1
|
Li B, Srivastava S, Shaikh M, Mereddy G, Garcia MR, Chiles EN, Shah A, Ofori-Anyinam B, Chu TY, Cheney NJ, McCloskey D, Su X, Yang JH. Bioenergetic stress potentiates antimicrobial resistance and persistence. Nat Commun 2025; 16:5111. [PMID: 40490453 DOI: 10.1038/s41467-025-60302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 05/15/2025] [Indexed: 06/11/2025] Open
Abstract
The bactericidal action of some antibiotics is associated with increased ATP consumption, cellular respiration, and reactive oxygen species (ROS) formation. Here, we investigate the effects of 'bioenergetic stress', induced by constitutive hydrolysis of ATP and NADH, on antibiotic efficacy in Escherichia coli. We show that bioenergetic stress potentiates the evolution of antibiotic resistance via enhanced ROS production, mutagenic break repair, and transcription-coupled repair. In addition, bioenergetic stress potentiates antibiotic persistence via the stringent response. We propose a model in which the balance between ATP consumption versus production regulates antibiotic resistance and persistence.
Collapse
Affiliation(s)
- Barry Li
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Shivani Srivastava
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mustafa Shaikh
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Gautam Mereddy
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Madison R Garcia
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Biochemistry; Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Eric N Chiles
- Rutgers Cancer Institute of New Jersey; Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Avi Shah
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Boatema Ofori-Anyinam
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ting-Yu Chu
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nicole J Cheney
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- BioMed X Institute, Heidelberg, Germany
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey; Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jason H Yang
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
2
|
Wang H, Wu X, Xu J, Lu Z, Hu B, Zhu L, Lu H. Proline mitigates antibiotic resistance evolution induced by ciprofloxacin at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137561. [PMID: 39938368 DOI: 10.1016/j.jhazmat.2025.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Antibiotics-induced resistance development in the environment has emerged as a critical issue under the 'one health' framework. Although there have been approaches to control antibiotic resistance evolution in clinical settings, they are rarely applicable in environmental contexts. Amino acids can affect the metabolic states of bacteria and potentially influence their resistance evolution. In this study, we screened 18 amino acids and identified proline as an efficient agent capable of mitigating ciprofloxacin-induced resistance of a soil-isolated Escherichia coli by over 50 % during a 24-day evolutionary experiment. Using transcriptomics and 13C metabolic flux analysis, we revealed the evolution mitigation mechanism of proline, which mainly involves down-regulated gene expressions and reduced metabolic flux of the TCA cycle, thereby decreasing NADH production, proton motive force, and uptake of ciprofloxacin. Based on single-cell RNA-seq, proline also reduced the size of resistant subgroups in the evolved E. coli population. Based on soil microcosm experiments, proline not only reduced the overall antibiotic resistance but also increased community diversity and robustness (optimal dosage: 5 mg/kg). Moreover, proline's evolution mitigation potentials likely extend to other antibiotics (e.g., streptomycin) and populations (e.g., Pseudomonas and Serratia spp.). Overall, proline addition holds promising potentials for mitigating antibiotic resistance in diverse antibiotics-polluted environments.
Collapse
Affiliation(s)
- Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiujing Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou 310058, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Crane JK, Yang T. Rapid assembly of biofilms from DNA released by SOS-inducing drugs in enteric bacteria. Sci Rep 2025; 15:12711. [PMID: 40223123 PMCID: PMC11994792 DOI: 10.1038/s41598-025-96943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
The SOS response is a bacterial stress response activated by DNA damage in many types of bacteria. SOS-inducing antibiotics trigger the rapid release of DNA into the extracellular medium in many strains. Surprisingly, the DNA released in this way contains greater amounts of single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In this study, we observed that addition of DNA-binding proteins following induction of the SOS response in Enterobacter cloacae decreased the amount of DNA measurable in the supernatant medium, but increased the amount of DNA deposited as a biofilm at the air-fluid interface. Bacteria incorporated into the biofilms survived the stress of dessication much better than did planktonic bacteria, with over a 400-fold increase in survival in the biofilm-bound bacteria. SOS-inducing drugs also triggered DNA release in Proteus mirabilis, with ssDNA again being more abundant than dsDNA in the culture supernatants. Addition of urea in this urease-producing organism triggered the formation of struvite crystals (magnesium ammonium phosphate), with the crystals, Proteus bacteria, and extracellular DNA forming mixed biofilms. Last, we tested the effect of inhibitors of the SOS response, such as zinc acetate. We also tested an inhibitor of the generalized stress response, dequalinium, which also indirectly inhibits the SOS response, and found it had a strong ability to inhibit biofilm formation.
