1
|
Wei P, Zhang Z, Cheng S, Meng Y, Tong M, Emu L, Yan W, Zhang Y, Wang Y, Zhao J, Xu C, Zhai F, Lu J, Wang L, Jiang H. Biodegradable origami enables closed-loop sustainable robotic systems. SCIENCE ADVANCES 2025; 11:eads0217. [PMID: 39919175 PMCID: PMC11804903 DOI: 10.1126/sciadv.ads0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Robots are increasingly integral across various sectors due to their efficiency and superior capabilities, which enable performance beyond human potential. However, the development of robotic systems often conflicts with the sustainable development goals set by the United Nations, as they generate considerable nondegradable waste and organic/inorganic pollutants throughout their life cycle. In this paper, we introduce a dual closed-loop robotic system that integrates biodegradable, sustainable materials such as plasticized cellulose films and NaCl-infused ionic conductive gelatin organogels. These materials undergo a closed-loop ecological cycle from processing to biodegradation, contributing to new growth, while the self-sensing, origami-based robot supports a seamless human-in-the-loop teleoperation system. This innovative approach represents a paradigm shift in the application of soft robotic systems, offering a path toward a more sustainable future by aligning advanced robotic functionalities with environmental stewardship.
Collapse
Affiliation(s)
- Pingdong Wei
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhuang Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaoru Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yao Meng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mengjie Tong
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Luoqian Emu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Yan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yanlin Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yunjie Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jingyang Zhao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Changyu Xu
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Feng Zhai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321000, China
| | - Junqiang Lu
- School of Mathematics Information, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Lei Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
2
|
Zhou W, Xiong P, Ge Y, He Y, Sun Y, Zhang G, Chen Y, Wu C, Zhang W, Liu Y, Yang H. Amoeba-Inspired Soft Robot for Integrated Tumor/Infection Therapy and Painless Postoperative Drainage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407148. [PMID: 39494576 DOI: 10.1002/advs.202407148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Indexed: 11/05/2024]
Abstract
Tumor recurrence and wound infection are devastating complications of wide excision surgery for melanoma, and deep postoperative wound drainage typically increases pain. An amoeba-inspired magnetic soft robot (ASR) with switchable dormant and active phases is developed to address the aforementioned challenges. The dormant ASR supports wounds through its solid-like elasticity and regulates reactive oxygen species (ROS) levels bidirectionally, promoting healing in infected wounds and eliminating residual tumors. It solves the challenge caused by the contradictory need for ROS scavenging in wound healing and ROS amplification in tumor/infection management. The active ASR removes absorbed wound exudate by crawling out from irregular wounds; interestingly, this crawling motion prevents damage to fragile tissues and alleviates wound pain via "non-direct friction." More importantly, ASR switches different states in response to an alternating magnetic field owing to its magnetothermal properties, and this process also exerts synergistic antitumor and bacteriostatic effects. Due to the appropriate mechanical structure (cohesive force) of ASR, the content of magnetic nanoparticles required to drive the ASR is ten-fold lower than that of conventional magnetic soft robots, enabling in vivo degradation. These outcomes highlight the vantage of the ASR for treating post-tumor excision wounds and underscore their potential for clinical application.
Collapse
Affiliation(s)
- Wanyi Zhou
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Peizheng Xiong
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yiman Ge
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| | - Yuhan He
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China
| | - Gang Zhang
- Department of Oncology, Chengdu Second People's Hospital, Chengdu, Sichuan, 610072, P. R. China
| | - Yifan Chen
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Urology, Deyang People's Hospital, Deyang, Sichuan, 618099, P. R. China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
3
|
Han WB, Jang TM, Shin B, Naganaboina VR, Yeo WH, Hwang SW. Recent advances in soft, implantable electronics for dynamic organs. Biosens Bioelectron 2024; 261:116472. [PMID: 38878696 DOI: 10.1016/j.bios.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Unlike conventional rigid counterparts, soft and stretchable electronics forms crack- or defect-free conformal interfaces with biological tissues, enabling precise and reliable interventions in diagnosis and treatment of human diseases. Intrinsically soft and elastic materials, and device designs of innovative configurations and structures leads to the emergence of such features, particularly, the mechanical compliance provides seamless integration into continuous movements and deformations of dynamic organs such as the bladder and heart, without disrupting natural physiological functions. This review introduces the development of soft, implantable electronics tailored for dynamic organs, covering various materials, mechanical design strategies, and representative applications for the bladder and heart, and concludes with insights into future directions toward clinically relevant tools.
Collapse
Affiliation(s)
- Won Bae Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Beomjune Shin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Venkata Ramesh Naganaboina
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA; IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Oh MH, Kim YH, Han J, Kim Y, Kim D, Kim KS, Lee JY, Kim SK, Kwon MS, Kim SY, Kang SK. Magnetically Actuated Trigger Transient Soft Actuators Comprising On-Demand Photo-Initiated and Thermo-Degradable Polypropylene Carbonate-Photo-Acid Generator. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415664 DOI: 10.1021/acsami.3c19613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lifetime-reconfigurable soft robots have emerged as a new class of robots, emphasizing the unmet needs of futuristic sustainability and security. Trigger-transient materials that can both actuate and degrade on-demand are crucial for achieving life-reconfigurable soft robots. Here, we propose the use of transient and magnetically actuating materials that can decompose under ultraviolet light and heat, achieved by adding photo-acid generator (PAG) and magnetic particles (Sr-ferrite) to poly(propylene carbonate) (PPC). Chemical and thermal analyses reveal that the mechanism of PPC-PAG decomposition occurs through PPC backbone cleavage by the photo-induced acid. The self-assembled monolayer (SAM) encapsulation of Sr-ferrite preventing the interaction with the PAG allowed the transience of magnetic soft actuators. We demonstrate remotely controllable and degradable magnetic soft kirigami actuators using blocks with various magnetized directions. This study proposes novel approaches for fabricating lifetime-configurable magnetic soft actuators applicable to diverse environments and applications, such as enclosed/sealed spaces and security/military devices.
Collapse
Affiliation(s)
- Min-Ha Oh
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Hwan Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jieun Han
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yongsub Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daewhan Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyung-Sub Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ju-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang-Koog Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Yup Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|