1
|
Zhang X, Liang P, Pan Y, Wang G. Fabrication of hydrophilic defective MOF-801 thin-film nanocomposite membranes via interfacial polymerization for efficient chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125561. [PMID: 40319695 DOI: 10.1016/j.jenvman.2025.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Addressing the challenge of utilizing defect-rich MOFs as materials for thin-film nanocomposite membranes functional layers, particularly to expose more pores and functional sites to enhance pollutant selectivity, is a critical scientific issue in the current field of nanofiltration. In this study, we have innovatively employed modulators and ultrasonic techniques to synthesize a highly defective, hydrophilic MOF-801. This was then incorporated into a polyamide (PA) functional layer on a PVDF substrate through interfacial polymerization, creating a membrane specifically designed for chromium separation. Advanced characterization techniques confirmed that the PA@DMOF-801 membrane exhibits a distinct interlayer water channel structure, which facilitates the complete exposure of functional sites due to the open nature of the pores. The findings reveal that the resulting membrane exhibits pronounced hydrophilic pore characteristics, achieving a permeability coefficient of 14.5 L m-2 h-1 bar-1 and a Cr3+ retention rate of 98 % for ions with larger hydrated radii, along with high separation efficiency. The hydrophilic sites and porous features exposed by defects ensure the membrane excels in both permeability and selectivity. The primary contribution of this work lies in demonstrating that increasing MOF defect sites enhances the membrane's functional layer more significantly than any potential drawbacks, providing valuable insights for future research on exploiting MOF defects in membrane development.
Collapse
Affiliation(s)
- Xinxin Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China.
| | - Pengchao Liang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China
| | - Youhe Pan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian, 116034, PR China.
| |
Collapse
|
2
|
Dai Z, Jin P, Yuan S, Yang J, Agrawal KV, Wang H. A molecularly engineered large-area nanoporous atomically thin graphene membrane for ion separation. Nat Commun 2025; 16:4626. [PMID: 40389421 PMCID: PMC12089527 DOI: 10.1038/s41467-025-59625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/24/2025] [Indexed: 05/21/2025] Open
Abstract
Atomically thin graphene membranes with sub-1-nm pores show promise for ion/molecular separation, osmotic energy generation, and energy storage. Narrowing the pore size distribution and controlling the surface charge are essential to achieve these applications. However, nanoporous graphene membranes fabricated via conventional methods possess a broad pore size distribution and inadequately regulated surface charge, limiting their applications. Herein, we present a molecular anchoring approach for scalable synthesis of nanoporous graphene membranes via a bottom-up technique, aiming to narrow the pore size distribution without reducing the pore density while simultaneously adjusting the charge properties of nanopores. By selecting suitable anchoring molecules, the custom-tailored pore size distribution and chemical functionality of nanoporous graphene membranes can be achieved. Leveraging the steric restriction effect, anchoring monomers selectively traverse larger nanopores to form ion-selective plugs, effectively repairing these nanopores. The centimeter-scale nanoporous graphene membrane with an ion-selective plug achieves high separation selectivity (K+/Na+=20, K+/Mg2+=330). Theoretical simulations indicate that a smaller pore size, narrow pore size distribution, and positive charge result in a larger energy barrier difference, leading to ultrahigh metal ion selectivity. Furthermore, in treating lithium battery leaching solutions, Li+/divalent ions selectivity exceeds 900. These findings provide a way for designing graphene-based membranes.
Collapse
Affiliation(s)
- Ziwen Dai
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium.
