1
|
Wang P, Guo S, Xu Y, Yuan X, Tian Y, Xu B, Zhao Z, Wang Y, Li J, Wang X, Liu Z. Upcycling Spent Cathodes from Li-Ion Batteries into a High-Entropy Alloy Catalyst with Reverse Electron Transfer for Li-O 2 Batteries. ACS NANO 2025; 19:17589-17605. [PMID: 40304599 DOI: 10.1021/acsnano.5c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Traditional recovery of valuable metals from spent ternary lithium-ion batteries concentrates on complicated pyrometallurgy and hydrometallurgy routes. Direct reutilization of these valuable used metals to catalyze Li-O2 batteries is highly appealing yet remains a significant challenge. Here, we report a general synthesis of ultrafine αNiCoMn (α = Pt, Ir, Ru) high-entropy alloy (HEA) nanoparticles anchored on a nitrogen-doped carbon (N-C) support through a facile one-step Joule heating, which serves as a high-efficiency catalyst for Li-O2 batteries. Solution alloying of recycled NiCoMn with Pt group metals facilitates catalytic efficiency through 3d-5d electronic interactions and the high-entropy assembly effect. Both experimental and calculation results reveal that, driven by rapid, nonequilibrium thermal shock, electron transfer defies conventional expectations, where the electrons are inclined to transfer from the higher electronegative Pt to the surrounding NiCoMn atoms. This interesting reverse local charge redistribution and orbital hybridization endow Pt with an elevated d-band center and an optimized electronic structure. The induced high-entropy coordination effects further generate highly active catalysis surfaces, favoring the adsorption of LiO2 intermediates and facilitating rapid decomposition kinetics of nanoscale Li2O2 products. These advantages endow Pt HEA@N-C with superior bifunctional catalytic activity, achieving an ultralow polarization of 0.27 V and a significantly enhanced cycling life of 240 cycles. We anticipate that this work will provide further insights into upcycling spent valuable metals for constructing efficient HEA electrocatalysts.
Collapse
Affiliation(s)
- Peng Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Shan Guo
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Yongbin Xu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Xinyi Yuan
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Yu Tian
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Binchao Xu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Zhijun Zhao
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Yuxiao Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Jianwei Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Xiaojun Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao 266061, PR China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
2
|
Kang F, Zhang Y, Chen Z, Bai Z, Gu Q, Yang J, Liu Q, Ren Y, Lee CS, Zhang Q. Umpolung of a covalent organic framework for high-performance cathodic sodium ion storage. Chem Sci 2025; 16:7711-7719. [PMID: 40177313 PMCID: PMC11960781 DOI: 10.1039/d5sc01195g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025] Open
Abstract
The rational design of electrode materials to modify their intrinsic electronic states effectively enhances the performance of rechargeable batteries. Herein, an umpolung strategy is implemented in preparing a polyimide-linked COF (CityU-47) through a polar inversion of the typical p-type triphenylamine (TPA) with a multi-carbonyl-contained n-type azatriangulenetrione (ATTO). This strategy can substantially decrease the energy level of the lowest unoccupied molecular orbital (LUMO), thereby increasing the potential for operation as a cathode material. Alongside increased specific capacity, an improved overall performance in sodium-ion batteries (SIBs) is achieved. Specifically, CityU-47 provides a high capacity of 286.31 mA h g-1 at a current density of 0.1 A g-1, and a cycle capacity of 210 mA h g-1 at 2 A g-1 over 1800 cycles is also achieved. This research offers fresh perspectives on enhancing battery performance, underscoring the importance of regulating electron structures at the atomic level.
Collapse
Affiliation(s)
- Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Yuchan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Zhaowen Bai
- Department of Physics, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong Hong Kong SAR 999077 P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen Guangdong Province 518057 P. R. China
| |
Collapse
|
3
|
Sun Y, Duan W, Wang J, Sun P, Zhuang Y, Li Z. A novel fully conjugated COF adorned on 3D-G to boost the "D-π-A" electron regulation in oxygen catalysis performance. Chem Sci 2025:d5sc02082d. [PMID: 40336990 PMCID: PMC12053216 DOI: 10.1039/d5sc02082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/20/2025] [Indexed: 05/09/2025] Open
Abstract
Covalent organic frameworks (COFs) are promising materials for oxygen catalysis. Here, a novel, highly stable, conjugated two-dimensional poly(benzimidazole porphyrin-cobalt) (PBIPorCo) with a large delocalization energy is synthesized using meso-5,10,15,20-tetra (4-cyano-phenylporphyrin) cobalt (TCNPorCo) and 3,3'-diaminobenzidine (DAB). The decrease in energy between the HOMO and LUMO orbitals of PBIPorCo could enhance the capability for the gain and loss of electrons during the catalytic process. In a nitrogen-rich environment, a benzimidazole (BI) group can transfer electrons to the Co-N4 site and enhance the protonation process in the oxygen reduction reaction (ORR). The π-π interactions between PBIPorCo and three-dimensional graphene (3D-G) form an "electron donor-π-electron acceptor" structure to boost the bifunctional oxygen catalysis process. PBIPorCo/3D-G exhibits outstanding bifunctional oxygen catalytic performance (ΔE = 0.62 V) and outstanding performance in zinc-air batteries. It exhibits satisfactory potential for application in fuel cells (FCs) and overall water splitting (OWS). This work presents a promising strategy for the design of novel COFs as bifunctional oxygen catalysts.
