1
|
Huang F, Duan J, Liu W, Yang C, Yang L. BDNF mediates the heart-brain axis: implications for cardiovascular diseases and mental disorders. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02016-w. [PMID: 40299045 DOI: 10.1007/s00406-025-02016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
The comorbidity of cardiovascular diseases (CVDs) and mental disorders (MD) has become a significant challenge in modern medicine, severely affecting patients' quality of life and prognosis. The heart-brain axis, a bidirectional pathway connecting the central nervous system and the cardiovascular system, plays a critical role in the comorbidity mechanisms of CVDs and MD. In recent years, brain-derived neurotrophic factor (BDNF) has emerged as a key molecule in the study of CVDs and MD. By binding with high affinity to TrkB receptors and activating various signaling pathways, BDNF exerts multiple functions in both the nervous and cardiovascular systems. BDNF may participate in the pathogenesis of CVDs combined with MD through multiple mechanisms such as regulating inflammatory responses, oxidative stress (OS), and the hypothalamic-pituitary-adrenal (HPA) axis, making it a promising new target for future diagnosis and treatment. This review systematically summarizes the mechanisms by which BDNF functions in heart-brain comorbidity, particularly its multifaceted influence on inflammation, OS, and neuroendocrine regulation. Additionally, we discuss the clinical application prospects of BDNF in disease diagnosis and treatment, as well as progress in related drug development. A deeper understanding of BDNF's role in the heart-brain axis will provide new insights and strategies for the prevention, diagnosis, and treatment of CVDs and MD.
Collapse
Affiliation(s)
- Fan Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Wei Liu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
2
|
O'Hare JK, Wang J, Shala MD, Polleux F, Losonczy A. Distal tuft dendrites predict properties of new hippocampal place fields. Neuron 2025:S0896-6273(25)00249-1. [PMID: 40250428 DOI: 10.1016/j.neuron.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025]
Abstract
Hippocampal pyramidal neurons support episodic memory by integrating complementary information streams into new "place fields." Distal tuft dendrites have been proposed to drive place field formation via dendritic plateau potentials. However, the relationship between distal dendritic and somatic activity is unknown in vivo. Here, we gained simultaneous optical access to distal tuft dendrites and their soma in head-fixed mice navigating virtual reality environments. While distal tuft dendrites rarely express local peri-formation plateau potentials, the timing and extent of their recruitment predict properties of resultant somatic place fields. Following somatic place field formation, distal tuft dendrites readily express plateau potentials as well as local place fields that are back shifted relative to that of their soma. Distal tuft dendrites may therefore undergo local plasticity during somatic place field formation. Through direct in vivo observation, we provide an updated dendritic basis for hippocampal feature selectivity during navigational learning.
Collapse
Affiliation(s)
- Justin K O'Hare
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Jamie Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Margjele D Shala
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Heiser H, Kiessler F, Roggenbach A, Ibanez V, Wieckhorst M, Helmchen F, Gjorgjieva J, Wahl AS. Brain-wide microstrokes affect the stability of memory circuits in the hippocampus. Nat Commun 2025; 16:3462. [PMID: 40216776 PMCID: PMC11992252 DOI: 10.1038/s41467-025-58688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Cognitive deficits affect over 70% of stroke survivors, yet the mechanisms by which multiple small ischemic events contribute to cognitive decline remain poorly understood. In this study, we employed chronic two-photon calcium imaging to longitudinally track the fate of individual neurons in the hippocampus of mice navigating a virtual reality environment, both before and after inducing brain-wide microstrokes. Our findings reveal that, under normal conditions, hippocampal neurons exhibit varying degrees of stability in their spatial memory coding. However, microstrokes disrupted this functional network architecture, leading to cognitive impairments. Notably, the preservation of stable coding place cells, along with the stability, precision, and persistence of the hippocampal network, was strongly predictive of cognitive outcomes. Mice with more synchronously active place cells near important locations demonstrated recovery from cognitive impairment. This study uncovers critical cellular responses and network alterations following brain injury, providing a foundation for novel therapeutic strategies preventing cognitive decline.
Collapse
Affiliation(s)
- Hendrik Heiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Filippo Kiessler
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Adrian Roggenbach
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Victor Ibanez
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Martin Wieckhorst
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany.
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
4
|
Shouval HZ, Kirkwood A. Eligibility traces as a synaptic substrate for learning. Curr Opin Neurobiol 2025; 91:102978. [PMID: 39965463 DOI: 10.1016/j.conb.2025.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Animals can learn to associate a behavior or a stimulus with a delayed reward, this is essential for survival. A mechanism proposed for bridging this gap are synaptic eligibility traces, which are slowly decaying tags, which can lead to synaptic plasticity if followed by rewards. Recently, experiments have demonstrated the existence of synaptic eligibility traces in diverse neural systems, depending on either neuromodulators or plateau potentials. Evidence for both eligibility trace-dependent potentiation and depression of synaptic efficacies has emerged. We discuss the commonalities and differences of these different results. We show why the existence of both potentiation and depression is important because these opposing forces can lead to a synaptic stopping rule. Without a stopping rule, synapses would saturate at their upper bound thus leading to a loss of selectivity and representational power. We discuss the possible underlying mechanisms of the eligibility traces as well as their functional and theoretical significance.