| | - Shushan Yuan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Wang W, Jin Y, Meng X, Yang N, Zhu X. Dynamic Short Hydrogen-Bonding Network Enhancing Hydrophilicity in Biomimetic Membranes with Artificial Water Channels for Efficient Removal of Dyes and Salts. Angew Chem Int Ed Engl 2025; 64:e202502204. [PMID: 39992092 DOI: 10.1002/anie.202502204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
The development of an integrated biomimetic membrane capable of rejecting both dyes and salts in a single step, while sustaining stable water permeation, presents a promising solution for textile wastewater treatment. Herein, we report a novel integrated biomimetic membrane integrating an I-quartet artificial water channel (AWC) with sulfonic acid-modified polyamide (PA-SO3H), which can stably reject both dyes and inorganic salts. The I-quartet channels (2.68 Å), formed via self-assembly of alkyl-ureido-ethyl-imidazole (HC8) molecules, facilitate selective water transport and rejection of both dyes and inorganic salts. Concurrently, the sulfonic acid groups (-SO3H) could grab water molecules, forming dynamic short hydrogen-bonding network (O-H⋅⋅⋅O). These hydrogen bonds not only serve as jumping force, lowering the energy barrier for water transport through the alternating hydrophilic-hydrophobic matrix, but also act as an effective antifouling barrier, significantly reducing membrane fouling. The optimal HC83.0-PA-SO3H membrane exhibits a water permeance of 13.4 L m-2 h-1 MPa-1, approximately 2.7-fold higher than that of the pristine PA membrane, and both high dyes and salts rejection efficiency. Moreover, the membrane sustains stable antifouling characteristics throughout a 19-day endurance test. This innovative membrane design provides a promising solution for the efficient separation of both dyes and inorganic salts in textile wastewater treatment.
Collapse
Affiliation(s)
- Wenmin Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, P.R. China
| | - Yun Jin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, P.R. China
| | - Xiuxia Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, P.R. China
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, P.R. China
| | - Xuefeng Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P.R. China
| |
Collapse
|
4
|
Zhang Z, Sun H, Xin S, Hu Q, Wang J, Hu Y. Advanced Adaptive Protein Membrane with Super-High Flux and Precise Molecular Sieving of Dyes from Salts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410900. [PMID: 39895178 DOI: 10.1002/smll.202410900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/16/2025] [Indexed: 02/04/2025]
Abstract
Precise separation of small organic molecules and electrolyte salts is critical for various industrial processes, necessitating advanced membranes with uniform pores. Proteins, as one typical nature polymer having the exactly same structure and molecular weight, offer a promising material for making such membranes. Here, hemoglobin (BHb) and lysozyme (Lyz) are utilized to fabricate precise nanofiltration membranes through amyloid-like co-assembly, triggered by Tris(2-carboxyethyl) phosphine. Molecular dynamics simulations reveal that BHb intercalates between Lyz molecules, enhancing tight assembly and reducing defects. The Lyz/BHb membrane exhibits a high void volume of 27.2% and achieves an exceptional permeance of 335 L m-2 h-1 bar-1. Amazingly, the Lyz/BHb membrane achieves ultra-selective molecular sieving of dyes and salts with an unparalleled high separation factor of 1.25 × 103 for the NaCl/Brilliant blue. The unique adaptive separation layer is formed by anchoring dye molecules into the larger pores and thus narrowing down the pore size distribution and enhancing electrostatic repulsion, endowing the membrane with a distinctive molecular sieving of dyes and salts. This study offers valuable insights to finely tailor the pore structure of the membrane by co-assembly of proteins and to significantly enhance the membrane perm-selectivity by creating an adaptive protein separation layer with a unique molecular sieving property.
Collapse
Affiliation(s)
- Zhaoqian Zhang
- State Key Laboratory of Separation Membranes and Membrane Process, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hao Sun
- State Key Laboratory of Separation Membranes and Membrane Process, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Shaopeng Xin
- State Key Laboratory of Separation Membranes and Membrane Process, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Qiaoxia Hu
- Shenzhen Mystic Biotechnologies Co., Ltd., Shenzhen, 518000, P. R. China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin, 300192, P. R. China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Process, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Liu Z, Huang Y, Lv Y, Zhou Y, Wang K, Zhao H. Bioderived Polyarylester Nanofilms from Innovative Plant Materials for High-Efficient Organic Solvent Nanofiltration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39951683 DOI: 10.1021/acsami.4c19244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
The successful realization of thin film composite (TFC) organic solvent nanofiltration (OSN) membranes with high permeability and small solute selectivity for solute-solute separation to purify drugs in complex solution environments remains challenging in the pharmaceutical industry. Here, we present the preparation of high cross-linked TFC OSN membranes via interfacial polymerization (IP) utilizing phlorotannin, a plant-derived biomass phenolic compound, as a promising aqueous phase monomer. Benefiting from the presence of multiple cross-linking sites and twisted rigid structure in phlorotannin, nanofiltration membranes with excellent molecular selectivity and solvent permeability were successfully fabricated. This allowed for straightforward separation and purification of active pharmaceutical ingredients from intermediates. The membranes demonstrated remarkable stability over extended periods of operation and adaptability to a diverse array of solvent environments, making them a highly promising option for use in fine chemicals, biopharmaceuticals, and other fields.