Collapse
Affiliation(s)
- Yinggang Sun
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| | - Wenjie Duan
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| | - Jigang Wang
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| | - Peng Sun
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| | - Yanqiong Zhuang
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| | - Zhongfang Li
- College of Chemistry and Chemical Engineering, Shandong University of Science and Technology Zibo 255000 Shandong P. R. China
| |
Collapse
|
4
|
Zhang Z, Wang M, Xing HR, Zhou X, Gao L, Chen S, Chen Y, Xu H, Li W, Yuan S, Li CH, Jin Z, Zuo JL. Efficient Ammonia Electrosynthesis from Pure Nitrate Reduction via Tuning Bimetallic Sites in Redox-Active Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025:e202505580. [PMID: 40261634 DOI: 10.1002/anie.202505580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Electrocatalytic nitrate reduction reaction (NITRR) represents a promising approach for ammonia synthesis, but existing application has been constrained by the complex proton-coupled electron transfer and the sluggish kinetics induced by various intermediates. Herein, we synthesized a series of metalized covalent organic frameworks: NiTP-MTAPP MCOFs (M = 2H, Co, Cu, and Fe), based on dual redox-active centers: thiophene-substituted Ni-bis(dithiolene) ligand-Ni[C2S2(C4H2SCHO)2]2 and metallic porphyrin. Through regulating the adsorption and desorption of species at the catalytic sites, we have identified the optimal NITRR electrocatalyst: NiTP-CoTAPP MCOF, which achieved the highest faradaic efficiency (FE) of approximately 85.6% at -0.8 V (vs. RHE) in pure nitrate solution, with an impressive yield rate of 160.2 mmol h-1 g-1 cat. The generation of active hydrogen at [NiS4] sites achieved dynamic equilibrium with the timely hydrogenation reaction at CoN4 sites, effectively suppressing the hydrogen evolution reaction. Moreover, the incorporation of thiophene (TP) groups and metal ions facilitates charge transfer. Density functional theory (DFT) calculations demonstrated the reduction in energy barriers at different catalytic sites. The CoN4-NiS4 system exhibited the optimal adsorption-to-desorption capability and the lowest energy barrier (0.58 eV) for the rate-determining step (*NO → *HNO), which is supported by the moderate d-band center and Bader charge value.
Collapse
Affiliation(s)
- Zedong Zhang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Miao Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Hao-Ran Xing
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Xiaocheng Zhou
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Shizheng Chen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yinjuan Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Environmental & Safety Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Environmental & Safety Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
| | - Wei Li
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, 215163, P.R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
5
|
Zhou Y, Yin K, Huang Y, Li J, Zhu A, Lin D, Gan G, Zhang J, Liu K, Zhang T, Liu K, Luan C, Yang H, Chen H, Guo S, Zhang W, Hong G. D-orbital Reconstruction Achieves Low Charge Overpotential in Li-oxygen Batteries. Nat Commun 2025; 16:3353. [PMID: 40204732 PMCID: PMC11982333 DOI: 10.1038/s41467-025-58640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Charge overpotential for oxygen evolution reaction is a crucial parameter for the energy conversion efficiency of lithium-oxygen (Li-O2) batteries. So far, the realization of low charge overpotential via catalyst design is a grand challenge in this field, which usually exceeds 0.25 V. Herein, we report an orbital reconstruction strategy to significantly decrease the charge overpotential to the low 0.11 V by employing PdCo nanosheet catalyst under a low-loading mass (0.3 mg/cm2) and capacity (0.3 mAh/cm2). Experimental and theoretical calculations demonstrate that the precise d-d orbital coupling (dxz-dxz, dyz-dyz and dz2-dz2) between the low-electronegativity Co and Pd leads to the reconstruction of Pd 4 d orbitals in PdCo nanosheets, thereby resulting in a downward shift of all the three active Pd 4 d orbitals (dz2, dxz and dyz) relative to that of Pd nanosheets. Furthermore, the highest energy level of the Pd 4dz2 orbital in PdCo is lower than the lowest energy levels of the Pd 4dxz and 4dyz orbitals in pure Pd, significantly decreasing the charge activation energy and achieving a highest energy conversion efficiency of 91%. This finding provides the orbital-level tuning into rational design of highly efficient electrocatalysts for Li-O2 batteries.
