1
|
Fiorello I, Liu Y, Kamare B, Meder F. Harnessing chemistry for plant-like machines: from soft robotics to energy harvesting in the phytosphere. Chem Commun (Camb) 2025; 61:6246-6259. [PMID: 40177903 PMCID: PMC11966601 DOI: 10.1039/d4cc06661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Nature, especially plants, can inspire scientists and engineers in the development of bioinspired machines able to adapt and interact with complex unstructured environments. Advances in manufacturing techniques, such as 3D printing, have expanded the range of materials and structures that can be fabricated, enabling better adaptation to specific applications and closer mimicking of natural systems. Furthermore, biohybrid systems-integrating plant-based or living materials-are getting attention for their ability to introduce functionalities not possible with purely synthetic materials. This joint feature article reviews and highlights recent works of two groups in microfabrication and plant-inspired robotics as well as plant-hybrid systems for energy conversion with applications in soft robotics to environmental sensing, reforestation, and autonomous drug-delivery in plant tissue.
Collapse
Affiliation(s)
- Isabella Fiorello
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Yuanquan Liu
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Behnam Kamare
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| | - Fabian Meder
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
3
|
Karacakol AC, Alapan Y, Demir SO, Sitti M. Data-driven design of shape-programmable magnetic soft materials. Nat Commun 2025; 16:2946. [PMID: 40140409 PMCID: PMC11947188 DOI: 10.1038/s41467-025-58091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Magnetically responsive soft materials with spatially-encoded magnetic and material properties enable versatile shape morphing for applications ranging from soft medical robots to biointerfaces. Although high-resolution encoding of 3D magnetic and material properties create a vast design space, their intrinsic coupling makes trial-and-error based design exploration infeasible. Here, we introduce a data-driven strategy that uses stochastic design alterations guided by a predictive neural network, combined with cost-efficient simulations, to optimize distributed magnetization profile and morphology of magnetic soft materials for desired shape-morphing and robotic behaviors. Our approach uncovers non-intuitive 2D designs that morph into complex 2D/3D structures and optimizes morphological behaviors, such as maximizing rotation or minimizing volume. We further demonstrate enhanced jumping performance over an intuitive reference design and showcase fabrication- and scale-agnostic, inherently 3D, multi-material soft structures for robotic tasks including traversing and jumping. This generic, data-driven framework enables efficient exploration of design space of stimuli-responsive soft materials, providing functional shape morphing and behavior for the next generation of soft robots and devices.
Collapse
Affiliation(s)
- Alp C Karacakol
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yunus Alapan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sinan O Demir
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
4
|
Bian M, Hou G, Tan Z, Zhang L, Miao S, Zheng B, Zhou F. 3D-printed ultra-sensitive strain sensors using biogels prepared from fish gelatin and gellan gum. Carbohydr Polym 2025; 352:123200. [PMID: 39843102 DOI: 10.1016/j.carbpol.2024.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors. The hydrogel exhibits excellent mechanical and electrical properties as strain sensors, with Young's modulus and tensile strength of 20.7 ± 1.38 kPa and 0.14 ± 0.01 MPa, respectively, and an ultimate strain of 270.54 ± 16.23 %, which is conducive to a comfortable wearing experience. Moreover, the obtained sensors exhibited ultra-low latency (6.1 ± 1.47 ms), good durability (withstanding 1000 cyclic stretching) and high monitor sensitivity (GF = 2.37 ± 0.14) to human body movements; furthermore, the biogel fabricated using this method exhibits complete biodegradation within approximately 20 days, offering innovative prospects for the advancement of eco-friendly materials.
Collapse
Affiliation(s)
- Minghao Bian
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Guohua Hou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Zitong Tan
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Longtao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China.
