1
|
Jiang W, Ding X, Huang Z, Feng X, Wang M, Zhang X, Ying S, Wang H, Gao J, Zhu Y, Jiang L. Bioinspired Chloride-Assisted Protein Channels: Enhancing Proton Transport for Sustainable Energy Harvesting from Acidic Wastewater. J Am Chem Soc 2025; 147:12604-12613. [PMID: 40170199 DOI: 10.1021/jacs.4c18730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Highly efficient proton transfer in biological processes has driven the pursuit of synthetic analogs; however, replicating high proton permeance in natural systems remains a significant challenge. Herein, inspired by the function of the ClC-ec1 protein, we report the design of Cl--assisted proton transport channels within a hybrid membrane composed of covalent organic frameworks (COFs) integrated with aramid nanofibers (ANFs). By leveraging buffer layer-mediated interfacial polymerization and the flocculation behavior of ANF in aqueous environments, we establish robust hydrogen-bonding interactions between COFs and ANFs. The hydride material enables Cl- binding, significantly accelerating proton transport in a manner similar to that of the ClC-ec1 protein channel. In the presence of a small concentration of Cl- ions (0.1% of the proton concentration), the proton permeation rate is enhanced approximately by 3 times, reaching 9.8 mol m-2 h-2. Notably, the membrane facilitates sustainable osmotic power generation from acidic wastewater, delivering an output power density of 434.8 W m-2. Theoretical calculations revealed that ANF preferentially binds Cl-, promoting proton hopping and lowering the energy barrier for proton transport. This study establishes a new paradigm for bioinspired ion-assisted proton transport, presenting an approach for sustainable energy harvesting from acidic wastewater.
Collapse
Affiliation(s)
- Wenxiu Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xuan Ding
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zihao Huang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaochen Feng
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Meiling Wang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xinyue Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Shuyu Ying
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ying Zhu
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Feng W, Chang B, Ren Y, Kong D, Tao HB, Zhi L, Khan MA, Aleisa R, Rueping M, Zhang H. Proton Exchange Membrane Water Splitting: Advances in Electrode Structure and Mass-Charge Transport Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416012. [PMID: 40035170 PMCID: PMC12004895 DOI: 10.1002/adma.202416012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents a promising technology for renewable hydrogen production. However, the large-scale commercialization of PEMWE faces challenges due to the need for acid oxygen evolution reaction (OER) catalysts with long-term stability and corrosion-resistant membrane electrode assemblies (MEA). This review thoroughly examines the deactivation mechanisms of acidic OER and crucial factors affecting assembly instability in complex reaction environments, including catalyst degradation, dynamic behavior at the MEA triple-phase boundary, and equipment failures. Targeted solutions are proposed, including catalyst improvements, optimized MEA designs, and operational strategies. Finally, the review highlights perspectives on strict activity/stability evaluation standards, in situ/operando characteristics, and practical electrolyzer optimization. These insights emphasize the interrelationship between catalysts, MEAs, activity, and stability, offering new guidance for accelerating the commercialization of PEMWE catalysts and systems.
Collapse
Affiliation(s)
- Wenting Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Debin Kong
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Linjie Zhi
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Mohd Adnan Khan
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Rashed Aleisa
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Neeshma M, Suraj PR, Mohan Dass B, Bhat SD. Radical initiated polymerization of p-styrenesulfonate on graphitic carbon nitride for interconnected water networks in short-side-chain PFSA membranes for low-humidity hydrogen fuel cells. NANOSCALE 2025; 17:7289-7302. [PMID: 39981991 DOI: 10.1039/d4nr04913f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Interfacial ionic transport resistance, caused by sparsely connected water networks in polymer electrolyte membranes (PEMs) at low relative humidity (RH), limits the performance of hydrogen fuel cells. This challenge is addressed by employing a radical-initiated polymerization of p-styrenesulfonate (SS) on graphitic carbon nitride (CN) to enrich sulfonic acid groups via covalent grafting which are then incorporated into a short-side chain perfluoro sulfonic acid (SSC PFSA) ionomer matrix. This promotes the formation of interconnected water networks, even at low RH, and reduces the activation energy without negatively impacting the transport-stability trade-off. With the synergistic improvement in proton conductivity, water retention and mechanical stability, at 0.6 V, composite membranes demonstrated a 30% improvement in current density (1.12 A cm-2) at 30% RH and a 42% improvement (0.93 A cm-2) under dry gas conditions. The peak power density achieved for the composite membrane was 1.3 W cm-2 at 100% RH. Furthermore, the composite membrane reinforces critical mechanical properties such as Young's modulus, tensile strength and dimensional stability, ensuring durability under operational stresses, evidenced by only a 10% reduction in the initial Open Circuit Voltage (OCV) during the accelerated stress test. Current density comparisons before and after the stability test also showed minimal losses, attributed to the ability of the additive to maintain interconnected water networks and reduce ionic transport resistance, thus enhancing proton conduction and fuel cell performance, particularly in low RH environments.
