for HisCA urzymes and comparable to those for LeuAC and TrpAC. GlyCA is more than twice as active in glycine activation by adenosine triphosphate as the full-length GlyRS-B α2 dimer. Michaelis-Menten rate constants for all three substrates reveal significant coupling between Exon2 and both substrates. GlyCA activation favors Class II amino acids that complement those favored by HisCA and LeuAC. Structural features help explain these results. These minimalist GlyRS catalysts are thus homologous to previously described urzymes. Their properties reinforce the notion that urzymes may have the requisite catalytic activities to implement a reduced, ancestral genetic coding alphabet.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
- Centre for Computational Evolution, University of Auckland, 1010, New Zealand
| | - Peter R Wills
- Department of Physics, The University of Auckland, Auckland 1042, New Zealand
| | - Laurie Betts
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Tang Guo Qing
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
9
|
Di Giulio M. The polyphyletic origins of glycyl-tRNA synthetase and lysyl-tRNA synthetase and their implications. Biosystems 2024; 244:105287. [PMID: 39127441 DOI: 10.1016/j.biosystems.2024.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.
Collapse
Affiliation(s)
- Massimo Di Giulio
- The Ionian School, Early Evolution of Life Department, Genetic Code and tRNA Origin Laboratory, Via Roma 19, 67030, Alfedena, L'Aquila, Italy.
| |
Collapse
|
10
|
Alvarez‐Carreño C, Arciniega M, Ribas de Pouplana L, Petrov AS, Hernández‐González A, Dimas‐Torres J, Valencia‐Sánchez MI, Williams LD, Torres‐Larios A. Common evolutionary origins of the bacterial glycyl tRNA synthetase and alanyl tRNA synthetase. Protein Sci 2023; 33:e4844. [PMID: 38009704 PMCID: PMC10895455 DOI: 10.1002/pro.4844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) establish the genetic code. Each aaRS covalently links a given canonical amino acid to a cognate set of tRNA isoacceptors. Glycyl tRNA aminoacylation is unusual in that it is catalyzed by different aaRSs in different lineages of the Tree of Life. We have investigated the phylogenetic distribution and evolutionary history of bacterial glycyl tRNA synthetase (bacGlyRS). This enzyme is found in early diverging bacterial phyla such as Firmicutes, Acidobacteria, and Proteobacteria, but not in archaea or eukarya. We observe relationships between each of six domains of bacGlyRS and six domains of four different RNA-modifying proteins. Component domains of bacGlyRS show common ancestry with (i) the catalytic domain of class II tRNA synthetases; (ii) the HD domain of the bacterial RNase Y; (iii) the body and tail domains of the archaeal CCA-adding enzyme; (iv) the anti-codon binding domain of the arginyl tRNA synthetase; and (v) a previously unrecognized domain that we call ATL (Ancient tRNA latch). The ATL domain has been found thus far only in bacGlyRS and in the universal alanyl tRNA synthetase (uniAlaRS). Further, the catalytic domain of bacGlyRS is more closely related to the catalytic domain of uniAlaRS than to any other aminoacyl tRNA synthetase. The combined results suggest that the ATL and catalytic domains of these two enzymes are ancestral to bacGlyRS and uniAlaRS, which emerged from common protein ancestors by bricolage, stepwise accumulation of protein domains, before the last universal common ancestor of life.
Collapse
Affiliation(s)
- Claudia Alvarez‐Carreño
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Marcelino Arciniega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaCataloniaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaCataloniaSpain
| | - Anton S. Petrov
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Adriana Hernández‐González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Jorge‐Uriel Dimas‐Torres
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Marco Igor Valencia‐Sánchez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Present address:
Department of Biochemistry and Molecular PharmacologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Loren Dean Williams
- NASA Center for the Origin of LifeGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Alfredo Torres‐Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
11
|
Biela A, Hammermeister A, Kaczmarczyk I, Walczak M, Koziej L, Lin TY, Glatt S. The diverse structural modes of tRNA binding and recognition. J Biol Chem 2023; 299:104966. [PMID: 37380076 PMCID: PMC10424219 DOI: 10.1016/j.jbc.2023.104966] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.
Collapse
Affiliation(s)
- Anna Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Igor Kaczmarczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Lukasz Koziej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
12
|
Nagato Y, Yamashita S, Ohashi A, Furukawa H, Takai K, Tomita K, Tomikawa C. Mechanism of tRNA recognition by heterotetrameric glycyl-tRNA synthetase from lactic acid bacteria. J Biochem 2023; 174:291-303. [PMID: 37261968 PMCID: PMC10464925 DOI: 10.1093/jb/mvad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Glycyl-tRNA synthetases (GlyRSs) have different oligomeric structures depending on the organisms. While a dimeric α2 GlyRS species is present in archaea, eukaryotes and some eubacteria, a heterotetrameric α2β2 GlyRS species is found in most eubacteria. Here, we present the crystal structure of heterotetrameric α2β2 GlyRS, consisting of the full-length α and β subunits, from Lactobacillus plantarum (LpGlyRS), gram-positive lactic bacteria. The α2β2LpGlyRS adopts the same X-shaped structure as the recently reported Escherichia coli α2β2 GlyRS. A tRNA docking model onto LpGlyRS suggests that the α and β subunits of LpGlyRS together recognize the L-shaped tRNA structure. The α and β subunits of LpGlyRS together interact with the 3'-end and the acceptor region of tRNAGly, and the C-terminal domain of the β subunit interacts with the anticodon region of tRNAGly. The biochemical analysis using tRNA variants showed that in addition to the previously defined determinants G1C72 and C2G71 base pairs, C35, C36 and U73 in eubacterial tRNAGly, the identification of bases at positions 4 and 69 in tRNAGly is required for efficient glycylation by LpGlyRS. In this case, the combination of a purine base at Position 4 and a pyrimidine base at Position 69 in tRNAGly is preferred.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Azusa Ohashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Haruyuki Furukawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|