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China; Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China
| | - Fuzhen Zhou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China.
| |
Collapse
|
5
|
Tynan L, Gunawardana U, Liyanapathirana R, Perera O, Esposito D, Centracchio J, Gargiulo G. Review of Electrohydraulic Actuators Inspired by the HASEL Actuator. Biomimetics (Basel) 2025; 10:152. [PMID: 40136806 PMCID: PMC11939893 DOI: 10.3390/biomimetics10030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
The muscle-like movement and speed of the electrohydraulic actuator have granted it much attention in soft robotics. Our aim is to review the advancements in electrohydraulic actuators inspired by the Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. With this paper, we focus on the performance of 21 electrohydraulic actuator designs developed across five Universities, ranging from the earliest HASEL designs to the latest electrohydraulic designs. These actuators reported up to 60 N forces and contracting strains of up to 99%. The actuators with the best overall performance so far have been the Quadrant HASEL actuator and the HEXEL actuator, developed at the University of Colorado Boulder. However, notable is also the HALVE actuator (produced by ETH Zürich, Switzerland), which, by using a 5 µm PVDF-TrFE-CTFE film with a relative permittivity of 40, produced 100 times the electrostatic force of any of the electrohydraulic actuators under review. The latter shows that there is room for improvement as low force and displacement still limit the viability of the soft actuators in real-life applications.
Collapse
Affiliation(s)
- Levi Tynan
- School of Engineering, Design and Built Environment, Western Sydney University, Kingswood, NSW 2747, Australia; (L.T.); (U.G.); (R.L.); (O.P.)
| | - Upul Gunawardana
- School of Engineering, Design and Built Environment, Western Sydney University, Kingswood, NSW 2747, Australia; (L.T.); (U.G.); (R.L.); (O.P.)
| | - Ranjith Liyanapathirana
- School of Engineering, Design and Built Environment, Western Sydney University, Kingswood, NSW 2747, Australia; (L.T.); (U.G.); (R.L.); (O.P.)
| | - Osura Perera
- School of Engineering, Design and Built Environment, Western Sydney University, Kingswood, NSW 2747, Australia; (L.T.); (U.G.); (R.L.); (O.P.)
| | - Daniele Esposito
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| | - Gaetano Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Kingswood, NSW 2747, Australia; (L.T.); (U.G.); (R.L.); (O.P.)
| |
Collapse
|
6
|
Shi Y, Yang X, Zhang Y, Lu S. pH-induced synergistic changes in color and shape of soft actuator based on degradable carbon dots/sodium alginate gel. Carbohydr Polym 2025; 351:123112. [PMID: 39779020 DOI: 10.1016/j.carbpol.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Soft actuators for intelligent robots require further elaboration to improve their biomedical applicability, which has led to the development of a series of flexible stimulus-responsive materials. However, fabricating degradable soft actuators that exhibit synergistic color and shape changes in response to environmental stimuli remains challenging. Here, we developed a soft actuating gel based on carbon dots (CDs) that are chemically cross-linked with sodium alginate. The soft actuating gel exhibits rapid synergistic changes in color and shape in response to pH owing to CDs protonation and deprotonation. Soft actuators constructed using the gel and poly (lactic acid) tape not only perform actions, such as grasping and lifting, but also camouflage and warn through self-color changes. The combination of pH-responsive CDs and degradable polymers provides a simple strategy for fabricating degradable soft actuators that exhibit synergistic changes in color and shape, and is expected to promote further research into soft actuators.
Collapse
Affiliation(s)
- Yingge Shi
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
| | - Xuyuan Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
| | - Yongqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
7
|
Qilin H, Yang L, Deqing M, Tao L, Yancheng W. Hydraulically Amplified Rigidity-Adaptive Electrostatic Actuators with High Performance and Smooth Motion Control. Soft Robot 2025. [PMID: 39927854 DOI: 10.1089/soro.2024.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Hydraulically amplified self-healing electrostatic (HASEL) actuators are known for their muscle-like activation, rapid operation, and direct electrical control, making them highly versatile for use in soft robotics. While current methods for enhancing HASEL actuator performance largely emphasize material innovation, our approach offers an additional architectural strategy. In this study, we introduce a novel hydraulically amplified rigidity-adaptive electrostatic (HARIE) actuator designed to significantly enhance HASEL actuator performance while maintaining controllability by elucidating the underlying issues of the pull-in instability. Our experimental results indicate that the HARIE actuator achieves a significant improvement, with over a 200% increase in angular output and consistently strong torque compared with HASEL actuators with flexible electrodes. Notably, the maximum step of the HARIE actuator is 21.8°/kV, approximately one third of that of the HASEL actuator with rigid electrodes (62.3°/kV), suggesting smoother motion control. The HARIE actuator's effectiveness is further demonstrated in practical applications; it successfully grasps an orange weighing 15.2 g and a delicate dandelion. Additionally, the actuator's precise targeting capability is evidenced by its ability to manipulate a laser to induce heat accumulation, leading to the balloon's breakdown, thereby showcasing its high level of controllability. The rigidity-adaptive method mitigates the negative impacts of suboptimal materials and demonstrates the potential for significant enhancement when combined with superior materials.