Collapse
Affiliation(s)
- Maniprakundil Neeshma
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai-600113, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Punnappadam Rajan Suraj
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai-600113, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Baskaran Mohan Dass
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai-600113, India.
| | - Santoshkumar D Bhat
- CSIR-Central Electrochemical Research Institute-Madras Unit, CSIR Madras Complex, Chennai-600113, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Liao Y, Zhao S, Wang R, Zhang J, Li H, Liu B, Li Y, Zhang A, Tian T, Tang H. Proton Exchange Membrane with Dual-Active-Center Surpasses the Conventional Temperature Limitations of Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417259. [PMID: 39836516 PMCID: PMC11905064 DOI: 10.1002/advs.202417259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
High temperature-proton exchange membrane fuel cells (HT-PEMFC) call for ionomers with low humidity dependence and elevated-temperature resistance. Traditional perfluorosulfonic acid (PFSA) ionomers encounter challenges in meeting these stringent requirements. Herein, this study reports a perfluoroimide multi-acid (PFMA) ionomer with dual active centers achieved through the incorporation of sulfonimide and phosphonic acid groups into the side chain. The fluorocarbon skeleton and multi-acid side chain structure facilitate the segregation of hydrophilic and hydrophobic microphases, augmenting the short-range ordering of hydrophilic nanodomains. Furthermore, the introduction of a rigid segment-benzene ring is employed to decrease side chain flexibility and raise the glass transition temperature. Notably, the prepared membrane exhibits a conductivity of 41 mS cm-1 at 40% relative humidity, showcasing a 1.8 times improvement over that of PFSA. Additionally, the power output of the H2-air fuel cell based on this membrane reaches 1.5 W cm-2 at 105 °C, marking a substantial 2.3 times enhancement compared to the PFSA. This work demonstrates the unique advantages of perfluorinated ionomers with multiple protogenic groups in the development of high-performance high-temperature electrolyte materials.
Collapse
Affiliation(s)
- Yucong Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shengqiu Zhao
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan, 528200, P. R. China
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Junjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Bingxuan Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Aojie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tian Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, Foshan, 528200, P. R. China
- Hubei Key Laboratory of Fuel Cell, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Paganin VA, Sakita AMP, Lopes T, Ticianelli EA, Perez J. Uncovering Key Parameters in Perfluorosulfonic Acid (PFSA) Membrane Fuel Cells to Enhance Performance. MEMBRANES 2025; 15:65. [PMID: 40137017 PMCID: PMC11944044 DOI: 10.3390/membranes15030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
The conversion of chemical energy to electricity in proton exchange membrane fuel cells (PEMFCs) is essential for replacing fossil fuel engines and achieving net-zero CO2 emissions. In the pursuit of more efficient PEMFCs, certain often-overlooked parameters significantly influence cell performance by either weakening the interaction between the catalytic layer (CL) and the membrane or restricting gas access to the CL. This study examines the effects of cell tightening and hot-pressing conditions on three similar-thickness perfluorosulfonic acid (PFSA) membranes: Aquivion®, Fumapem, and Nafion®. The results reveal that the hot-pressing method employing higher pressure and a lower temperature (125C method) yields lower fuel cell performance compared to the method utilizing a higher temperature and lower pressure (145C method). Furthermore, incorporating cellulose paper as a pressure homogenizer in the MEA preparation setup significantly improved current density by approximately 2.5 times compared to the traditional assembly method. Cyclic voltammetry with Ar-feed in the cathode showed that all prepared MEAs exhibited a similar platinum surface area; however, MEAs pressed at higher temperatures displayed slightly lower hydrogen desorption charge values. The torque applied to the bolts does not show a consistent trend in fuel cell performance, but optimal torque values can enhance PEMFC performance under certain conditions.