Collapse
Affiliation(s)
- Yin Zhou
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Kun Yin
- School of Chemistry and Materials Science, Shandong Key University Laboratory of High Performance and Functional Polymer, Ludong University, Yantai, 264025, China
| | - Yingying Huang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiapei Li
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Anquan Zhu
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Dewu Lin
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guoqiang Gan
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jianfang Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Kai Liu
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Tian Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Kunlun Liu
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Chuhao Luan
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Shandong Key University Laboratory of High Performance and Functional Polymer, Ludong University, Yantai, 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Shandong Key University Laboratory of High Performance and Functional Polymer, Ludong University, Yantai, 264025, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China.
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China.
- The Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
6
|
Wen Y, He Q, Ding S, Zhou W, Deng L, Zhang L, Shen T, Yang Q, Jia P, Qiao Y. Proposing lithium pump mechanism for observing Ag-Li two-phase interface reaction of in-situ Li-O 2 battery by two-step method. J Colloid Interface Sci 2025; 683:995-1002. [PMID: 39756194 DOI: 10.1016/j.jcis.2024.12.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Silver (Ag) plays an important role as a cathode catalyst in lithium-oxygen batteries (Li-O2 batteries). However, the catalytic mechanism of Ag remains unclear. Despite efforts dedicated to studying interfacial reactions, observing efficient reactions and ion transport at the Ag-Li solid-solid interface continues to be a challenge. Here, we used Ag nanowires (Ag NWs) as working electrodes, creating a lithiation-oxidation microenvironment within spherical aberration-corrected transmission electron microscopy (ETEM) through a two-step method to investigate the reaction mechanisms at the Ag-Li interface. The lithiation process generates Ag3Li10, while the oxidation process precipitates Ag nanoparticles (Ag NPs). The alternating reactions of Ag-Ag3Li10-Ag form a cycle process, elucidating the transport pathway of Li+ at the Ag-Li solid-solid interface during discharge process and demonstrating a typical lithium pump effect. Density Functional Theory (DFT) calculations also confirm these results. This work provides novel insights into the interfacial mechanisms of Ag catalysts in Li-O2 batteries, offering valuable guidance for strategies to monitor and control complex, multi-step interfacial reactions.
Collapse
Affiliation(s)
- Yixuan Wen
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Qizhen He
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Shuaijun Ding
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Wei Zhou
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Lei Deng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Tongde Shen
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Qingxiang Yang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China
| | - Peng Jia
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China.
| | - Yuqing Qiao
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 China; Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 China.
| |
Collapse
|
7
|
Sun T, Wang Z, Wang Y, Xu Q, Wang K, Jiang J. Porphyrin-Based Covalent Organic Frameworks for CO 2 Photo/Electro-Reduction. Angew Chem Int Ed Engl 2025; 64:e202422814. [PMID: 39924727 DOI: 10.1002/anie.202422814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 02/11/2025]
Abstract
Photo/electro-catalytic CO2 reduction into high-value products are promising strategies for addressing both environmental problems and energy crisis. Duo to their advantageous visible light absorption ability, adjustable optic/electronic properties, definite active center, post-modification capability, and excellent stability, porphyrin-based covalent organic frameworks (COFs) have emerged as attractive photo/electro-catalysts towards CO2 reduction. In this review, the research progress of the porphyrin-based COFs for photo/electro-catalytic CO2 reduction is summarized including the design principles, catalytic performance, and reaction mechanism. In addition, this review also presents some challenges and prospects for the application of porphyrin-based COFs in photo/electro-catalytic CO2 reduction, laying the base for both fundamental research and application efforts.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhi Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuhui Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingmei Xu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
8
|
Liu M, Ke S, Sun C, Zhang C, Liao S. Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O 2 Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2003. [PMID: 39728540 PMCID: PMC11728555 DOI: 10.3390/nano14242003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Developing highly active and durable non-noble metal catalysts is crucial for energy conversion and storage, especially for proton exchange membrane fuel cells (PEMFCs) and lithium-oxygen (Li-O2) batteries. Non-noble metal catalysts are considered the greatest potential candidates to replace noble metal catalysts in PEMFCs and Li-O2 batteries. Herein, we propose a novel type of non-noble metal catalyst (Fe-Hf/N/C) doped with Hf into a mesoporous carbon material derived from Hf-ZIF-8 and co-doping with Fe and N, which greatly enhanced the activity and durability of the catalyst. When applied in the cathode of PEMFCs, the current density can reach up 1.1 and 1.7 A cm-2 at 0.7 and 0.6 V, respectively, with a maximum power density of 1.15 W cm-2. The discharge capacity of the Li-O2 batteries is up to 15,081 mAh g-1 with Fe-Hf/N/C in the cathode, which also shows a lower charge overpotential, 200 mV lower than that of the Fe/N/C. Additionally, the Fe-Hf/N/C catalyst has demonstrated better stability in both PEMFCs and Li-O2 batteries. This reveals that Hf can not only optimize the electronic structure of iron sites and increase the active sites for the oxygen reduction reaction, but can also anchor the active sites, enhancing the durability of the catalyst. This study provides a new strategy for the development of high-performance and durable catalysts for PEMFCs and Li-O2 batteries.
