1
|
Iwaya K, Nagase T, Zako T, Itoh Y, Yoshiko T, Arai H, Nagami N, Ishikawa T, Sugimura H. Structural analysis of a micron-sized deposit of Cu 0 in an insulin ball from a person with diabetes. COMMUNICATIONS MEDICINE 2025; 5:158. [PMID: 40328936 PMCID: PMC12056176 DOI: 10.1038/s43856-025-00889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Protein misfolding is a hallmark of aging, resulting in diabetes and neuroendocrine disorders. Insulin preparations also form aggregates known as insulin balls. Aggregated insulin preparations usually form amyloids and are stable in subcutaneous tissue, some specimens are cytotoxic to cultured cells. METHODS A multilayered structural analysis of the detailed morphology of 21 insulin balls was performed by connecting regions of interest along spatial axes. Gross and optical microscopic findings, Raman spectrometric analysis using formalin-fixed paraffin-embedded block specimens, matrix-assisted laser desorption/ionization-time of flight-mass spectrometry, microfocus X-ray computed tomography, scanning electron microscopy-energy dispersive X-ray spectroscopy analysis, and transmission electron microscopy analysis were performed. RESULTS Here, we show the presence of 100 µm Cu0 within an insulin ball removed from a woman in her mid-40s with diabetes. The insulin ball is made of insulin lispro in an insoluble state in the lower abdominal subcutaneous adipose tissue. Transmission electron microscopy reveals fibrous structures. Microfocus X-ray computed tomography detects many spots with strong light contrast in the insulin ball. Scanning electron microscopy-energy dispersive X-ray spectroscopic analysis shows that the largest light spot is elemental metallic copper without an oxidation state (Cu0). CONCLUSIONS The largest amount of Cu0 found in living things is in a human. Our discovery of 100 µm Cu0 within the insulin ball supports the idea that insulin preparations from outside can disrupt the balance of metals, including Cu. In 2025, the patient continues to inject subcutaneous insulin preparations, but no new insulin balls appear.
Collapse
Affiliation(s)
- Keiichi Iwaya
- Department of Pathology, Kyoundo Hospital, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan.
- Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan.
- Department of Breast Oncology, Tokyo Medical University, Shinjyuku-ku, Tokyo, Japan.
| | - Terumasa Nagase
- Noritake Clinic, Ushiku, Ibaraki, Japan
- Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yoshiyuki Itoh
- Application Management Department, and Solution Development Center, JEOL Ltd., Akishima, Tokyo, Japan
| | - Takashima Yoshiko
- Application Management Department, and Solution Development Center, JEOL Ltd., Akishima, Tokyo, Japan
- Solution Planning Department, Solution Development Center, JEOL Ltd., Akishima, Tokyo, Japan
| | - Hisae Arai
- Department of Pathology, Kyoundo Hospital, Sasaki Foundation, Chiyoda-ku, Tokyo, Japan
| | - Nobumasa Nagami
- Forensic Scientific Laboratory, Hyogo Prefectural Police H.Q., Chuo-Ku, Kobe, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology, Tokyo Medical University, Shinjyuku-ku, Tokyo, Japan
| | | |
Collapse
|
2
|
Casado-Combreras MÁ, De la Rosa MA, Díaz-Moreno I. Protocols for monitoring condensate formation and dynamics between the phase-separating proteins SET/TAF-Iβ and cytochrome c. STAR Protoc 2025; 6:103796. [PMID: 40338746 DOI: 10.1016/j.xpro.2025.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
The targeting of several nuclear stress-response factors by translocated cytochrome c upon genotoxic stress has been demonstrated in recent years to involve liquid-liquid phase separation. This protocol addresses the need to investigate the mechanisms and features of phase separation of the histone chaperone SET/TAF-Iβ induced by cytochrome c. We provide steps for protein purification and fluorescent labeling, condensate formation, imaging, quantification, and evaluation of their dynamics by fluorescence recovery after photobleaching (FRAP). This protocol can be broadly applied to other protein complexes. For complete details on the use and execution of this protocol, please refer to Casado-Combreras et al.1.
Collapse
Affiliation(s)
- Miguel Á Casado-Combreras
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville, Spain.