Collapse
Affiliation(s)
- Valdecir A. Paganin
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo 13560-970, Brazil; (V.A.P.); (A.M.P.S.); (E.A.T.)
| | - Alan M. P. Sakita
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo 13560-970, Brazil; (V.A.P.); (A.M.P.S.); (E.A.T.)
| | - Thiago Lopes
- Research Centre for Greenhouse Gas Innovation—RCGI and Escola Politecnica, University of São Paulo, Av. Professor Mello Moraes, São Paulo 13560-970, Brazil;
| | - Edson A. Ticianelli
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo 13560-970, Brazil; (V.A.P.); (A.M.P.S.); (E.A.T.)
| | - Joelma Perez
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo 13560-970, Brazil; (V.A.P.); (A.M.P.S.); (E.A.T.)
| |
Collapse
|
6
|
Wang S, Song J, Zhao W, Guan P, Li M, Zhang M, Zou Y, Liu J, Chen G, Ren H, Wu X, Zhou G, Zhuang J, Liu Z, Zhou Z, Liu F, Zhang Y. Nanostructures and multi-scale aggregation of high ion exchange capacity short-side-chain perfluorosulfonic acid dispersion. J Colloid Interface Sci 2024; 672:805-813. [PMID: 38875836 DOI: 10.1016/j.jcis.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Short-side-chain perfluorosulfonic acid (SSC-PFSA) ionomers with high ion-exchange-capacity are promising candidates for high-temperature proton exchange membranes (PEMs) and catalyst layer (CL) binders. The solution-casting method determines the importance of SSC-PFSA dispersion characteristics in shaping the morphology of PEMs and CLs. Therefore, a thorough understanding of the chain behavior of SSC-PFSA in dispersions is essential for fabricating high-quality PEMs and CLs. In this study, we have employed multiple characterization techniques, including dynamic light scatting (DLS), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscope (Cryo-TEM), to fully study the chain aggregation behaviors of SSC-PFSA in water-ethanol solvents and elucidate the concentration-dependent self-assembly process. In dilute dispersions (2 mg/mL), SSC-PFSA assembles into mono-disperse rod-like aggregates, featuring a twisted fluorocarbon backbone that forms a hydrophobic stem, and the sulfonic acid side chains extending outward to suit the hydrophilic environment. As the concentration increases, the radius of rod particles increases from 1.47 to 1.81 nm, and the mono-disperse rod particles first form a "end-to-end" configuration that doubles length (10 mg/mL), and then transform into a swollen network structure in semi-dilute dispersion (20 mg/mL). This work provides a well-established structure model for SSC-PFSA dispersions, which is the key nanostructure to be inherited by PEMs.
Collapse
Affiliation(s)
- Suyan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingnan Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wutong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Panpan Guan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, China
| | - Jia Liu
- Shanghai Hydrogen Propulsion Technology Co. Ltd., Shanghai 201800, China
| | - Guangying Chen
- Shanghai Hydrogen Propulsion Technology Co. Ltd., Shanghai 201800, China
| | - Huan Ren
- Shanghai Hydrogen Propulsion Technology Co. Ltd., Shanghai 201800, China
| | - Xuefei Wu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxin Zhuang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zehan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zichun Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, China.
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, China.
| |
Collapse
|
7
|
Li M, Ding H, Song J, Hao B, Zeng R, Li Z, Wu X, Fink Z, Zhou L, Russel TP, Liu F, Zhang Y. Transport-Friendly Microstructure in SSC-MEA: Unveiling the SSC Ionomer-Based Membrane Electrode Assemblies for Enhanced Fuel Cell Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403647. [PMID: 39146196 PMCID: PMC11496990 DOI: 10.1002/advs.202403647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/08/2024] [Indexed: 08/17/2024]
Abstract
The significant role of the cathodic binder in modulating mass transport within the catalyst layer (CL) of fuel cells is essential for optimizing cell performance. This investigation focuses on enhancing the membrane electrode assembly (MEA) through the utilization of a short-side-chain perfluoro-sulfonic acid (SSC-PFSA) ionomer as the cathode binder, referred to as SSC-MEA. This study meticulously visualizes the distinctive interpenetrating networks of ionomers and catalysts, and explicitly clarifies the triple-phase interface, unveiling the transport-friendly microstructure and transport mechanisms inherent in SSC-MEA. The SSC-MEA exhibits advantageous microstructural features, including a better-connected ionomer network and well-organized hierarchical porous structure, culminating in superior mass transfer properties. Relative to the MEA bonded by long-side-chain perfluoro-sulfonic acid (LSC-PFSA) ionomer, noted as LSC-MEA, SSC-MEA exhibits a notable peak power density (1.23 W cm-2), efficient O2 transport, and remarkable proton conductivity (65% improvement) at 65 °C and 70% relativity humidity (RH). These findings establish crucial insights into the intricate morphology-transport-performance relationship in the CL, thereby providing strategic guidance for developing highly efficient MEA.