Collapse
Affiliation(s)
- Mingrui Liu
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| | - Shaoqiu Ke
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, Huangshi 435002, China
| | - Chuangqing Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (C.S.); (C.Z.)
| | - Chenzhuo Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (C.S.); (C.Z.)
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China;
| |
Collapse
|
9
|
Wu Y, Wang R, Kim Y. Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66874-66899. [PMID: 38329718 DOI: 10.1021/acsami.3c17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-atom catalysts (SACs) have been investigated and applied to energy conversion devices. However, issues of metal agglomeration, low metal loading, and substrate stability have hindered realization of the SACs' full potential. Recently, covalent organic framework (COF)-based SACs have emerged as promising materials to enable highly efficient catalytic reactions. Here, we summarize the representative COF-based SACs and their wide application in clean energy devices and conversion reactions, such as hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, oxygen reduction reaction, and oxygen evolution reaction. Based on their catalysis conditions, these reactions are categorized into photocatalyzed and electrocatalyzed reactions. We also summarize their design strategies, including heteroatom inclusion, donor-acceptor pairs, pore engineering, interface engineering, etc. Although COF-based SACs are promising, more efforts, such as linkage engineering, functional groups, ionization, multifunctional sites for cocatalyzed systems, etc., could improve them to be the ideal SAC materials. At the end, we provide our perspectives on where the field will proceed in the next 5 years.
Collapse
Affiliation(s)
- Yurong Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| |
Collapse
|
10
|
Yan X, Liu N, Liu W, Zeng J, Liu C, Chen S, Yang Y, Gui X, Yu D, Yang G, Zeng Z. Recent advances on COF-based single-atom and dual-atom sites for oxygen catalysis. Chem Commun (Camb) 2024; 60:12787-12802. [PMID: 39391942 DOI: 10.1039/d4cc03535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for the construction of single-atom and dual-atom catalysts (SACs and DACs), owing to their well-defined structures, tunable pore sizes, and abundant active sites. In recent years, the development of COF-based SACs and DACs as highly efficient catalysts has witnessed a remarkable surge. The synergistic interplay between the metal active sites and the COF has established the design and fabrication of COF-based SACs and DACs as a prominent research area in electrocatalysis. These catalytic materials exhibit promising prospects for applications in energy storage and conversion devices. This review summarizes recent advances in the design, synthesis, and applications of COF-based SACs and DACs for oxygen catalysis. The catalytic mechanisms of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are comprehensively explored, providing a comparative analysis to elucidate the correlation between the structure and performance, as well as their functional attributes in battery devices. This review highlights a promising approach for future research, emphasizing the necessity of rational design, breakthroughs, and in-situ characterization to further advance the development of high-performance COF-based SACs and DACs for sustainable energy applications.
Collapse
Affiliation(s)
- Xinru Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Wencai Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiajun Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shufen Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
11
|
Tao Y, Fan X, Yu X, Gong K, Xia Y, Gong H, Chen H, Huang X, Zhang A, Wang T, He J. Metal-Organic Framework with Dual Excitation Pathways as Efficient Bifunctional Catalyst for Photo-assisted Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403683. [PMID: 39109560 DOI: 10.1002/smll.202403683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Indexed: 11/21/2024]
Abstract
Li-O2 batteries (LOBs) have sparked significant interest due to their fascinating high theoretical energy density. However, the large overpotential for the formation and oxidation of Li2O2 during charge and discharge process seriously hinders the further development and application of LOBs. In this work, metal-organic frameworks (MOFs) with different metal clusters (Fe, Ti, Zr) are successfully synthesized, and they are employed as the photoelectrodes for the photo-assisted LOBs. The special dual excitation pathways of Fe-MOF under illumination and the superior separation efficiency of photocarriers, which significantly enhance the activation of O2/Li2O2, improving the catalytic activity of oxygen reduction reaction and oxygen evolution reaction. Moreover, compared to traditional inorganic semiconductor crystals, Fe-MOF exhibits large specific surface area and excellent O2 adsorption ability. Therefore, the LOB with Fe-MOF as the cathode exhibits large specific capacity, ultralow charge/discharge overpotential of 0.22 V at 0.05 mA cm-2 and excellent stability of 195 cycles under illumination. This study provides an environmentally friendly and highly efficient photocatalyst for LOBs, and a new strategy for designing photoelectrodes.