Collapse
Affiliation(s)
- Zihao Liu
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| | - Yingjie Huang
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| | - Yanfeng Lv
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| | - Yushun Zhou
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| | - Kang Wang
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University,Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Ma N, Li G, Liu Y, Zhou S, Liu F. Loose Polyester Nanofiltration Membrane Designed with Hydroxyl-Ammonium for Efficient Dye/Salt Separation. MEMBRANES 2025; 15:59. [PMID: 39997685 PMCID: PMC11857181 DOI: 10.3390/membranes15020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
Efficient dye/salt separation poses a great challenge to nanofiltration (NF) membrane technology in the desalting sector of the dye synthesis industry. In this study, we fabricated a novel loose polyester NF membrane via an interfacial polymerization method using "hydroxyl-ammonium" biquaternary diethanolamine (MDET) and trimesoyl chloride. The molecular design of MDET provides a loose crosslinking network, showing high rejection of dyes and the passage of monovalent salt/divalent salt ions in the dye solution, exhibiting exceptional filtration efficiency with high selectivity. Furthermore, the membrane exhibits excellent operational stability for over 100 h, demonstrating superior antifouling properties and high resistance to chlorine. This study provides new insights into the role of dyes and mono- and divalent ions in desalination processes related to the dye synthesis industry.
Collapse
Affiliation(s)
- Nan Ma
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo 315201, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo 315201, China
| | - Yang Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo 315201, China
| | - Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Road, Ningbo 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
7
|
Zhang W, Zhao S, Li H, Lai C, Zhang S, Wen W, Tang CY, Meng F. Lignin alkali regulated interfacial polymerization towards ultra-selective and highly permeable nanofiltration membrane. Nat Commun 2025; 16:371. [PMID: 39753549 PMCID: PMC11699117 DOI: 10.1038/s41467-024-55595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer. The optimal membrane exhibited a remarkable water permeance of 26.0 L m-2 h-1 bar-1 and Cl-/SO42- selectivity of 191.0, which is superior to the state-of-the-art PA NF membranes. This study provides a cost-effective scalable strategy for fabricating ultra-selective and highly permeable NF membrane for precise ion-ion separation and small organic compounds removal.
Collapse
Affiliation(s)
- Wentian Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| | - Haiyun Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Cunxian Lai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.
| |
Collapse
|
8
|
Wu X, Cheng P, Cai C, Tian M, Zhang Y, der Bruggen BV, Zhu J. Physical and Chemical Dual Confinement Promotes Controllable Synthesis of Loose-Structured Azine-Linked Nanofilms for Fast Molecular Separation. NANO LETTERS 2024; 24:14797-14805. [PMID: 39501765 DOI: 10.1021/acs.nanolett.4c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Thin-film composite (TFC) membranes, featuring nanoscale film thickness and customizable pore structures, hold promise for solute-solute separations. However, achieving on-demand molecular sieving requires fine control over the membrane microstructure. Here, the concept of physical and chemical dual confinement (PCDC) is introduced to fabricate loose-structured TFC membranes via confined interfacial polymerization (IP). This concept leverages the synergistic effects of physically restricted monomer diffusion and a chemically inhibited reaction to achieve controlled nanofilm growth. Dorsal addition of the aqueous phase to the hydrogel reduces the diamine diffusion via electrostatic and H-bonding interactions within its nanopores. The prepassivation of hydrazine using acid protonation effectively weakens its ability for nucleophilic reactivity. This confined IP between twisted TFPA and short-chain hydrazine yielded loosely structured azine-linked nanofilms, which displayed a high permeability of 53.4 LMH bar-1 and effective differentiation of binary mixtures. This PCDC concept offers a useful guideline to finely tailor polymeric nanofilms for precise separations.