Collapse
Affiliation(s)
- Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Han Ding
- School of Energy Power and Mechanical EngineeringNorth China Electric Power UniversityBeijing102206China
| | - Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Bonan Hao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Rui Zeng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Zhenyu Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Xuefei Wu
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Zachary Fink
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Thomas P. Russel
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
8
|
Liu L, Gao Y, Dong C, Yang J, Yin P. The Hybridization of Polymers with Metal Oxide Clusters for the Design of Non-Fluorinated Proton Exchange Membranes. Chemistry 2024; 30:e202402262. [PMID: 38945834 DOI: 10.1002/chem.202402262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024]
Abstract
As the key component of various energy storage and conversion devices, proton exchange membranes (PEMs) have been attracting significant interest. However, their further development is limited by the high cost of perfluorosulfonic acid polymers and the poor stability of acid-dopped non-fluorinated polymers. Recently, a new group of PEMs has been developed by hybridizing polyoxometalates (POMs), a group of super acidic sub-nanoscale metal oxide clusters, with polymers. POMs can serve simultaneously as both proton sponges and stabilizing agents, and their complexation with polymers can further improve polymers' mechanical performance and processability. Enormous efforts have been focused on studying supramolecular complexation or covalent grafting of POMs with various polymers to optimize PEMs in terms of cost, mechanical properties and stabilities. This concept summarizes recent advances in this emerging field and outlines the design strategies and application perspectives employed for using POM-polymer hybrid materials as PEMs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yiren Gao
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Chen Dong
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
9
|
Yang J, Xu H, Li J, Gong K, Yue F, Han X, Wu K, Shao P, Fu Q, Zhu Y, Xu W, Huang X, Xie J, Wang F, Yang W, Zhang T, Xu Z, Feng X, Wang B. Oxygen- and proton-transporting open framework ionomer for medium-temperature fuel cells. Science 2024; 385:1115-1120. [PMID: 39236188 DOI: 10.1126/science.adq2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
Medium-temperature proton exchange membrane fuel cells (MT PEMFCs) operating at 100° to 120°C have improved kinetics, simplified thermal and water management, and broadened fuel tolerance compared with low-temperature PEMFCs. However, high temperatures lead to Nafion ionomer dehydration and exacerbate gas transportation limitations. Inspired by osmolytes found in hyperthermophiles, we developed α-aminoketone-linked covalent organic framework (COF) ionomers, interwoven with Nafion, to act as "breathable" proton conductors. This approach leverages synergistic hydrogen bonding to retain water, enhancing hydration and proton transport while reducing oxygen transport resistance. For commercial Pt/C, the MT PEMFCs achieved peak and rated power densities of 18.1 and 9.5 Watts per milligram of Pt at the cathode at 105°C fueled with H2 and air, marking increases of 101 and 187%, respectively, compared with cells lacking the COF.