Collapse
Affiliation(s)
- Hu Qilin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Li Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Mei Deqing
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Luo Tao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Wang Yancheng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Wei P, Zhang Z, Cheng S, Meng Y, Tong M, Emu L, Yan W, Zhang Y, Wang Y, Zhao J, Xu C, Zhai F, Lu J, Wang L, Jiang H. Biodegradable origami enables closed-loop sustainable robotic systems. SCIENCE ADVANCES 2025; 11:eads0217. [PMID: 39919175 PMCID: PMC11804903 DOI: 10.1126/sciadv.ads0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Robots are increasingly integral across various sectors due to their efficiency and superior capabilities, which enable performance beyond human potential. However, the development of robotic systems often conflicts with the sustainable development goals set by the United Nations, as they generate considerable nondegradable waste and organic/inorganic pollutants throughout their life cycle. In this paper, we introduce a dual closed-loop robotic system that integrates biodegradable, sustainable materials such as plasticized cellulose films and NaCl-infused ionic conductive gelatin organogels. These materials undergo a closed-loop ecological cycle from processing to biodegradation, contributing to new growth, while the self-sensing, origami-based robot supports a seamless human-in-the-loop teleoperation system. This innovative approach represents a paradigm shift in the application of soft robotic systems, offering a path toward a more sustainable future by aligning advanced robotic functionalities with environmental stewardship.
Collapse
Affiliation(s)
- Pingdong Wei
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhuang Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaoru Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yao Meng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mengjie Tong
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Luoqian Emu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Yan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yunjie Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyang Zhao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Changyu Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Zhai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Junqiang Lu
- School of Mathematics Information, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Lei Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
9
|
Shimony N, Gross A, Mizrahi B. Mineral Plastics and Gels from Multi-Arm Ionomers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400244. [PMID: 39925667 PMCID: PMC11802327 DOI: 10.1002/gch2.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Plastic production and waste are a growing menace that affects the soil, the marine environment, and the air in a cumulative manner. The demand for mineral and bioplastics from renewable and biodegradable materials has therefore increased in all relevant sectors. The use of currently available degradable plastics is, however, limited by their poor mechanical properties and high production costs. In addition, many of today's plastics undergo uncontrolled biodegradation processes that involve harsh or expensive conditions and which may last from months to years. Here, the advantages of using multi-arm polymers for the production of sustainable mineral plastics are presented. A 4-arm poly(acrylic acid) is synthesized via atom transfer radical polymerization and is reacted with divalent calcium ions to obtain semi-liquid hydrogel or degradable plastic when dried. The mechanical properties of the different phases are evaluated and compared with linear poly(acrylic acid) of the same molecular weight. The multi-arm approach yielded improved mechanical characteristics, including self-healing and biodegradation without compromising other typical hydrogel characteristics. This concept of synthesizing multi-arm polymers with improved characteristics from building blocks of traditionally linear structures may be applicable to other mineral and bioplastic materials including acrylates, polysaccharides, and DNA.
Collapse
Affiliation(s)
- Neta Shimony
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| | - Adi Gross
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| |
Collapse
|
10
|
Zeng Q, Tang N, Shi G, Zhang M. Biogel Library-Accelerated Discovery of All-Natural Bioelectronics. ACS Sens 2024; 9:6685-6697. [PMID: 39603985 DOI: 10.1021/acssensors.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Biogels prepared from natural biopolymers are ideal candidates for constructing bioelectronics from the perspective of commercialization and environmental sustainability. However, discovering all-natural biogels that meet specific properties, such as mechanical properties, optical transparency, and stability, remains challenging. Here, our study introduces a revolutionary biogel library, a novel resource that significantly accelerates the discovery and application of suitable all-natural biogel materials for bioelectronics. Utilizing a high-throughput screening system designed with a frontend/backend development strategy, this biogel library facilitates the swift screening and customization of biogels, tailored to meet specific performance criteria. Along with demonstrating applications in soft bioelectronics and printed bioelectronics, this research also thoroughly investigates the recyclability and environmental impacts of biogels, setting a foundation for their use in sustainable, closed-loop ecological systems. This pioneering approach serves not only to foster the departure from petrochemical-derived polymers but also to bolster the advancement of environmentally responsible bioelectronics.
