1
|
Xie H, Huang X, Li B, Chen Y, Niu H, Yu T, Yang S, Gao S, Zeng Y, Yang T, Kang Y, Zhang K, Ding P. Biomimetic Nanoplatform for Targeted Rheumatoid Arthritis Therapy: Modulating Macrophage Niches Through Self-Sustaining Positive Feedback-Driven Drug Release Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416265. [PMID: 39985217 PMCID: PMC12005813 DOI: 10.1002/advs.202416265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The core strategies in treating rheumatoid arthritis (RA) now focus on ameliorating the inflammatory microenvironment and reversing macrophage phenotypes within the joint cavity. This study introduces a co-delivery system of integrating nanoenzymes and gene therapeutics sequentially modified with guanidinium-based polymers and macrophage membranes to achieve synergistic therapeutic effects. This co-delivery system is named MACP siTNF-α nanoparticles (NPs). MACP siTNF-α nanoparticles are designed for targeted delivery to the inflamed joint site, where they are preferentially internalized by M1-type macrophages and efficiently evade lysosomal degradation. Subsequently, the co-delivery system operates efficiently via a self-sustaining positive feedback drug release mechanism. The biomimetic nanoplatform reduces reactive oxygen species (ROS) levels and prevents glutathione (GSH) depletion. GSH degrades the polymers to release small interfering RNA (siRNA) and expose the Prussian blue (PB) nanoenzymes, which effectively scavenge ROS and restore GSH levels. This feedback loop significantly enhances the gene silencing capability and ROS scavenging efficiency of the co-delivery system. In summary, MACP siTNF-α NPs can reverse macrophage ecological niche in inflammatory soils through the dual mechanism of efficiently inhibiting the expression of tumor necrosis factor-alpha (TNF-α) the upstream pathway of the inflammatory response, and eliminating ROS, thus realizing efficient treatment of RA.
Collapse
Affiliation(s)
- Huichao Xie
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518060China
| | - Xiaoyu Huang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Bao Li
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Yongfeng Chen
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Haoran Niu
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Tong Yu
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Shimei Yang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Shuxin Gao
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Yutong Zeng
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Tianzhi Yang
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMA01119USA
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518060China
| | - Keda Zhang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Pingtian Ding
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| |
Collapse
|
2
|
Yamashita T, Komenda K, Miłodrowski R, Robak D, Szrajer S, Gaczorek T, Ylla G. Non-gonadal expression of piRNAs is widespread across Arthropoda. FEBS Lett 2025; 599:3-18. [PMID: 39358781 PMCID: PMC11726155 DOI: 10.1002/1873-3468.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
PIWI-interacting RNAs (piRNAs) were discovered in the early 2000s and became known for their role in protecting the germline genome against mobile genetic elements. Successively, piRNAs were also detected in the somatic cells of gonads in multiple animal species. In recent years, piRNAs have been reported in non-gonadal tissues in various arthropods, contrary to the initial assumptions of piRNAs being exclusive to gonads. Here, we performed an extensive literature review, which revealed that reports on non-gonadal somatic piRNA expression are not limited to a few specific species. Instead, when multiple studies are considered collectively, it appears to be a widespread phenomenon across arthropods. Furthermore, we systematically analyzed 168 publicly available small RNA-seq datasets from diverse tissues in 17 species, which further supported the bibliographic reports that piRNAs are expressed across tissues and species in Arthropoda.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Krystian Komenda
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityKrakowPoland
| | - Rafał Miłodrowski
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Doctoral School of Exact and Natural SciencesJagiellonian UniversityKrakowPoland
| | - Dominik Robak
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Szymon Szrajer
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Tomasz Gaczorek
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
3
|