Collapse
Affiliation(s)
- Xingming Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Penglin Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanqi Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miaomiao Tian
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
10
|
Yin Z, Liu Y, Hu Z, Wang J, Li F, Yang W. Sustainable and ultrafast antibiotics removal, self-cleaning and disinfection with electroactive metal-organic frameworks/carbon nanotubes membrane. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134944. [PMID: 38889470 DOI: 10.1016/j.jhazmat.2024.134944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Although conventional nanofiltration (NF) membrane is widely applied in water treatment, it faces the challenges of insufficient selectivity toward emerging contaminants, low permeability and non-sustainable fouling control. Herein, a novel electroactive metal-organic frameworks/carbon nanotubes membrane was constructed by facile and green nanobubbles-mediated non-solvent-induced phase separation (NIPS) strategy for ultrafast antibiotics removal. It presented 3-fold to 100-fold higher permeability (101.3-105.7 L·h-1·m-2·bar-1) without compromising rejection (71.8 %-99.3 %) of common antibiotics (tetracycline, norfloxacin, sulfamethoxazole, sulfamethazine) than most commercial and state-of-the-art NF membranes. The separation mechanism was due to the synergy of loose selective layer with three-dimensional interconnected networks and UiO-66/CNTs with unique pore sieving and charge property. It also presented excellent antibiotics selectivity with high NaCl/tetracycline separation factor of 194 and CuCl2/tetracycline separation factor of 316 for remediation of antibiotics and heavy metal combined pollution. Meanwhile, it possessed efficient anti-fouling, antibacterial and electro-driven self-cleaning ability, which enabled sustainable fouling control and disinfection with short process, low energy and chemical consumption. Furthermore, potential application of UiO-66/CNTs membrane in wastewater reclamation was demonstrated by stable antibiotics rejection, efficient flux recovery and long-term stability over 260 h. This study would provide useful insights into removal of emerging contaminants from water by advanced NF membrane.
Collapse
Affiliation(s)
- Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yulong Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zebin Hu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiancheng Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Yao A, Hou J, Dou P, Du J, Sun Q, Song Z, Liu L, Guan J, Liu J. Microporous polyarylate membranes based on 3D phenolphthalein for molecular sieving. SCIENCE ADVANCES 2024; 10:eado7687. [PMID: 39121217 PMCID: PMC11313862 DOI: 10.1126/sciadv.ado7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Thin-film composite (TFC) membranes have gradually replaced some traditional technologies in the extraction, separation, and concentration of high value-added pharmaceutical ingredients due to their controllable microstructure. Nevertheless, devising solvent-stable, scalable TFC membranes with high permeance and efficient molecule selectivity is urgently needed to improve the separation efficiency in the separation process. Here, we propose phenolphthalein, a commercial acid-base indicator, as an economical monomer for optimizing the micropore structure of selective layers with thickness down to 30 nanometers formed by in situ interfacial reactions. Molecular dynamics simulations indicate that the polyarylate membranes prepared using three-dimensional phenolphthalein monomers exhibit tunable microporosity and higher pore interconnectivity. Moreover, the TFC membranes show a high methanol permeance (9.9 ± 0.1 liters per square meter per hour per bar) and small molecular weight cutoff (≈289 daltons) for organic micropollutants in organic solvent systems. The polyarylate membranes exhibit higher mechanical strength (2.4 versus 0.8 gigapascals) compared to the traditional polyamide membrane.
Collapse
Affiliation(s)
- Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Junjun Hou
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Pengjia Dou
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| |
Collapse
|
12
|
Du J, Yao A, Sun Q, Liu L, Song Z, He W, Wang C, Dou P, Guan J, Liu J. Ultrafast Interfacial Self-Assembly toward Bioderived Polyester COF Membranes with Microstructure Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405744. [PMID: 38861297 DOI: 10.1002/adma.202405744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The precise manipulation of the microstructure (pore size, free volume distribution, and connectivity of the free-volume elements), thickness, and mechanical characteristics of membranes holds paramount significance in facilitating the effective utilization of self-standing membranes. In this contribution, the synthesis of two innovative ester-linked covalent-organic framework (COF) membranes is first reported, which are generated through the selection of plant-derived ellagic acid and quercetin phenolic monomers in conjunction with terephthaloyl chloride as a building block. The optimization of the microstructure of these two COF membranes is systematically achieved through the application of three different interfacial electric field systems: electric neutrality, positive electricity, and negative electricity. It is observed that the positively charged system facilitates a record increase in the rate of membrane formation, resulting in a denser membrane with a uniform pore size and enhanced flexibility. In addition, a correlation is identified wherein an increase in the alkyl chain length of the surfactants leads to a more uniform pore size and a decrease in the molecular weight cutoff of the COF membrane. The resulting COF membrane exhibits an unprecedented combination of high water permeance, superior sieving capability, robust mechanical strength, chemical robustness for promising membrane-based separation science and technology.