Collapse
Affiliation(s)
- John K Crane
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
| | - Tammy Yang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
4
|
Souque C, González Ojeda I, Baym M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annu Rev Microbiol 2024; 78:361-382. [PMID: 39141706 DOI: 10.1146/annurev-micro-041522-102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Tackling the challenge created by antibiotic resistance requires understanding the mechanisms behind its evolution. Like any evolutionary process, the evolution of antimicrobial resistance (AMR) is driven by the underlying variation in a bacterial population and the selective pressures acting upon it. Importantly, both selection and variation will depend on the scale at which resistance evolution is considered (from evolution within a single patient to the host population level). While laboratory experiments have generated fundamental insights into the mechanisms underlying antibiotic resistance evolution, the technological advances in whole genome sequencing now allow us to probe antibiotic resistance evolution beyond the lab and directly record it in individual patients and host populations. Here we review the evolutionary forces driving antibiotic resistance at each of these scales, highlight gaps in our current understanding of AMR evolution, and discuss future steps toward evolution-guided interventions.
Collapse
Affiliation(s)
- Célia Souque
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Indra González Ojeda
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ,
| |
Collapse
|
5
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
7
|
Siminea N, Czeizler E, Popescu VB, Petre I, Păun A. Connecting the dots: Computational network analysis for disease insight and drug repurposing. Curr Opin Struct Biol 2024; 88:102881. [PMID: 38991238 DOI: 10.1016/j.sbi.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Network biology is a powerful framework for studying the structure, function, and dynamics of biological systems, offering insights into the balance between health and disease states. The field is seeing rapid progress in all of its aspects: data availability, network synthesis, network analytics, and impactful applications in medicine and drug development. We review the most recent and significant results in network biomedicine, with a focus on the latest data, analytics, software resources, and applications in medicine. We also discuss what in our view are the likely directions of impactful development over the next few years.
Collapse
Affiliation(s)
- Nicoleta Siminea
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania
| | - Eugen Czeizler
- Faculty of Medicine, University of Helsinki, Finland; National Institute of Research and Development for Biological Sciences, Romania
| | | | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, Finland; National Institute of Research and Development for Biological Sciences, Romania.
| | - Andrei Păun
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania.
| |
Collapse
|
8
|
Liu CSC, Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024; 10:e34719. [PMID: 39816336 PMCID: PMC11734142 DOI: 10.1016/j.heliyon.2024.e34719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 01/18/2025] Open
Abstract
Emergence of drug-induced antimicrobial resistance (AMR) forms a crippling health and economic crisis worldwide, causing high mortality from otherwise treatable diseases and infections. Next Generation Sequencing (NGS) has significantly augmented detection of culture independent microbes, potential AMR in pathogens and elucidation of mechanisms underlying it. Here, we review recent findings of AMR evolution in pathogens aided by integrated genomic investigation strategies inclusive of bacteria, virus, fungi and AMR alleles. While AMR monitoring is dominated by data from hospital-related infections, we review genomic surveillance of both biotic and abiotic components involved in global AMR emergence and persistence. Identification of pathogen-intrinsic as well as environmental and/or host factors through robust genomics/bioinformatics, along with monitoring of type and frequency of antibiotic usage will greatly facilitate prediction of regional and global patterns of AMR evolution. Genomics-enabled AMR prediction and surveillance will be crucial - in shaping health and economic policies within the One Health framework to combat this global concern.