Collapse
Affiliation(s)
- Jianwei Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hengyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Jie Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Gong
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianghao Han
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ke Wu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qingling Fu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenli Xu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xin Huang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230022, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Teng Zhang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zengshi Xu
- Wuhan Institute of Marine Electric Propulsion, Wuhan Hydrogen Fuel Cell Engineering Research Center, Wuhan 430064, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Zhang Z, Cui R, Jiang X, Yu C, Zhou Y. Effect of ionic groups on the morphology and transport properties in a novel perfluorinated ionomer containing sulfonic and phosphonic acid groups: a molecular dynamics study. Phys Chem Chem Phys 2024; 26:12806-12819. [PMID: 38619877 DOI: 10.1039/d4cp00962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combining the phosphonic acid group with the sulfonic acid group in PEMs has been shown to be an effective strategy for improving the fuel cell performance. However, the interplay of two different ionic groups and the resulting effect on the membrane properties have not been fully elucidated. Here, we used classical molecular dynamics simulation to investigate the morphologies, transport properties and effects of ionic groups in a novel perfluorinated PEM containing two ionic groups (PFSA-PFPA) in comparison to the corresponding homopolymers. Phase separations between hydrophilic and hydrophobic domains are confirmed in these PEMs and result from the evolution of water clusters formed around the ionic groups. The combination of both ionic groups brings a complicated morphological feature in PFSA-PFPA, with near-cylindrical aqueous domains of large length scales interconnected by tortuous domains of small sizes. And we found that the self-diffusion coefficients of water molecules are strongly related to morphologies, with the water transport in PFSA-PFPA lying between two analogous homopolymers. At the molecular level, we found that the sulfonic and phosphonic acid groups have distinct effects on the coordination behaviors and the dynamics of water molecules and hydronium ions. Strong electrostatic interactions lead to compact coordination structures and sluggish dynamics of hydronium ions around phosphonic acid groups, which determine the morphological evolution and transport properties in PFSA-PFPA. Our study affords insights into the relationship between molecular characteristics and transport properties bridged by phase-separated morphologies in a novel PEM containing both sulfonic acid and phosphonic acid groups, which deepens the understanding of the interplay between two ionic groups and may inspire the rational design of high-performance PEMs.
Collapse
Affiliation(s)
- Zongwei Zhang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Zeng L, Lu X, Yuan C, Yuan W, Chen K, Guo J, Zhang X, Wang J, Liao Q, Wei Z. Self-Enhancement of Perfluorinated Sulfonic Acid Proton Exchange Membrane with Its Own Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305711. [PMID: 38342600 DOI: 10.1002/adma.202305711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/23/2023] [Indexed: 02/13/2024]
Abstract
High-performance proton exchange membrane (PEM) is crucial for the proton exchange membrane fuel cell (PEMFC). Herein, a novel "self-enhanced" PEM is fabricated for the first time, which is composed of perfluorinated sulfonic acid (PFSA) resin and its own nanofibers as reinforcement. With this strategy, the interfacial compatibility issue of conventional fiber-reinforced membranes is fully addressed and up to 80 wt% loading of PFSA nanofibers can be incorporated. Furthermore, on account of chain orientation within the PFSA nanofiber, single fiber exhibits super-high conductivity of 1.45 S cm-1, leading to state-of-the-art proton conductivity (1.1 S cm-1) of the as-prepared "self-enhanced" PEM so far, which is an order of magnitude increase compared with the bulk PFSA membrane (0.29 S cm-1). It surpasses any commercial PEM including the popular GORE-SELECT and Nafion HP membranes and is the only PEM with conductivity at 100 S cm-1 level. In addition, the mechanical strength and swelling ratio of membranes are both substantially improved simultaneously. Based on the high-performance "self-enhanced" PEM, high peak power densities of up to 3.6 W cm-2 and 1.7 W cm-2 are achieved in H2-O2 and H2-Air fuel cells, respectively. This strategy can be applied in any polymeric electrolyte membrane.
Collapse
Affiliation(s)
- Lingping Zeng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaoli Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Caili Yuan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Yuan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ke Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jingying Guo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaoxi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianchuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiang Liao
- School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
12
|
Sutar P, Das TN, Jena R, Dutta D, Bhattacharyya AJ, Maji TK. Proton Conductivity in a Metal-Organic Cube-Based Framework and Derived Hydrogel with Tubular Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5913-5922. [PMID: 38436582 DOI: 10.1021/acs.langmuir.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The hydrogels, formed by self-assembly of predesigned, discrete metal-organic cubes (MOCs), have emerged as a new type of functional soft material whose diverse properties are yet to be explored. Here, we explore the proton conductivity of a MOC-based supramolecular porous framework {(Me2NH2)12[Ga8(ImDC)12]·DMF·29H2O} (1) (ImDC = 4,5-imidazole dicarboxylate) and derived hydrogel (MOC-G1). The intrinsic charge-assisted H-bonded (between anionic MOC {[Ga8(ImDC)12]12-} and dimethylammonium cations) framework 1 exhibits an ambient condition proton conductivity value of 2.3 × 10-5 S cm-1 (@40% RH) which increases with increasing temperature (8.2 × 10-4 S cm-1 at 120 °C and 40% RH) and follows the Grotthuss type of mechanism of proton conduction. Self-assembly of the MOCs in the presence of ammonium cations, as molecular binders, resulted in a hydrogel (MOC-G1) that shows directional H-bonded 1D nanotubular morphology. While guest water molecules are immensely important in deciding the proton conductivity of both 1 and MOC-G1, the presence of additional proton carriers, such as DMA and ammonium cations, resulted in at least 1 order increment in the proton conductivity of the latter (1.8 × 10-2 S cm-1) than the former (1.4 × 10-3 S cm-1) under 25 °C and 98% RH condition. The values of proton conductivity of 1 and MOC-G1 are comparable with those of the best proton conduction reports in the literature. This work may pave the way for the development of proton conductors with unique architecture and conductivity requisite for the state-of-the-art technologies by selecting appropriate MOC and molecular binders.