Collapse
Affiliation(s)
- Yinglei Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China
| | - Xingyu Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ke Gong
- Engineering Research Center of Functional Polymer Membrane Materials of Jiangsu Province, Nanjing Bready Advanced Materials Technology Co., Ltd, Nanjing, 211103, P. R. China
| | - Yujiao Xia
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Haixia Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xianli Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Aidi Zhang
- Engineering Research Center of Functional Polymer Membrane Materials of Jiangsu Province, Nanjing Bready Advanced Materials Technology Co., Ltd, Nanjing, 211103, P. R. China
| | - Tao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
12
|
Yang Y, Yao X, Xuan Z, Chen X, Zhang Y, Huang T, Shi M, Chen Y, Lan YQ. Porous crystalline conjugated macrocyclic materials and their energy storage applications. MATERIALS HORIZONS 2024; 11:3747-3763. [PMID: 38895771 DOI: 10.1039/d4mh00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Porous crystalline conjugated macrocyclic materials (CMMs) possess high porosity, tunable structure/function and efficient charge transport ability owing to their planar macrocyclic conjugated π-electron system, which make them promising candidates for applications in energy storage. In this review, we thoroughly summarize the timely development of porous crystalline CMMs in energy storage related fields. Specifically, we summarize and discuss their structures and properties. In addition, their energy storage applications, such as lithium ion batteries, lithium sulfur batteries, sodium ion batteries, potassium ion batteries, Li-CO2 batteries, Li-O2 batteries, Zn-air batteries, supercapacitors and triboelectric nanogenerators, are also discussed. Finally, we present the existing challenges and future prospects. We hope this review will inspire the development of advanced energy storage materials based on porous crystalline CMMs.
Collapse
Affiliation(s)
- Yiwen Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Xuan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xuanxu Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingjin Shi
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Sun Z, Lin X, Wang C, Tan Y, Dou W, Hu A, Cui J, Fan J, Yuan R, Zheng M, Dong Q. Constructing an Interlaced Catalytic Surface via Fluorine-Doped Bimetallic Oxides for Oxygen Electrode Processes in Li-O 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404319. [PMID: 38806164 DOI: 10.1002/adma.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Lithium-oxygen (Li-O2) batteries, renowned for their high theoretical energy density, have garnered significant interest as prime candidates for future electric device development. However, their actual capacity is often unsatisfactory due to the passivation of active sites by solid-phase discharge products. Optimizing the growth and storage of these products is a crucial step in advancing Li-O2 batteries. Here, a fluorine-doped bimetallic cobalt-nickel oxide (CoNiO2- xFx/CC) with an interlaced catalytic surface (ICS) and a corncob-like structure is proposed as an oxygen electrode. Unlike conventional oxide electrodes with a "single adsorption catalytic mechanism," the ICS of CoNiO2- xFx/CC offers a "competitive adsorption catalytic mechanism," where oxygen sites facilitate oxygen conversion while fluorine sites contribute to the growth of Li2O2. This results in a change in Li2O2 morphology from a surface film to toroidal particles, effectively preventing the burial of active sites. Additionally, the unique open architecture aids in the capture and release of oxygen and the formation of well-contacted Li2O2/electrode interfaces, which benefits the complete decomposition of Li2O2 products. Consequently, the Li-O2 battery with a CoNiO2- xFx/CC cathode demonstrates a high specific capacity of up to 30923 mAh g-1 and a lifespan exceeding 580 cycles, surpassing most reported metal oxide-based cathodes.
Collapse
Affiliation(s)
- Zongqiang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium
| | - Chutao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanyan Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ajuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiaqing Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
14
|
Su Y, Yuan G, Hu J, Zhang G, Tang Y, Chen Y, Tian Y, Wang S, Shakouri M, Pang H. Thiosalicylic-Acid-Mediated Coordination Structure of Nickel Center via Thermodynamic Modulation for Aqueous Ni-Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406094. [PMID: 38811150 DOI: 10.1002/adma.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Uniquely functional nanocomplexes with rich coordination environments are critical in energy storage. However, the construction of structurally versatile nanocomplexes remains challenging. In this study, a nickel-based complex with structural variations is designed via thermodynamic modulation using a dual-ligand synthesis strategy. A nickel-based nanomaterial (NiSA-SSA-160) with a large specific surface area is synthesized around the competing coordination of the host and guest molecules that differ in terms of the chemical properties of the O and S elements. Concurrently, the coordination environment of NiSA-SSA-160 is investigated via X-ray absorption fine structure spectroscopy. The thiol functional groups synergistically induced an electron-rich Ni structure, thus increasing the electron density of the central atom. The electrochemical performance of an assembled NiSA-SSA-160//Zn@CC battery is shown to improve significantly, with a maximum energy density of 0.54 mWh cm-2 and a peak power density of 49.49 mW cm-2. This study provides a new perspective regarding coordination transformations and offers an idea for the design of functionally rich nanomaterials.