Collapse
Affiliation(s)
- Qiankun Zeng
- School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
Sanchez‐Tamayo N, Yoder Z, Rothemund P, Ballardini G, Keplinger C, Kuchenbecker KJ. Cutaneous Electrohydraulic (CUTE) Wearable Devices for Pleasant Broad-Bandwidth Haptic Cues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402461. [PMID: 39239783 PMCID: PMC11672320 DOI: 10.1002/advs.202402461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/27/2024] [Indexed: 09/07/2024]
Abstract
By focusing on vibrations, current wearable haptic devices underutilize the skin's perceptual capabilities. Devices that provide richer haptic stimuli, including contact feedback and/or variable pressure, are typically heavy and bulky due to the underlying actuator technology and the low sensitivity of hairy skin, which covers most of the body. This article presents a system architecture for compact wearable devices that deliver salient and pleasant broad-bandwidth haptic cues: Cutaneous Electrohydraulic (CUTE) devices combine a custom materials design for soft haptic electrohydraulic actuators that feature high stroke, high force, and electrical safety with a comfortable mounting strategy that places the actuator in a non-contact resting position. A prototypical wrist-wearable CUTE device produces rich tactile sensations by making and breaking contact with the skin (2.44 mm actuation stroke), applying high controllable forces (exceeding 2.3 N), and delivering vibrations at a wide range of amplitudes and frequencies (0-200 Hz). A perceptual study with 14 participants achieves 97.9% recognition accuracy across six diverse cues and verifies their pleasant and expressive feel. This system architecture for wearable devices gives unprecedented control over the haptic cues delivered to the skin, providing an elegant and discreet way to activate the user's sense of touch.
Collapse
Affiliation(s)
- Natalia Sanchez‐Tamayo
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Zachary Yoder
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Philipp Rothemund
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Institute for Control Engineering of Machine Tools and Manufacturing UnitsUniversity of StuttgartSeidenstraße 3670174StuttgartGermany
| | - Giulia Ballardini
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| | - Christoph Keplinger
- Robotic Materials DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
- Paul M. Rady Department of Mechanical EngineeringUniversity of ColoradoBoulder, 1111 Engineering DriveBoulderCO80309USA
- Materials Science and Engineering ProgramUniversity of ColoradoBoulder, 1111 Engineering DriveBoulderCO80309USA
| | - Katherine J. Kuchenbecker
- Haptic Intelligence DepartmentMax Planck Institute for Intelligent SystemsHeisenbergstr. 370569StuttgartGermany
| |
Collapse
|
12
|
Ji T, Shi H, Yang X, Li H, Kaplan DL, Yeo J, Huang W. Bioinspired Genetic and Chemical Engineering of Protein Hydrogels for Programable Multi-Responsive Actuation. Adv Healthc Mater 2024; 13:e2401562. [PMID: 38852041 DOI: 10.1002/adhm.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Protein hydrogels with tailored stimuli-responsive features and tunable stiffness have garnered considerable attention due to the growing demand for biomedical soft robotics. However, integrating multiple responsive features toward intelligent yet biocompatible actuators remains challenging. Here, a facile approach that synergistically combines genetic and chemical engineering for the design of protein hydrogel actuators with programmable complex spatial deformation is reported. Genetically engineered silk-elastin-like proteins (SELPs) are encoded with stimuli-responsive motifs and enzymatic crosslinking sites via simulation-guided genetic engineering strategies. Chemical modifications of the recombinant proteins are also used as secondary control points to tailor material properties, responsive features, and anisotropy in SELP hydrogels. As a proof-of-concept example, diazonium coupling chemistry is exploited to incorporate sulfanilic acid groups onto the tyrosine residues in the elastin domains of SELPs to achieve patterned SELP hydrogels. These hydrogels can be programmed to perform various actuations, including controllable bending, buckling, and complex deformation under external stimuli, such as temperature, ionic strength, or pH. With the inspiration of genetic and chemical engineering in natural organisms, this work offers a predictable, tunable, and environmentally sustainable approach for the fabrication of programmed intelligent soft actuators, with implications for a variety of biomedical materials and biorobotics needs.