Collapse
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Department of Chemistry, National Institute of Technology Silchar, Assam 788010, India
| | - Tarak Nath Das
- Molecular Materials Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dipak Dutta
- Solid State and Structural Chemistry Unit (SSCU), and Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore 560012, India
| | - Aninda Jiban Bhattacharyya
- Solid State and Structural Chemistry Unit (SSCU), and Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore 560012, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Molecular Materials Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
13
|
Liu L, Huang A, Yang J, Chen J, Fu K, Sun W, Deng J, Yin JF, Yin P. Supramolecular Complexation of Metal Oxide Cluster and Non-Fluorinated Polymer for Large-Scale Fabrication of Proton Exchange Membranes for High-Power-Density Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202318355. [PMID: 38265930 DOI: 10.1002/anie.202318355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Cost-effective, non-fluorinated polymer proton exchange membranes (PEMs) are highly desirable in emerging hydrogen fuel cells (FCs) technology; however, their low proton conductivities and poor chemical and dimension stabilities hinder their further development as alternatives to commercial Nafion®. Here, we report the inorganic-organic hybridization strategy by facilely complexing commercial polymers, polyvinyl butyral (PVB), with inorganic molecular nanoparticles, H3 PW12 O40 (PW) via supramolecular interaction. The strong affinity among them endows the obtained nanocomposites amphiphilicity and further lead to phase separation for bi-continuous structures with both inter-connected proton transportation channels and robust polymer scaffold, enabling high proton conductivities, mechanical/dimension stability and barrier performance, and the H2 /O2 FCs equipped with the composite PEM show promising power densities and long-term stability. Interestingly, the hybrid PEM can be fabricated continuously in large scale at challenging ~10 μm thickness via typical tape casting technique originated from their facile complexing strategy and the hybrids' excellent mechanical properties. This work not only provides potential material systems for commercial PEMs, but also raises interest for the research on hybrid composites for PEMs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Aowen Huang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kewen Fu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Weigang Sun
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jie Deng
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
14
|
Wu W, Chu Y, Zhang T, He T, Hao J. Liquid Crystal Electrolyte with Lamellar Ionic Channels for All-In-One Gel Flexible Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305463. [PMID: 37939300 DOI: 10.1002/smll.202305463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Liquid crystalline hydrogels with nanoscale order are an attractive soft material to transport ions or electrons with high efficiency. By employing noncovalent interactions between amphiphiles and solvents, defined anisotropic ordered structures can assemble that serve as interior transmissible channels. Herein, the phase behaviors of a polymerizable amphiphile of 1-vinyl-3-alkylimidazolium bromide (VCn IMBr, n = 12, 14, 16) are investigated at different concentrations in a deep eutectic solvent. The aggregation such as micelle, hexagonal, and lamellar liquid crystal phase is created. Through in-phase polymerization, the lamellar structures within an an isotropic liquid crystal can be well solidified to obtain a conductive gel electrolyte. A sandwich-structured all-in-one gel flexible supercapacitor is then built with this specific gel electrolyte. With greatly increased adhesion and minimized interfacial resistance between electrode and electrolyte, the approach will be able to create energy-storage devices with anisotropic ionic and electronic charge transportations envisioned for various electrochemical applications.