Collapse
Affiliation(s)
- Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ayan Yao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Linghao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ziye Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengming Wang
- Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Pengjia Dou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Fang C, Garcia-Rodriguez O, Yang L, Zhou Y, Imbrogno J, Swenson TM, Lefebvre O, Zhang S. Sequential high-recovery nanofiltration and electrochemical degradation for the treatment of pharmaceutical wastewater. WATER RESEARCH 2024; 259:121832. [PMID: 38852395 DOI: 10.1016/j.watres.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
The presence of antibiotics in aquatic ecosystems poses a significant concern for public health and aquatic life, owing to their contribution to the proliferation of antibiotic-resistant bacteria. Effective wastewater treatment strategies are needed to ensure that discharges from pharmaceutical manufacturing facilities are adequately controlled. Here we propose the sequential use of nanofiltration (NF) for concentrating a real pharmaceutical effluent derived from azithromycin production, followed by electrochemical oxidation for thorough removal of pharmaceutical compounds. The NF membrane demonstrated its capability to concentrate wastewater at a high recovery value of 95 % and 99.7 ± 0.2 % rejection to azithromycin. The subsequent electrochemical oxidation process completely degraded azithromycin in the concentrate within 30 min and reduced total organic carbon by 95 % in 180 min. Such integrated treatment approach minimized the electrochemically-treated volume through a low-energy membrane approach and enhanced mass transfer towards the electrodes, therefore driving the process toward zero-liquid-discharge objectives. Overall, our integrated approach holds promises for cost-effective and sustainable removal of trace pharmaceutical compounds and other organics in pharmaceutical wastewater.
Collapse
Affiliation(s)
- Chenyi Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Orlando Garcia-Rodriguez
- NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1 Singapore 117411; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore, 117576, Singapore
| | - Liming Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Yaochang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Joseph Imbrogno
- Chemical Research & Development, Pfizer Inc., 280 Shennecossett Rd, Groton, CT 06340, USA
| | - Tim M Swenson
- Chemical Research & Development, Pfizer Inc., 280 Shennecossett Rd, Groton, CT 06340, USA
| | - Olivier Lefebvre
- NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1 Singapore 117411; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore, 117576, Singapore.
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
14
|
Alkandari S, Ching M, Lightfoot JC, Berri N, Leese HS, Castro-Dominguez B. Recycling and 3D-Printing Biodegradable Membranes for Gas Separation-toward a Membrane Circular Economy. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1515-1525. [PMID: 38962722 PMCID: PMC11217943 DOI: 10.1021/acsaenm.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
Polymer membranes employed in gas separation play a pivotal role in advancing environmental sustainability, energy production, and gas purification technologies. Despite their significance, the current design and manufacturing of these membranes lack cradle-to-cradle approaches, contributing to plastic waste pollution. This study explores emerging solutions, including the use of biodegradable biopolymers such as polyhydroxybutyrate (PHB) and membrane recycling, with a focus on the specific impact of mechanical recycling on the performance of biodegradable gas separation membranes. This research represents the first systematic exploration of recycling biodegradable membranes for gas separation. Demonstrating that PHB membranes can be recycled and remanufactured without solvents using hot-melt extrusion and 3D printing, the research highlights PHB's promising performance in developing more sustainable CO2 separations, despite an increase in gas permeability with successive recycling steps due to reduced polymer molecular weight. The study emphasizes the excellent thermal, chemical, and mechanical stability of PHB membranes, albeit with a marginal reduction in gas selectivity upon recycling. However, limitations in PHB's molecular weight affecting extrudability and processability restrict the recycling to three cycles. Anticipating that this study will serve as a foundational exploration, we foresee more sophisticated recycling studies for gas separation membranes, paving the way for a circular economy in future membrane technologies.