Collapse
Affiliation(s)
- Ting Ji
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haoyuan Shi
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Xinyi Yang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hu Li
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Yoder Z, Rumley EH, Schmidt I, Rothemund P, Keplinger C. Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots. Sci Robot 2024; 9:eadl3546. [PMID: 39292807 DOI: 10.1126/scirobotics.adl3546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Robots made from reconfigurable modular units feature versatility, cost efficiency, and improved sustainability compared with fixed designs. Reconfigurable modules driven by soft actuators provide adaptable actuation, safe interaction, and wide design freedom, but existing soft modules would benefit from high-speed and high-strain actuation, as well as driving methods well-suited to untethered operation. Here, we introduce a class of electrically actuated robotic modules that provide high-speed (a peak contractile strain rate of 4618% per second, 15.8-hertz bandwidth, and a peak specific power of 122 watts per kilogram), high-strain (49% contraction) actuation and that use magnets for reversible mechanical and electrical connections between neighboring modules, thereby serving as building blocks for rapidly reconfigurable and highly agile robotic systems. The actuation performance of each hexagonal electrohydraulic (HEXEL) module is enabled by a synergistic combination of soft and rigid components; a hexagonal exoskeleton of rigid plates amplifies the motion produced by soft electrohydraulic actuators and provides a mechanical structure and connection platform for reconfigurable robots composed of many modules. We characterize the actuation performance of individual HEXEL modules, present a model that captures their quasi-static force-stroke behavior, and demonstrate both a high-jumping and a fast pipe-crawling robot. Using embedded magnetic connections, we arranged multiple modules into reconfigurable robots with diverse functionality, including a high-stroke muscle, a multimodal active array, a table-top active platform, and a fast-rolling robot. We further leveraged the magnetic connections for hosting untethered, snap-on driving electronics, together highlighting the promise of HEXEL modules for creating rapidly reconfigurable high-speed robots.
Collapse
Affiliation(s)
- Zachary Yoder
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Ellen H Rumley
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Ingemar Schmidt
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Philipp Rothemund
- Institute for Adaptive Mechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Christoph Keplinger
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO, USA
| |
Collapse
|
14
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
15
|
Liu Z, Wang Y, He H, Zhang C, Pan N, Wang L. Interfacial Dehydration Strategy for Chitosan Film Shape Morphing and Its Application. NANO LETTERS 2024; 24:6665-6672. [PMID: 38767991 DOI: 10.1021/acs.nanolett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.
Collapse
Affiliation(s)
- Zhongqi Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yuanyu Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hailong He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Chenyuan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Na Pan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
16
|
Lan L, Ping J, Li H, Wang C, Li G, Song J, Ying Y. Skin-Inspired All-Natural Biogel for Bioadhesive Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401151. [PMID: 38558183 DOI: 10.1002/adma.202401151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.
Collapse
Affiliation(s)
- Lingyi Lan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Huiyan Li
- The State Key Laboratory of Industrial Control Technology, Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chengjun Wang
- Department of Engineering Mechanics and Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Guang Li
- The State Key Laboratory of Industrial Control Technology, Institute of Cyber Systems and Control, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jizhou Song
- Department of Engineering Mechanics and Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
17
|
Pan X, Pu W, Liu Y, Xiao Y, Pu J, Shi Y, Wu H, Wang H. Self-Perceptional Soft Robotics by a Dielectric Elastomer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26797-26807. [PMID: 38722638 DOI: 10.1021/acsami.4c04700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Soft robotics has been a rapidly growing field in recent decades due to its advantages of softness, deformability, and adaptability to various environments. However, the separation of perception and actuation in soft robot research hinders its progress toward compactness and flexibility. To address this limitation, we propose the use of a dielectric elastomer actuator (DEA), which exhibits both an actuation capability and perception stability. Specifically, we developed a DEA array to localize the 3D spatial position of objects. Subsequently, we integrate the actuation and sensing properties of DEA into soft robots to achieve self-perception. We have developed a system that integrates actuation and sensing and have proposed two modes to achieve this integration. Furthermore, we demonstrated the feasibility of this system for soft robots. When the robots detect an obstacle or an approaching object, they can swiftly respond by avoiding or escaping the obstacle. By eliminating the need for separate perception and motion considerations, self-perceptional soft robots can achieve an enhanced response performance and enable applications in a more compact and flexible field.