Collapse
Affiliation(s)
- Harel Z Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, 3400 North Charles Street, 350 Dunning Hall, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Dorian CC, Taxidis J, Arac A, Golshani P. Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609983. [PMID: 39253411 PMCID: PMC11383060 DOI: 10.1101/2024.08.27.609983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Behavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where a single plateau potential in hippocampal neurons forms a place field during spatial learning. We asked whether BTSP can also form non-spatial responses in the hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play in driving non-spatial BTSP. Two-photon calcium imaging of dorsal CA1 neurons while mice performed an odor-cued working memory task revealed plateau-like events which formed stable odor-specific responses. These BTSP-like events were much more frequent during the first day of task learning, suggesting that BTSP may be important for early learning. Strong single-neuron stimulation through holographic optogenetics induced plateau-like events and subsequent odor-fields, causally linking BTSP with non-spatial representations. MEC chemogenetic inhibition reduced the frequency of plateau-like events, whereas LEC inhibition reduced potentiation and field-induction probability. Calcium imaging of LEC and MEC temporammonic CA1 projections revealed that MEC axons were more strongly activated by odor presentations, while LEC axons were more odor-selective, further confirming the role of MEC in driving plateau-like events and LEC in relaying odor-specific information. Altogether, odor-specific information from LEC and strong odor-timed activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity mechanism for generation of both spatial and non-spatial responses in the hippocampus.
Collapse
Affiliation(s)
- Conor C. Dorian
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Greater Los Angeles Veteran Affairs Medical Center, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
7
|
Gonzalez KC, Negrean A, Liao Z, Terada S, Zhang G, Lee S, Ócsai K, Rózsa BJ, Lin MZ, Polleux F, Losonczy A. Synaptic basis of feature selectivity in hippocampal neurons. Nature 2025; 637:1152-1160. [PMID: 39695232 PMCID: PMC11988941 DOI: 10.1038/s41586-024-08325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals1. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields. However, despite decades of work, our understanding of how synaptic plasticity underlies place-field formation and memory encoding remains limited, largely due to a shortage of tools and technical challenges associated with the visualization of synaptic plasticity at the single-neuron resolution in awake behaving animals. To address this, we developed an all-optical approach to monitor the spatiotemporal tuning and synaptic weight changes of dendritic spines before and after the induction of a place field in single CA1 pyramidal neurons during spatial navigation. We identified a temporally asymmetric synaptic plasticity kernel resulting from bidirectional modifications of synaptic weights around the induction of a place field. Our work identified compartment-specific differences in the magnitude and temporal expression of synaptic plasticity between basal dendrites and oblique dendrites. Our results provide experimental evidence linking synaptic plasticity to the rapid emergence of spatial selectivity in hippocampal neurons, a critical prerequisite for episodic memory.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Allen Brain Institute, Seattle, WA, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Katalin Ócsai
- BrainVisionCenter, Budapest, Hungary
- Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs J Rózsa
- BrainVisionCenter, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Bayer KU, Giese KP. A revised view of the role of CaMKII in learning and memory. Nat Neurosci 2025; 28:24-34. [PMID: 39558039 DOI: 10.1038/s41593-024-01809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) plays a fundamental role in learning and possibly also in memory. However, current mechanistic models require fundamental revision. CaMKII autophosphorylation at Thr286 (pThr286) does not provide the molecular basis for long-term memory, as long believed. Instead, pThr286 mediates the signal processing required for induction of several distinct forms of synaptic plasticity, including Hebbian long-term potentiation and depression and non-Hebbian behavioral timescale synaptic plasticity. We discuss (i) the molecular computations by which CaMKII supports these diverse plasticity mechanisms, (ii) alternative CaMKII mechanisms that may contribute to the maintenance phase of LTP and (iii) the relationship of these mechanisms to behavioral learning and memory.