Collapse
Affiliation(s)
- Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guoqiang Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jinliang Hu
- Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yihao Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yiluo Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
15
|
Chen Z, Fang P, Zou X, Shi Z, Zhang J, Sun Z, Guo S, Yan F. Interlayer Polymerization to Construct a Fully Conjugated Covalent Organic Framework as a Metal-Free Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401880. [PMID: 38678520 DOI: 10.1002/smll.202401880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) have a multilayer skeleton with a periodic π-conjugated molecular array, which can facilitate charge carrier transport within a COF layer. However, the lack of an effective charge carrier transmission pathway between 2D COF layers greatly limits their applications in electrocatalysis. Herein, by employing a side-chain polymerization strategy to form polythiophene along the nanochannels, a conjugated bridge is constructed between the COF layers. The as-synthesized fully conjugated COF (PTh-COF) exhibits high oxygen reduction reaction (ORR) activity with narrowed energy band gaps. Correspondingly, PTh-COF is tested as a metal-free cathode catalyst for anion exchange membrane fuel cells (AEMFCs) which showed a maximum power density of 176 mW cm-2 under a current density of 533 mA cm-2. The density functional theory (DFT) calculation reveals that interlayer conjugated polythiophene optimizes the electron cloud distribution, which therefore enhances the ORR performance. This work not only provides new insight into the construction of a fully conjugated covalent organic framework but also promotes the development of new metal-free ORR catalysts.
Collapse
Affiliation(s)
- Zhiwei Chen
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Pengda Fang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, No.111 West Changjiang Road, Huaian, 223300, China
| | - Zheng Shi
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiamin Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Siyu Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Zhong H, Jiang Z, Hu J, Chung LH, He J. 2D metal-organic frameworks bearing butterfly-shaped metal-bis(dithiolene) linkers from dithiol-functionalized benzenedicarboxylic acid. Chem Commun (Camb) 2024; 60:7578-7581. [PMID: 38953148 DOI: 10.1039/d4cc02282c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
An assembly between 1,4-dicarboxylbenzene-2,3-dithiol (H2dcbdt) and different transition metal ions successfully produced 2D metal-organic frameworks (M-dcbdt, M = Ni, Co or Fe) composed of unprecedented butterfly-shaped metal-bis(dithiolene) (MS4) linkers in one-pot fashion. Such strategy provides easier access to the [MS4]-rich network and lowers the prerequisite to explore their applications.
Collapse
Affiliation(s)
- Hao Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zhixin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
17
|
Rani S, Nadeem M, Alrahili MR, Shalash M, Bhatti MH, Munawar KS, Tariq M, Asif HM, El-Bahy ZM. Synergistic reductive catalytic effects of an organic and inorganic hybrid covalent organic framework for hydrogen fuel production. Dalton Trans 2024; 53:10875-10889. [PMID: 38874545 DOI: 10.1039/d4dt00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Electrocatalytic hydrogen generation in alkaline medium has become widely used in a variety of sectors. However, the possibility for additional performance improvement is hampered by slow kinetics. Because of this restriction, careful control over processes such as water dissociation, hydroxyl desorption and hydrogen recombination is required. Covalent organic frameworks (COFs) based on porphyrin and polyoxometalates (POMs) show encouraging electrocatalytic performance, offering a viable route for effective and sustainable hydrogen generation. Their specific architectures lead to increased electrocatalytic activity, which makes them excellent choices for developing water electrolysis as a clean energy conversion method in the alkaline medium. In this regard, TTris@ZnPor and Lindqvist POM were coordinated to create a new eco-friendly and highly active covalent organic framework (TP@VL-COF). In order to describe TP@VL-COF, extensive structural and morphological investigations were carried out through FTIR, 1H NMR, elemental analysis, SEM, fluorescence, UV-visible, PXRD, CV, N2-adsorption isotherm, TGA and DSC analyses. In an alkaline medium, the electrocatalytic capability of 20%C/Pt, TTris@ZnPor, Lindqvist POM and TP@VL-COF was explored and compared for the hydrogen evolution reaction (HER). The TP@VL-COF showed the best catalytic efficiency for HER in an alkaline electrolyte, requiring just a 75 mV overpotential to drive 10 mA cm-2 and outperforming 20%C/Pt, TTris@ZnPor, Lindqvist POM and other reported catalysts. The Tafel slope value also indicates faster kinetics for TP@VL-COF (114 mV dec-1) than for 20%C/Pt (182 mV dec-1) TTris@ZnPor (116 mV dec-1) and Lindqvist POM (125 mV dec-1).