Collapse
Affiliation(s)
- Xinghai Pan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yanling Liu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Yuhang Xiao
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Junhong Pu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ye Shi
- ZJU-UIUC Institute, Zhejiang University, Zhejiang 314400, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haolun Wang
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Chen Z, Zhao X, Gao B, Xu L, Chen H, Liu Z, Li P, Yan Q, Zheng H, Xue F, Xiong J, Ding R, Fei T, Tang Z, Peng Q, Hu Y, He X. Biobased Inks Based on Cuttlefish Ink and Cellulose Nanofibers for Biodegradable Patterned Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22547-22557. [PMID: 38628112 DOI: 10.1021/acsami.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Soft actuators with stimuli-responsive and reversible deformations have shown great promise in soft robotics. However, some challenges remain in existing actuators, such as the materials involved derived from nonrenewable resources, complex and nonscalable preparation methods, and incapability of complex and programmable deformation. Here, a biobased ink based on cuttlefish ink nanoparticles (CINPs) and cellulose nanofibers (CNFs) was developed, allowing for the preparation of biodegradable patterned actuators by direct ink writing technology. The hybrid CNF/CINP ink displays good rheological properties, allowing it to be accurately printed on a variety of flexible substrates. A bilayer actuator was developed by printing an ink layer on a biodegradable poly(lactic acid) film using extrusion-based 3D printing technology, which exhibits reversible and large bending behavior under the stimuli of humidity and light. Furthermore, programmable and reversible folding and coiling deformations in response to stimuli have been achieved by adjusting the ink patterns. This work offers a fast, scalable, and cost-effective strategy for the development of biodegradable patterned actuators with programmable shape-morphing.
Collapse
Affiliation(s)
- Zhong Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xu Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Bo Gao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - He Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zonglin Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Pengyang Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Qian Yan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Renjie Ding
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Teng Fei
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zhigong Tang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Ying Hu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
19
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
20
|
Niu H, Li H, Zhang Q, Kim ES, Kim NY, Li Y. Intuition-and-Tactile Bimodal Sensing Based on Artificial-Intelligence-Motivated All-Fabric Bionic Electronic Skin for Intelligent Material Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308127. [PMID: 38009787 DOI: 10.1002/smll.202308127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/29/2023]
Abstract
Developing electronic skins (e-skins) with extraordinary perception through bionic strategies has far-reaching significance for the intellectualization of robot skins. Here, an artificial intelligence (AI)-motivated all-fabric bionic (AFB) e-skin is proposed, where the overall structure is inspired by the interlocked bionics of the epidermis-dermis interface inside the skin, while the structural design inspiration of the dielectric layer derives from the branch-needle structure of conifers. More importantly, AFB e-skin achieves intuition sensing in proximity mode and tactile sensing in pressure mode based on the fringing and iontronic effects, respectively, and is simulated and verified through COMSOL finite element analysis. The proposed AFB e-skin in pressure mode exhibits maximum sensitivity of 15.06 kPa-1 (<50 kPa), linear sensitivity of 6.06 kPa-1 (50-200 kPa), and fast response/recovery time of 5.6 ms (40 kPa). By integrating AFB e-skin with AI algorithm, and with the support of material inference mechanisms based on dielectric constant and softness/hardness, an intelligent material perception system capable of recognizing nine materials with indistinguishable surfaces within one proximity-pressure cycle is established, demonstrating abilities that surpass human perception.