Collapse
Affiliation(s)
- Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Li B, Srivastava S, Shaikh M, Mereddy G, Garcia MR, Shah A, Ofori-Anyinam N, Chu T, Cheney N, Yang JH. Bioenergetic stress potentiates antimicrobial resistance and persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603336. [PMID: 39026737 PMCID: PMC11257553 DOI: 10.1101/2024.07.12.603336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance (AMR) is a global health crisis and there is an urgent need to better understand AMR mechanisms. Antibiotic treatment alters several aspects of bacterial physiology, including increased ATP utilization, carbon metabolism, and reactive oxygen species (ROS) formation. However, how the "bioenergetic stress" induced by increased ATP utilization affects treatment outcomes is unknown. Here we utilized a synthetic biology approach to study the direct effects of bioenergetic stress on antibiotic efficacy. We engineered a genetic system that constitutively hydrolyzes ATP or NADH in Escherichia coli. We found that bioenergetic stress potentiates AMR evolution via enhanced ROS production, mutagenic break repair, and transcription-coupled repair. We also find that bioenergetic stress potentiates antimicrobial persistence via potentiated stringent response activation. We propose a unifying model that antibiotic-induced antimicrobial resistance and persistence is caused by antibiotic-induced. This has important implications for preventing or curbing the spread of AMR infections.
Collapse
|
10
|
Lansch-Justen L, El Karoui M, Alexander HK. Estimating mutation rates under heterogeneous stress responses. PLoS Comput Biol 2024; 20:e1012146. [PMID: 38805543 PMCID: PMC11161091 DOI: 10.1371/journal.pcbi.1012146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Exposure to environmental stressors, including certain antibiotics, induces stress responses in bacteria. Some of these responses increase mutagenesis and thus potentially accelerate resistance evolution. Many studies report increased mutation rates under stress, often using the standard experimental approach of fluctuation assays. However, single-cell studies have revealed that many stress responses are heterogeneously expressed in bacterial populations, which existing estimation methods have not yet addressed. We develop a population dynamic model that considers heterogeneous stress responses (subpopulations of cells with the response off or on) that impact both mutation rate and cell division rate, inspired by the DNA-damage response in Escherichia coli (SOS response). We derive the mutant count distribution arising in fluctuation assays under this model and then implement maximum likelihood estimation of the mutation-rate increase specifically associated with the expression of the stress response. Using simulated mutant count data, we show that our inference method allows for accurate and precise estimation of the mutation-rate increase, provided that this increase is sufficiently large and the induction of the response also reduces the division rate. Moreover, we find that in many cases, either heterogeneity in stress responses or mutant fitness costs could explain similar patterns in fluctuation assay data, suggesting that separate experiments would be required to identify the true underlying process. In cases where stress responses and mutation rates are heterogeneous, current methods still correctly infer the effective increase in population mean mutation rate, but we provide a novel method to infer distinct stress-induced mutation rates, which could be important for parameterising evolutionary models.