Collapse
Affiliation(s)
- Wenna Wu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yiran Chu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264000, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao He
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, 250100, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264000, China
| |
Collapse
|
15
|
Onuki S, Kawai Y, Masunaga H, Ohta N, Kikuchi R, Ashizawa M, Nabae Y, Matsumoto H. All-Perfluorosulfonated-Ionomer Composite Membranes Containing Blow-Spun Fibers: Effect of a Thin Fiber Framework on Proton Conductivity and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10682-10691. [PMID: 38381136 PMCID: PMC10910440 DOI: 10.1021/acsami.3c17643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, thin fiber composite polymer electrolyte membranes (PEMs) were prepared using short side-chain perfluorosulfonic acid (PFSA) ionomers, Aquivion, to create composite PEMs with improved proton conductivity and improved mechanical properties. PFSA thin fiber webs prepared by blow spinning and successive hot pressing were used as the porous substrate. Herein, PFSA ionomers were used for both the substrate and the matrix of the composite PEMs, and their structures, properties, and fuel cell performance were characterized. By adding the PFSA thin fiber webs to the matrix, the proton conductivity was enhanced and the mechanical properties were slightly improved. The prepared PFSA thin fiber composite PEM showed better FC performance than that of the pristine PFSA one for the high-temperature low-humidity condition in addition to the low-temperature high-humidity one. To the best of our knowledge, this is the first report on the all PFSA composite membranes containing a PFSA thin fiber framework.
Collapse
Affiliation(s)
- Shuta Onuki
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshiki Kawai
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroyasu Masunaga
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Noboru Ohta
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ryohei Kikuchi
- Materials
Analysis Division, Open Facility Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Minoru Ashizawa
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Nabae
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
16
|
Klein JM, Welch C, Ponnurangam S, Tarokh A, Karan K, Hawley ME, Sokolova A, Yim SD, Hjelm RP, Kim YS. Colloidal Nafion Particles: Are Cylinders Ubiquitous? ACS Macro Lett 2023; 12:1648-1653. [PMID: 37987786 DOI: 10.1021/acsmacrolett.3c00616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Colloidal Nafion morphology plays a critical role in determining the performance of fuel cells and electrolyzers. While small-angle neutron scattering (SANS) studies previously described Nafion in liquid media as dispersed cylinders, the analysis remains nonunique with multiple possible morphological descriptions of the data. Here, using SANS and all-atomistic molecular dynamics, we confirm that Nafion morphology in liquid media differs substantially depending on dispersing agent and dispersion method. H+ Nafion dispersed in N-methyl pyrrolidone forms swollen cluster particles with physically cross-linked ionic groups. Scattering profiles from dispersed Nafion membrane have a large structure factor feature not observed for redispersed Nafion D-521. H+ Nafion dispersed in water has a highly elongated cylindrical morphology (radius = 10 ± 1.5 Å, height = 358 ± 4.7 Å) with fully dissociated and solvated sulfonic acid groups on the particle wall. These results highlight an important discrepancy between the methods of preparing Nafion dispersions and the use of simplified analysis techniques to describe Nafion morphology.
Collapse
Affiliation(s)
- Jeffrey M Klein
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cynthia Welch
- Engineered Materials Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sathish Ponnurangam
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N In4, Canada
| | - Atefeh Tarokh
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N In4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N In4, Canada
| | - Marilyn E Hawley
- MST-8: Materials at Extremes, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anna Sokolova
- Australian Center for Neutron Science, Australian National Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Sung-Dae Yim
- Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea
| | - Rex P Hjelm
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, and the New Mexico Consortium, Los Alamos, New Mexico 87545, United States
| | - Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
17
|
Nechitailov A, Krasnova A, Glebova N. Specific Mass Activity and Surface Activity of Platinum Electrically Connected with CNTs in the Oxygen Reduction Reaction. MEMBRANES 2023; 13:832. [PMID: 37888004 PMCID: PMC10608254 DOI: 10.3390/membranes13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
This paper presents a study of the platinum activity in the ORR in a hydrogen polymer electrolyte membrane fuel cell with electrodes containing multi-walled CNTs in a wide range of compositions and conditions. The data of the comparative analysis of the platinum activity on a fraction of Nafion in the electrode, the composition of the oxidizing agent (oxygen, air), pressure, and temperature are provided. The reasons for the dependence of the platinum surface activity on the component composition of the electrode are considered. Specific mass activity and surface activity of platinum in the ORR in MEA with the electrodes with CNTs depend on the ionomer/platinum ratio. Both dependences have a maximum at the level of the 25% Nafion fraction. The maximum appears as a result of an optimal structure formation, which ensures the fullest use of the platinum surface and minimal concentration overvoltages. Specific mass activity and surface activity of platinum for the sample with 34% CNTs at T = 60 °C and excessive pressure of p = 2 atm amount to 0.46 A/mg and 0.72 mA/cm2, respectively.