Collapse
Affiliation(s)
| | - Matthew Ching
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Jasmine C. Lightfoot
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre for Digital Manufacturing
and Design (dMaDe), University of Bath, Bath BA2 7AY, U.K.
| | - Nael Berri
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, U.K.
| | - Hannah S. Leese
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre
for Bioengineering and Biomedical Technologies, University of Bath, Bath BA2 7AY, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
- Centre for Digital Manufacturing
and Design (dMaDe), University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
15
|
Liu H, Liang L, Tian F, Xi X, Zhang Y, Zhang P, Cao X, Bai Y, Zhang C, Dong L. Scalable Preparation of Ultraselective and Highly Permeable Fully Aromatic Polyamide Nanofiltration Membranes for Antibiotic Desalination. Angew Chem Int Ed Engl 2024; 63:e202402509. [PMID: 38588046 DOI: 10.1002/anie.202402509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Membranes are important in the pharmaceutical industry for the separation of antibiotics and salts. However, its widespread adoption has been hindered by limited control of the membrane microstructure (pore architecture and free-volume elements), separation threshold, scalability, and operational stability. In this study, 4,4',4'',4'''-methanetetrayltetrakis(benzene-1,2-diamine) (MTLB) as prepared as a molecular building block for fabricating thin-film composite membranes (TFCMs) via interfacial polymerization. The relatively large molecular size and rigid molecular structure of MTLB, along with its non-coplanar and distorted conformation, produced thin and defect-free selective layers (~27 nm) with ideal microporosities for antibiotic desalination. These structural advantages yielded an unprecedented high performance with a water permeance of 45.2 L m-2 h-1 bar-1 and efficient antibiotic desalination (NaCl/adriamycin selectivity of 422). We demonstrated the feasibility of the industrial scaling of the membrane into a spiral-wound module (with an effective area of 2.0 m2). This module exhibited long-term stability and performance that surpassed those of state-of-the-art membranes used for antibiotic desalination. This study provides a scientific reference for the development of high-performance TFCMs for water purification and desalination in the pharmaceutical industry.
Collapse
Affiliation(s)
- Haohao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Feng Tian
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xugang Xi
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Yanqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| |
Collapse
|
16
|
Luo X, Jiang L, Zhao R, Wang Y, Xiao X, Ghazouani S, Yu L, Mai Z, Matsuyama H, Jin P. Energy-efficient trehalose-based polyester nanofiltration membranes for zero-discharge textile wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133059. [PMID: 38000287 DOI: 10.1016/j.jhazmat.2023.133059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Recovery of water, salts, and hazardous dye from complex saline textile wastewater faces obstacles in separating dissolved ionic substances and recovering organic components during desalination. This study realized the simultaneous fractionation, desalination, and dye removal/recovery treatment of textile wastewater by using trehalose (Tre) as an aqueous monomer to prepare polyester loose nanofiltration (LNF) membrane with fine control microstructure via interfacial polymerization. Outperforming the NF270 commercial membrane, the Tre-1.05/TMC optimized membrane achieves zero-discharge textile wastewater treatment, cutting energy consumption by 295% and reducing water consumption by 42.8%. This efficiency surge results from remarkable water permeability (130.83 L m-2 h-1 bar-1) and impressive dye desalination (NaCl/ Direct Red 23 separation factor of 275) of the Tre-1.05/TMC membrane. For a deeper comprehension of filtration performance, the sieving mechanism of polyester LNF membranes was systematically elucidated. This strategic approach offers significant prospects for energy conservation, carbon emission mitigation, and enhanced feasibility of membrane-based wastewater treatment systems.
Collapse
Affiliation(s)
- Xiongwei Luo
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yue Wang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xin Xiao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sabrine Ghazouani
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lihua Yu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
17
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
18
|
Li J, Peng H, Liu K, Zhao Q. Polyester Nanofiltration Membranes for Efficient Cations Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309406. [PMID: 37907065 DOI: 10.1002/adma.202309406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Polyester nanofiltration membranes highlight beneficial chlorine resistance, but their loose structures and negative charge result in poor cations retention precluding advanced use in cations separation. This work designs a new monomer (TET) containing "hydroxyl-ammonium" entities that confer dense structures and positive charge to polyester nanofiltration membranes. The TET monomer undergoes efficient interfacial polymerization with the trimesoyl chloride (TMC) monomer, and the resultant TET-TMC membranes feature one of the lowest molecular weight cut-offs (389 Da) and the highest zeta potential (4 mv, pH: 7) among all polyester nanofiltration membranes. The MgCl2 rejection of the TET-TMC membrane is 95.5%, significantly higher than state-of-the-art polyester nanofiltration membranes (<50%). The Li+ /Mg2+ separation performance of TET-TMC membrane is on par with cutting-edge polyamide membranes, while additionally, the membrane is stable against NaClO though polyamide membranes readily degrade. Thus the TET-TMC is the first polyester nanofiltration membrane for efficient cations separation.