Han HL, Li JM, Chen D, Zhai XD, Smagghe G, Jiang H, Wang JJ, Wei D. Overexpression of miR-927-5p suppresses stalky expression and negatively reduces the spermatid production in Zeugodacus cucurbitae. PEST MANAGEMENT SCIENCE 2024; 80:3412-3422. [PMID: 38407521 DOI: 10.1002/ps.8044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The melon fly, Zeugodacus cucurbitae Coquillett, is one of the major pests attacking Cucurbitaceae crops. Identifying critical genes or proteins regulating fertility is essential for sustainable pest control and a research hotspot in insect physiology. MicroRNAs (miRNAs) are short RNAs that do not directly participate in protein translation, but instead function in post-transcriptional regulation of gene expression involved in male fertility. RESULTS We found that miR-927-5p is highly expressed in the testes and investigated its function in spermatogenesis in Z. cucurbitae. Fluorescence in situ hybridization (FISH) showed miR-927-5p in the transformation and maturation region of the testis, and overexpression of miR-927-5p reduced the number of sperms by 53%. In continuation, we predicted 12 target genes of miR-927-5p using bioinformatics combined with transcriptome sequencing data, and found that miR-927-5p targets the new gene Stalky in insects, which was validated by quantitative real-time PCR, RNA pull-down and dual luciferase reporter assays. FISH also confirmed the co-localization of miR-927-5p and the transcript Stalky_1 in the testis. Moreover, silencing of Stalky_1 by RNA interference reduced the number of sperms by 32% and reduced sperm viability by 39% in physiologically mature male adults. Meanwhile, the silencing of Stalky_1 also resulted in low hatchability. CONCLUSION Our work not only presents a new, so far unreported mechanism regulating spermatogenesis by miR-927-5p targeting a new unknown target, Stalky, which is providing new knowledge on the regulatory network of insect spermatogenesis, but also lays a foundation for the development of SIT against important tephritid fly pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jing-Ming Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Xiao-Di Zhai
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
4
|
Chi H, Chai Y, Ma L, Wang Y, Wu Q, Wang L, Zhai J, Ma F, Tian Y, Qi N, Peng J, Fu Y, Yang X, Huang H, Ma S. The mechanism by which piR-000699 targets SLC39A14 regulates ferroptosis in aging myocardial ischemia/reperfusion injury. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1352-1364. [PMID: 38439666 PMCID: PMC11532203 DOI: 10.3724/abbs.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a classic type of cardiovascular disease characterized by injury to cardiomyocytes leading to different types of cell death. The degree of irreversible myocardial damage is closely related to age, and ferroptosis is involved in cardiomyocyte damage. However, the mechanisms underlying ferroptosis regulation in aging myocardial I/R injury are still unclear. The present study aims to explore the underlying mechanism of piRNA regulation in ferroptosis. Using left anterior descending coronary artery ligation in an aging rat model and a D-galactose-induced rat cardiomyocyte line (H9C2) to construct an aging cardiomyocyte model, we investigate whether ferroptosis occurs after reperfusion injury in vitro and in vivo. This study focuses on the upregulation of piR-000699 after hypoxia/reoxygenation treatment in aging cardiomyocytes by observing hypoxia/reoxygenation (H/R) injury indicators and ferroptosis-related indicators and clarifying the role of piR-000699 in H/R injury caused by ferroptosis in aging cardiomyocytes. Bioinformatics analysis reveals that SLC39A14 is a gene that binds to piR-000699. Our data show that ferroptosis plays an important role in I/R injury both in vivo and in vitro. Furthermore, the results show the potential role of piR-000699 in regulating SLC39A14 in ferroptosis in aging cardiomyocytes under hypoxia/reoxygenation conditions. Together, our results reveal that the mechanism by which piR-000699 binds to SLC39A14 regulates ferroptosis in aging myocardial I/R injury.
Collapse
Affiliation(s)
- Hongyang Chi
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Laboratory MedicineNingxia Medical UniversityYinchuan750004China
| | - Yue’e Chai
- College of PharmacyGuizhou Medical UniversityGuiyang561113China
| | - Lingju Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- Department of Geriatrics and Special Needs MedicineGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yichen Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Qianqian Wu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Lexin Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Junjie Zhai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Fufun Ma
- School of Laboratory MedicineNingxia Medical UniversityYinchuan750004China
| | - Yancheng Tian
- School of Laboratory MedicineNingxia Medical UniversityYinchuan750004China
| | - Ning Qi
- School of Laboratory MedicineNingxia Medical UniversityYinchuan750004China
| | - Jianhong Peng
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Youjuan Fu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
| | - Hui Huang
- Department of Geriatrics and Special Needs MedicineGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004China
- School of Laboratory MedicineNingxia Medical UniversityYinchuan750004China
| |
Collapse
|