Collapse
Affiliation(s)
- Karl Ulrich Bayer
- Department of Pharmacology and Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK.
| |
Collapse
|
9
|
Jain A, Nakahata Y, Pancani T, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature 2024; 635:151-159. [PMID: 39385027 PMCID: PMC11540904 DOI: 10.1038/s41586-024-08021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Behavioural time scale plasticity (BTSP) is non-Hebbian plasticity induced by integrating presynaptic and postsynaptic components separated by a behaviourally relevant time scale (seconds)1. BTSP in hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms that enable synapse-specific plasticity on a behavioural time scale are unknown. Here we show that BTSP can be induced in a single dendritic spine using two-photon glutamate uncaging paired with postsynaptic current injection temporally separated by a behavioural time scale. Using an improved Ca2+/calmodulin-dependent kinase II (CaMKII) sensor, we did not detect CaMKII activation during this BTSP induction. Instead, we observed dendritic, delayed and stochastic CaMKII activation (DDSC) associated with Ca2+ influx and plateau potentials 10-100 s after BTSP induction. DDSC required both presynaptic and postsynaptic activity, which suggests that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 15-30 s after the BTSP protocol inhibited synaptic potentiation, which indicated that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca2+ release facilitated both DDSC and BTSP. Thus, our study suggests that non-synapse-specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
Affiliation(s)
- Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Centre for High Impact Neuroscience and Translational Applications (CHINTA), TCG CREST, Kolkata, India
| | - Yoshihisa Nakahata
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tristano Pancani
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Tetsuya Watabe
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Polina Rusina
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kelly South
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kengo Adachi
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Long Yan
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
10
|
Liao Z, Losonczy A. Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus. Annu Rev Neurosci 2024; 47:187-209. [PMID: 38663090 PMCID: PMC11519319 DOI: 10.1146/annurev-neuro-102423-100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| | - Attila Losonczy
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
11
|
Chen X, Cai Q, Zhou J, Pleasure SJ, Schulman H, Zhang M, Nicoll RA. CaMKII autophosphorylation is the only enzymatic event required for synaptic memory. Proc Natl Acad Sci U S A 2024; 121:e2402783121. [PMID: 38889145 PMCID: PMC11214084 DOI: 10.1073/pnas.2402783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation) and of multiple downstream target proteins. However, whether either type of phosphorylation plays any role in the synaptic enhancing action of CaMKII remains hotly contested. We have designed a series of experiments to define the minimal requirements for the synaptic enhancement by CaMKII. We find that autophosphorylation of T286 and further binding of CaMKII to the GluN2B subunit are required both for initiating LTP and for its maintenance (synaptic memory). Once bound to the NMDA receptor, the synaptic action of CaMKII occurs in the absence of target protein phosphorylation. Thus, autophosphorylation and binding to the GluN2B subunit are the only two requirements for CaMKII in synaptic memory.
Collapse
Affiliation(s)
- Xiumin Chen
- Department of Neurology and Institute of Neuroscience of Soochow University, Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| | - Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, State Key Laboratory of Vaccines for Infectious Diseases,School of Public Heath, Xiamen University, Xiamen, Fujian361102, China
| | - Jing Zhou
- Department of Neurology, University of California, San Francisco, CA94158
| | - Samuel J. Pleasure
- Department of Neurology, University of California, San Francisco, CA94158
| | - Howard Schulman
- Department of Pharmacology, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Panorama Research Institute, Sunnyvale, CA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Laboratory Medicine, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94158
| |
Collapse
|
12
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
13
|
Li G, McLaughlin DW, Peskin CS. A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds. Proc Natl Acad Sci U S A 2024; 121:e2311709121. [PMID: 38324573 PMCID: PMC10873618 DOI: 10.1073/pnas.2311709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
Collapse
Affiliation(s)
- Guanchun Li
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
| | - David W. McLaughlin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
- Institute of Mathematical Science, Mathematics Department, New York University-Shanghai, Shanghai200122, China
- Neuroscience Institute of New York University Langone Health, New York University, New York, NY10016
| | - Charles S. Peskin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
| |
Collapse
|
14
|
Ishida IG, Sethi S, Mohren TL, Abbott L, Maimon G. Neuronal calcium spikes enable vector inversion in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568537. [PMID: 38077032 PMCID: PMC10705278 DOI: 10.1101/2023.11.24.568537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A typical neuron signals to downstream cells when it is depolarized and firing sodium spikes. Some neurons, however, also fire calcium spikes when hyperpolarized. The function of such bidirectional signaling remains unclear in most circuits. Here we show how a neuron class that participates in vector computation in the fly central complex employs hyperpolarization-elicited calcium spikes to invert two-dimensional mathematical vectors. When cells switch from firing sodium to calcium spikes, this leads to a ~180° realignment between the vector encoded in the neuronal population and the fly's internal heading signal, thus inverting the vector. We show that the calcium spikes rely on the T-type calcium channel Ca-α1T, and argue, via analytical and experimental approaches, that these spikes enable vector computations in portions of angular space that would otherwise be inaccessible. These results reveal a seamless interaction between molecular, cellular and circuit properties for implementing vector math in the brain.
Collapse
Affiliation(s)
- Itzel G. Ishida
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Sachin Sethi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Thomas L. Mohren
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - L.F. Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| |
Collapse
|