Collapse
|
18
|
Song J, Zhao W, Zhou L, Meng H, Wang H, Guan P, Li M, Zou Y, Feng W, Zhang M, Zhu L, He P, Liu F, Zhang Y. Rational Materials and Structure Design for Improving the Performance and Durability of High Temperature Proton Exchange Membranes (HT-PEMs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303969. [PMID: 37653601 PMCID: PMC10602569 DOI: 10.1002/advs.202303969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Hydrogen energy as the next-generation clean energy carrier has attracted the attention of both academic and industrial fields. A key limit in the current stage is the operation temperature of hydrogen fuel cells, which lies in the slow development of high-temperature and high-efficiency proton exchange membranes. Currently, much research effort has been devoted to this field, and very innovative material systems have been developed. The authors think it is the right time to make a short summary of the high-temperature proton exchange membranes (HT-PEMs), the fundamentals, and developments, which can help the researchers to clearly and efficiently gain the key information. In this paper, the development of key materials and optimization strategies, the degradation mechanism and possible solutions, and the most common morphology characterization techniques as well as correlations between morphology and overall properties have been systematically summarized.
Collapse
Affiliation(s)
- Jingnan Song
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wutong Zhao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Libo Zhou
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongjie Meng
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Haibo Wang
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Panpan Guan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Min Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials CompanyZiboShandong256401P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ping He
- Shanghai Maxim Fuel Cell Technology CompanyShanghai201401P. R. China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesCenter of Hydrogen ScienceShanghai Key Lab of Electrical Insulation & Thermal AgingShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
19
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
20
|
Parshina AV, Safronova EY, Novikova SA, Stretton N, Yelnikova AS, Zhuchkov TR, Bobreshova OV, Yaroslavtsev AB. Perfluorosulfonic Acid Membranes with Short and Long Side Chains and Their Use in Sensors for the Determination of Markers of Viral Diseases in Saliva. MEMBRANES 2023; 13:701. [PMID: 37623762 PMCID: PMC10456743 DOI: 10.3390/membranes13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The development of accessible express methods to determine markers of viral diseases in saliva is currently an actual problem. Novel cross-sensitive sensors based on Donnan potential with bio-comparable perfluorosulfonic acid membranes for the determination of salivary viral markers (N-acetyl-L-methionine, L-carnitine, and L-lysine) were proposed. Membranes were formed by casting from dispersions of Nafion or Aquivion in N-methyl-2-pyrollidone or in a mixture of isopropyl alcohol and water. The influence of the polymer equivalent weight and the nature of dispersing liquid on water uptake, ion conductivity, and slope of Donnan potential for the membranes in H+ and Na+ form was investigated. The varying of the sorption and transport properties of perfluorosulfonic acid membranes provided a change in the distribution of the sensor sensitivity to N-acetyl-L-methionine, L-carnitine, and L-lysine ions, which was necessary for multisensory system development. The simultaneous determination of three analytes, and the group analysis of them in artificial saliva solutions, was performed. The errors of N-acetyl-L-methionine and L-carnitine determination were 4-12 and 3-11%, respectively. The determination of L-lysine was complicated by its interaction with Ca2+ ions. The error of the group analysis was no greater than 9%. The reverse character of the viral markers' sorption by the membranes provided long-term sensor operation.
Collapse
Affiliation(s)
- Anna V. Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia; (A.V.P.); (A.S.Y.); (T.R.Z.); (O.V.B.)
| | - Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.Y.S.); (S.A.N.); (N.S.)
| | - Svetlana A. Novikova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.Y.S.); (S.A.N.); (N.S.)
| | - Nastasia Stretton
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.Y.S.); (S.A.N.); (N.S.)
| | - Anastasia S. Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia; (A.V.P.); (A.S.Y.); (T.R.Z.); (O.V.B.)
| | - Timur R. Zhuchkov
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia; (A.V.P.); (A.S.Y.); (T.R.Z.); (O.V.B.)
| | - Olga V. Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia; (A.V.P.); (A.S.Y.); (T.R.Z.); (O.V.B.)
| | - Andrey B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.Y.S.); (S.A.N.); (N.S.)
| |
Collapse
|