Collapse
Affiliation(s)
- Hongsen Niu
- School of Microelectronics, Shandong University, Jinan, 250101, China
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Hao Li
- School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Eun-Seong Kim
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Nam-Young Kim
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Yang Li
- School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
21
|
Tian Z, Xue J, Xiao X, Du C, Liu Y. Optomagnetic Coordination Helical Robot with Shape Transformation and Multimodal Motion Capabilities. NANO LETTERS 2024; 24:2885-2893. [PMID: 38407034 DOI: 10.1021/acs.nanolett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai, 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
22
|
Shin JW, Kim DJ, Jang TM, Han WB, Lee JH, Ko GJ, Yang SM, Rajaram K, Han S, Kang H, Lim JH, Eom CH, Bandodkar AJ, Min H, Hwang SW. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems. NANO-MICRO LETTERS 2024; 16:102. [PMID: 38300387 PMCID: PMC10834929 DOI: 10.1007/s40820-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/02/2024]
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix, 2091, Gyeongchung-daero, Bubal-eup, Icheon-si, Gyeonggi-do, 17336, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Kaveti Rajaram
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hanul Min
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
23
|
Gravert SD, Varini E, Kazemipour A, Michelis MY, Buchner T, Hinchet R, Katzschmann RK. Low-voltage electrohydraulic actuators for untethered robotics. SCIENCE ADVANCES 2024; 10:eadi9319. [PMID: 38181082 PMCID: PMC10775996 DOI: 10.1126/sciadv.adi9319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Rigid robots can be precise but struggle in environments where compliance, robustness to disturbances, or energy efficiency is crucial. This has led researchers to develop biomimetic robots incorporating soft artificial muscles. Electrohydraulic actuators are promising artificial muscles that perform comparably to mammalian muscles in speed and power density. However, their operation requires several thousand volts. The high voltage leads to bulky and inefficient driving electronics. Here, we present hydraulically amplified low-voltage electrostatic (HALVE) actuators that match mammalian skeletal muscles in average power density (50.5 watts per kilogram) and peak strain rate (971% per second) at a 4.9 times lower driving voltage (1100 volts) compared to the state of the art. HALVE actuators are safe to touch, are waterproof, and exhibit self-clearing properties. We characterize, model, and validate key performance metrics of our actuator. Last, we demonstrate the utility of HALVE actuators on a robotic gripper and a soft robotic swimmer.
Collapse
Affiliation(s)
| | - Elia Varini
- Soft Robotics Lab, D-MAVT, ETH, Zurich, Switzerland
| | | | | | | | - Ronan Hinchet
- Computational Robotics Lab, D-INFK, ETH, Zurich, Switzerland
| | | |
Collapse
|
24
|
Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, Wang T, Liu X, Yan J, Wu B, Yu F, Chen Y, Liang Y, Xue Y, Wang C, He S, Wen L, Tolley MT, Zhang AM, Laschi C, Li T. Bioinspired soft robots for deep-sea exploration. Nat Commun 2023; 14:7097. [PMID: 37925504 PMCID: PMC10625581 DOI: 10.1038/s41467-023-42882-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
Collapse
Affiliation(s)
- Guorui Li
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China.
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China.
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China.
| | - Tuck-Whye Wong
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Benjamin Shih
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Chunyu Guo
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Luwen Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Jiaqi Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Tao Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Xiaobo Liu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Jiayao Yan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - Baosheng Wu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fajun Yu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
| | - Yunsai Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, China
| | | | - Yaoting Xue
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Chengjun Wang
- Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Li Wen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, MA, USA
| | - A-Man Zhang
- Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Cecilia Laschi
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Tiefeng Li
- Center for X-Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Chellapurath M, Khandelwal PC, Schulz AK. Bioinspired robots can foster nature conservation. Front Robot AI 2023; 10:1145798. [PMID: 37920863 PMCID: PMC10619165 DOI: 10.3389/frobt.2023.1145798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world. However, current conservation efforts are primarily human led with assistance from conventional robotic systems which limit their scope and effectiveness, along with negatively impacting the surroundings. In this perspective, we present the field of bioinspired robotics to develop versatile agents for future conservation efforts that can operate in the natural environment while minimizing the disturbance/impact to its inhabitants and the environment's natural state. We provide an operational and environmental framework that should be considered while developing bioinspired robots for conservation. These considerations go beyond addressing the challenges of human-led conservation efforts and leverage the advancements in the field of materials, intelligence, and energy harvesting, to make bioinspired robots move and sense like animals. In doing so, it makes bioinspired robots an attractive, non-invasive, sustainable, and effective conservation tool for exploration, data collection, intervention, and maintenance tasks. Finally, we discuss the development of bioinspired robots in the context of collaboration, practicality, and applicability that would ensure their further development and widespread use to protect and preserve our natural world.
Collapse
Affiliation(s)
- Mrudul Chellapurath
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pranav C. Khandelwal
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute of Flight Mechanics and Controls, University of Stuttgart, Stuttgart, Germany
| | - Andrew K. Schulz
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|