Collapse
Affiliation(s)
- Sonia Rani
- Inorganic Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Pakistan.
| | - Muhammad Nadeem
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Mazen R Alrahili
- Physics Department, School of Science, Taibah University, Janadah Bin Umayyah Road, 42353, Medina, Saudi Arabia
| | - Marwan Shalash
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University, Arar, Saudi Arabia
| | - Moazzam H Bhatti
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha, 40100 Punjab, Pakistan
- Department of Chemistry, University of Mianwali, 42200 Punjab, Pakistan
| | - Muhammad Tariq
- Inorganic Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Pakistan.
| | - Hafiz Muhammad Asif
- Inorganic Research Laboratory, Institute of Chemical Sciences, Bahauddin Zakariya University Multan, 60800, Pakistan.
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasar City11884, Cairo, Egypt
| |
Collapse
|
18
|
Wang HY, Su J, Zuo JL. Porous Crystalline Materials Based on Tetrathiafulvalene and Its Analogues: Assembly, Charge Transfer, and Applications. Acc Chem Res 2024; 57:1851-1869. [PMID: 38902854 DOI: 10.1021/acs.accounts.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials. In fact, porous crystalline materials with coordination bonds, which inherit the merits of both organic and inorganic materials, already showcase their superior advantages in optical, electrical, and magnetic applications. In addition to the inorganic components that provide structural rigidity, organic ligands of various types serve as crucial connectors in the construction of functional porous crystalline materials. In addition, redox activity can endow organic linkers with electrochemical activity, thereby making them a perfect platform for the study of charge transfer with atom-resolved single-crystal structures, and they can additionally serve as stimuli-responsive sites in sensor devices and smart materials.In this Account, we introduce the synthesis, structural characteristics, and applications of porous crystalline materials based on the famous redox-active units, tetrathiafulvalene (TTF) and its analogues, by primarily focusing on metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). TTF, a sulfur-rich conjugated molecule with two reversible and easily accessible oxidation states (i.e., radical TTF•+ cation and TTF2+ dication), and its analogues boast special electrical characteristics that enable them to display switchable redox activity and stimuli-responsive properties. These inherent properties contribute to the enhancement of the optical, electrical, and magnetic characteristics of the resultant porous crystalline materials. Moreover, delving into the charge transfer phenomena, which is key for the electrochemical process within these materials, uncovers a myriad of potential functional applications. The Account is organized into five main sections that correspond to the different properties and applications of these materials: optical, electrical, and magnetic functionalities; energy storage and conversion; and catalysis. Each section provides detailed discussions of synthetic methods, structural characteristics, the physical and chemical properties, and the functional performances of highlighted examples. The Account also discusses future directions by emphasizing the exploration of novel organic units, the transformation between radical cation TTF•+ and dication TTF2+, and the integration of multifunctionalities within these frameworks to foster the development of smart materials for enhanced performance across diverse applications. Through this Account, we aim to highlight the massive potential of TTF and its analogues-based porous crystals in chemistry and material science.