Collapse
Affiliation(s)
- Lucy Lansch-Justen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Meriem El Karoui
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Bacterial Systems Biology and Anti Microbial Resistance, Laboratoire de Biologie et Pharmacologie Appliquée, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Helen K. Alexander
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
11
|
Tyagi P, Tyagi S, Stewart L, Glickman S. SWOT and Root Cause Analyses of Antimicrobial Resistance to Oral Antimicrobial Treatment of Cystitis. Antibiotics (Basel) 2024; 13:328. [PMID: 38667004 PMCID: PMC11047466 DOI: 10.3390/antibiotics13040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Nearly 150 million cases of urinary tract infections (UTIs) are reported each year, of which uncomplicated cystitis triggers > 25% of outpatient prescriptions of oral antimicrobial treatment (OAT). OAT aids immune cells infiltrating the urothelium in eliminating uropathogens capable of invading the urothelium and surviving hyperosmotic urine. This self-evident adaptability of uropathogens and the short interval between the introduction of Penicillin and the first report of antimicrobial resistance (AMR) implicate AMR as an evolutionary conserved heritable trait of mutant strains selected by the Darwinian principle to survive environmental threats through exponential proliferation. Therefore, AMR can only be countered by antimicrobial stewardship (AMS) following the principle of the five Ds-drug, dose, duration, drug route, and de-escalation. While convenient to administer, the onset of the minimum inhibitory concentration (MIC) for OAT in urine leaves a window of opportunity for uropathogens to survive the first contact with an antimicrobial and arm their descendant colonies with AMR for surviving subsequent higher urine antimicrobial levels. Meanwhile, the initial dose of intravesical antimicrobial treatment (IAT) may be well above the MIC. Therefore, the widespread clinical use of OAT for cystitis warrants an analysis of the strengths, weaknesses, opportunity, and threats (SWOTs) and a root cause analysis of the AMR associated with OAT and IAT.
Collapse
Affiliation(s)
- Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shachi Tyagi
- Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | | | | |
Collapse
|
12
|
Pang Z, Li S, Wang S, Cai Z, Zhang S, Wan C, Wang J, Li Y, Chen P, Liu BF. Controlled-diffusion centrifugal microfluidic for rapid antibiotic susceptibility testing. Anal Chim Acta 2024; 1287:342033. [PMID: 38182334 DOI: 10.1016/j.aca.2023.342033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.
Collapse
Affiliation(s)
- Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shangang Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zonglin Cai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuo Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jieqing Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
13
|
Gonzalez-Jimenez I, Perlin DS, Shor E. Reactive oxidant species induced by antifungal drugs: identity, origins, functions, and connection to stress-induced cell death. Front Cell Infect Microbiol 2023; 13:1276406. [PMID: 37900311 PMCID: PMC10602735 DOI: 10.3389/fcimb.2023.1276406] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Reactive oxidant species (ROS) are unstable, highly reactive molecules that are produced by cells either as byproducts of metabolism or synthesized by specialized enzymes. ROS can be detrimental, e.g., by damaging cellular macromolecules, or beneficial, e.g., by participating in signaling. An increasing body of evidence shows that various fungal species, including both yeasts and molds, increase ROS production upon exposure to the antifungal drugs currently used in the clinic: azoles, polyenes, and echinocandins. However, the implications of these findings are still largely unclear due to gaps in knowledge regarding the chemical nature, molecular origins, and functional consequences of these ROS. Because the detection of ROS in fungal cells has largely relied on fluorescent probes that lack specificity, the chemical nature of the ROS is not known, and it may vary depending on the specific fungus-drug combination. In several instances, the origin of antifungal drug-induced ROS has been identified as the mitochondria, but further experiments are necessary to strengthen this conclusion and to investigate other potential cellular ROS sources, such as the ER, peroxisomes, and ROS-producing enzymes. With respect to the function of the ROS, several studies have shown that they contribute to the drugs' fungicidal activities and may be part of drug-induced programmed cell death (PCD). However, whether these "pro-death" ROS are a primary consequence of the antifungal mechanism of action or a secondary consequence of drug-induced PCD remains unclear. Finally, several recent studies have raised the possibility that ROS induction can serve an adaptive role, promoting antifungal drug tolerance and the evolution of drug resistance. Filling these gaps in knowledge will reveal a new aspect of fungal biology and may identify new ways to potentiate antifungal drug activity or prevent the evolution of antifungal drug resistance.
Collapse
Affiliation(s)
- Irene Gonzalez-Jimenez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Lombardi Comprehensive Cancer Center and Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| |
Collapse
|