Collapse
Affiliation(s)
- Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kuankuan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
19
|
Pan Y, Liu H, Huang Z, Zhang W, Gao H, Liang L, Dong L, Meng H. Membranes based on Covalent Organic Frameworks through Green and Scalable Interfacial Polymerization using Ionic Liquids for Antibiotic Desalination. Angew Chem Int Ed Engl 2024; 63:e202316315. [PMID: 38030580 DOI: 10.1002/anie.202316315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Covalent organic framework (COF) membranes featuring uniform topological structures and devisable functions, show huge potential in water purification and molecular separation. Nevertheless, the inability of uniform COF membranes to be produced on an industrial scale and their nonenvironmentally friendly fabrication method are the bottleneck preventing their industrial applications. Herein, we report a new green and industrially adaptable scraping-assisted interfacial polymerization (SAIP) technique to fabricate scalable and uniform TpPa COF membranes. The process used non-toxic and low-volatility ionic liquids (ILs) as organic phase instead of conventional organic solvents for interfacial synthesis of TpPa COF layer on a support membrane, which can simultaneously achieve the purposes of (i) improving the greenness of membrane-forming process and (ii) fabricating a robust membrane that can function beyond the conventional membranes. This approach yields a large-area, continuous COF membrane (19×25 cm2 ) with a thickness of 78 nm within a brief period of 2 minutes. The resulting membrane exhibited an unprecedented combination of high permeance (48.09 L m-2 h-1 bar-1 ) and antibiotic desalination efficiency (e.g., NaCl/adriamycin separation factor of 41.8), which is superior to the commercial benchmarking membranes.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - HaoHao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - ZiQi Huang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - WenHai Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - HaiQi Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - LiJun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - LiangLiang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
20
|
Giacobbo A, Pasqualotto IF, Machado Filho RCDC, Minhalma M, Bernardes AM, de Pinho MN. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions. MEMBRANES 2023; 13:743. [PMID: 37623804 PMCID: PMC10456375 DOI: 10.3390/membranes13080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The present work investigates nanofiltration (NF) and ultrafiltration (UF) for the removal of three widely used pharmaceutically active compounds (PhACs), namely atenolol, sulfamethoxazole, and rosuvastatin. Four membranes, two polyamide NF membranes (NF90 and NF270) and two polyethersulfone UF membranes (XT and ST), were evaluated in terms of productivity (permeate flux) and selectivity (rejection of PhACs) at pressures from 2 to 8 bar. Although the UF membranes have a much higher molecular weight cut-off (1000 and 10,000 Da), when compared to the molecular weight of the PhACs (253-482 Da), moderate rejections were observed. For UF, rejections were dependent on the molecular weight and charge of the PhACs, membrane molecular weight cut-off (MWCO), and operating pressure, demonstrating that electrostatic interactions play an important role in the removal of PhACs, especially at low operating pressures. On the other hand, both NF membranes displayed high rejections for all PhACs studied (75-98%). Hence, considering the optimal operating conditions, the NF270 membrane (MWCO = 400 Da) presented the best performance, achieving permeate fluxes of about 100 kg h-1 m-2 and rejections above 80% at a pressure of 8 bar, that is, a productivity of about twice that of the NF90 membrane (MWCO = 200 Da). Therefore, NF270 was the most suitable membrane for this application, although the tight UF membranes under low operating pressures displayed satisfactory results.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
| | - Isabella Franco Pasqualotto
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Rafael Cabeleira de Coronel Machado Filho
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Miguel Minhalma
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
- Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves n. 9500, Porto Alegre 91509-900, Brazil; (I.F.P.); (R.C.d.C.M.F.); (A.M.B.)
| | - Maria Norberta de Pinho
- Centre of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal;
- Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, 1049-001 Lisbon, Portugal
| |
Collapse
|