Collapse
Affiliation(s)
- Hai-Ying Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
20
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
21
|
Wang Y, Sun Y, Wu F, Zou G, Gaumet JJ, Li J, Fernandez C, Wang Y, Peng Q. Nitrogen-Anchored Boridene Enables Mg-CO 2 Batteries with High Reversibility. J Am Chem Soc 2024; 146:9967-9974. [PMID: 38441882 DOI: 10.1021/jacs.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Nanoscale defect engineering plays a crucial role in incorporating extraordinary catalytic properties in two-dimensional materials by varying the surface groups or site interactions. Herein, we synthesized high-loaded nitrogen-doped Boridene (N-Boridene (Mo4/3(BnN1-n)2-mTz), N-doped concentration up to 26.78 at %) nanosheets by chemical exfoliation followed by cyanamide intercalation. Three different nitrogen sites are observed in N-Boridene, wherein the site of boron vacancy substitution mainly accounts for its high chemical activity. Attractively, as a cathode for Mg-CO2 batteries, it delivers a long-term lifetime (305 cycles), high-energy efficiency (93.6%), and ultralow overpotential (∼0.09 V) at a high current of 200 mA g-1, which overwhelms all Mg-CO2 batteries reported so far. Experimental and computational studies suggest that N-Boridene can remarkably change the adsorption energy of the reaction products and lower the energy barrier of the rate-determining step (*MgCO2 → *MgCO3·xH2O), resulting in the rapid reversible formation/decomposition of new MgCO3·5H2O products. The surging Boridene materials with defects provide substantial opportunities to develop other heterogeneous catalysts for efficient capture and converting of CO2.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yong Sun
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fengqi Wu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jean-Jacques Gaumet
- Laboratoire de Chimie et Physique, Approche Multi-échelles des Milieux Complexes, Institute Jean Barriol, Université de Lorraine, Metz 57070, France
| | - Jinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB107GJ, U.K
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
22
|
Lv S, Ma X, Ke S, Wang Y, Ma T, Yuan S, Jin Z, Zuo JL. Metal-Coordinated Covalent Organic Frameworks as Advanced Bifunctional Hosts for Both Sulfur Cathodes and Lithium Anodes in Lithium-Sulfur Batteries. J Am Chem Soc 2024; 146:9385-9394. [PMID: 38512124 DOI: 10.1021/jacs.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS4-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS4-TAPT can greatly enhance the adsorption and conversion of the polysulfides. Meanwhile, the presence of Ni-bis(dithiolene) centers enables uniform Li nucleation at the Li anode, thereby suppressing the growth of Li dendrites. This work demonstrated the effectiveness of integrating catalytic and adsorption sites to optimize the chemical interactions between host materials and redox-active intermediates, potentially facilitating the rational design of metal-coordinated COF materials for high-performance secondary batteries.
Collapse
Affiliation(s)
- Sen Lv
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingkai Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siwen Ke
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yaoda Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tianrui Ma
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Sun J, Wang X, Wang Q, Peng L, Liu Y, Wei D. Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks. Nat Protoc 2024; 19:340-373. [PMID: 38001366 DOI: 10.1038/s41596-023-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/11/2023] [Indexed: 11/26/2023]
Abstract
Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.
Collapse
Affiliation(s)
- Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Li X, Qiang Z, Han G, Guan S, Zhao Y, Lou S, Zhu Y. Enhanced Redox Electrocatalysis in High-Entropy Perovskite Fluorides by Tailoring d-p Hybridization. NANO-MICRO LETTERS 2023; 16:55. [PMID: 38108921 PMCID: PMC10728038 DOI: 10.1007/s40820-023-01275-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
High-entropy catalysts featuring exceptional properties are, in no doubt, playing an increasingly significant role in aprotic lithium-oxygen batteries. Despite extensive effort devoted to tracing the origin of their unparalleled performance, the relationships between multiple active sites and reaction intermediates are still obscure. Here, enlightened by theoretical screening, we tailor a high-entropy perovskite fluoride (KCoMnNiMgZnF3-HEC) with various active sites to overcome the limitations of conventional catalysts in redox process. The entropy effect modulates the d-band center and d orbital occupancy of active centers, which optimizes the d-p hybridization between catalytic sites and key intermediates, enabling a moderate adsorption of LiO2 and thus reinforcing the reaction kinetics. As a result, the Li-O2 battery with KCoMnNiMgZnF3-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability, preceding majority of traditional catalysts reported. These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst.
Collapse
Affiliation(s)
- Xudong Li
- Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai, 264209, People's Republic of China
| | - Zhuomin Qiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Guokang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Shuyun Guan
- Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai, 264209, People's Republic of China
| | - Yang Zhao
- Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai, 264209, People's Republic of China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yongming Zhu
- Department of Applied Chemistry, Harbin Institute of Technology at Weihai, Weihai, 264209, People's Republic of China.
| |
Collapse
|
25
|
Li W, Sheng C, Wang L, Sun X, Mu X, He P, Zhou H. Bifunctional electrolyte additive MgI 2 for improving cycle life in high-efficiency redox-mediated Li-O 2 batteries. Chem Commun (Camb) 2023; 59:10141-10144. [PMID: 37528745 DOI: 10.1039/d3cc02847j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Here, MgI2 is introduced as a bifunctional self-defense redox mediator into dimethyl sulfoxide-based Li-O2 batteries. During charging, I- is first oxidized to I3-, which facilitates the decomposition of Li2O2, and thus reduces overpotential. In addition, Mg2+ spontaneously reacts with the Li anode to form a very stable SEI layer containing MgO, which can resist the synchronous attack by the soluble I3- and improve the interface stability between the Li anode and the electrolyte. Therefore, a Li-O2 battery containing MgI2 exhibits an extended cycling life span (400 cycles) and a quite low overpotential (0.6 V).
Collapse
Affiliation(s)
- Wei Li
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Chuanchao Sheng
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Lei Wang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Xinyi Sun
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Xiaowei Mu
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|