| |
Collapse
|
3
|
do Amaral MJ, Passos AR, Mohapatra S, Freire MH, Wegmann S, Cordeiro Y. X-Ray Photon Correlation Spectroscopy, Microscopy, and Fluorescence Recovery After Photobleaching to Study Phase Separation and Liquid-to-Solid Transition of Prion Protein Condensates. Bio Protoc 2025; 15:e5277. [PMID: 40291420 PMCID: PMC12021588 DOI: 10.21769/bioprotoc.5277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Biomolecular condensates are macromolecular assemblies constituted of proteins that possess intrinsically disordered regions and RNA-binding ability together with nucleic acids. These compartments formed via liquid-liquid phase separation (LLPS) provide spatiotemporal control of crucial cellular processes such as RNA metabolism. The liquid-like state is dynamic and reversible, containing highly diffusible molecules, whereas gel, glass, and solid phases might not be reversible due to the strong intermolecular crosslinks. Neurodegeneration-associated proteins such as the prion protein (PrP) and Tau form liquid-like condensates that transition to gel- or solid-like structures upon genetic mutations and/or persistent cellular stress. Mounting evidence suggests that progression to a less dynamic state underlies the formation of neurotoxic aggregates. Understanding the dynamics of proteins and biomolecules in condensates by measuring their movement in different timescales is indispensable to characterize their material state and assess the kinetics of LLPS. Herein, we describe protein expression in E. coli and purification of full-length mouse recombinant PrP, our in vitro experimental system. Then, we describe a systematic method to analyze the dynamics of protein condensates by X-ray photon correlation spectroscopy (XPCS). We also present fluorescence recovery after photobleaching (FRAP)-optimized protocols to characterize condensates, including in cells. Next, we detail strategies for using fluorescence microscopy to give insights into the folding state of proteins in condensates. Phase-separated systems display non-equilibrium behavior with length scales ranging from nanometers to microns and timescales from microseconds to minutes. XPCS experiments provide unique insights into biomolecular dynamics and condensate fluidity. Using the combination of the three strategies detailed herein enables robust characterization of the biophysical properties and the nature of protein phase-separated states. Key features • For FRAP in cells, we recommend using a spinning disk confocal microscope coupled with temperature and CO2 incubator. • For fluorescence microscopy, we recommend simultaneously imaging differential interference contrast (DIC) (or phase contrast) and fluorescence channels to obtain morphological details of phase-separated structures. • For XPCS, coherent X-ray beams, fast X-ray detectors in fourth and third synchrotron light sources, and X-ray free-electron lasers are required.
Collapse
Affiliation(s)
- Mariana J. do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline R. Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | - Maria Heloisa Freire
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zhang J, Dai W, Yang W, Luo W, Dong F, Hao J, Li RY, Xue C, Xie C, Sun L, Wang Y, Ding J, Song Z, Shen J, Ma Y, Ding Y, Zhang L, Zhang Z, Zhao Y, He X. Multimodal Profiling of Iron Heterogeneity at the Nanoscale. NANO LETTERS 2025; 25:5010-5018. [PMID: 40082277 DOI: 10.1021/acs.nanolett.5c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Life is inherently heterogeneous, and visualizing this heterogeneity in the spatial distribution of biometals offers valuable insights into various biological processes. While biometal mapping provides superior spatial resolution compared to other bioanalytical techniques, it alone cannot fully explain the functional roles of biometals in health and disease. In this study, we introduced a novel method using specially designed sample grids to facilitate beam-, X-ray-, and ion-beam-based imaging of biometals on the same tissue section. This innovative approach aligns and integrates nanoscale-resolved iron profiles across spatial, chemical, and isotopic dimensions. By combining these analyses, we achieved unprecedented spatial resolution and detail, revealing the complex regulatory framework of iron homeostasis in liver tissues following iron overload. These findings demonstrate that enhancing both the information content and spatial resolution of biometal analysis can overcome current limitations, providing new insights into the molecular mechanisms underlying biometal functions.
Collapse
Affiliation(s)
- Junzhe Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenhe Luo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengliang Dong
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Rui-Ying Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chaofan Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Changjian Xie
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Shen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Juliani do Amaral M, Soares de Oliveira L, Cordeiro Y. Zinc ions trigger the prion protein liquid-liquid phase separation. Biochem Biophys Res Commun 2025; 753:151489. [PMID: 39983547 DOI: 10.1016/j.bbrc.2025.151489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Prion diseases are characterized by the misfolding and conversion of the monomeric prion protein (PrP) to a multimeric aggregated pathogenic form, known as PrPSc. We and others have recently shown that biomolecular condensates formed via liquid-liquid phase separation of PrP can undergo maturation to solid-like species that resemble pathological aggregates, and this process is modulated by DNA, RNA, and oxidative conditions. Conversely, the most well-studied ligand of PrP, copper ions, induce liquid-like condensates of PrP that accumulate Cu2+in vitro, and live PrPC-expressing cells show condensation at the cell surface as triggered by physiologically relevant conditions of Cu2+ and protein concentrations. Since PrP can also bind to Zn2+ through its intrinsically disordered N-terminal domain, though with different affinities and binding modes than Cu2+, we hypothesized that Zn2+ could modulate PrP phase separation differently from copper ions. Using an appropriate buffer with negligible metal ion binding, as well as relevant pH, ionic strength, molecular crowding, and Zn2+ concentrations, we show that recombinant PrP undergoes phase separation with Zn2+. Furthermore, we show that metal ion-induced condensation of PrP is dependent on the N-terminal domain (residues 23-90). In vitro Fluorescence Recovery After Photobleaching (FRAP) experiments and thioflavin T aggregation kinetics support key differences in the molecular properties of PrP:Zn2+versus PrP:Cu2+ phase separated states. FRAP analysis indicated that both Cu2+ and Zn2+ promote liquid-like PrP condensates; however, PrP:Zn2+condensates exhibit a faster recovery. Cu2+ pronouncedly inhibits seed-induced PrP misfolding, whereas Zn2+ provides a milder delay in PrP aggregation. Our findings provide insights on Zn2+-induced phase separation of PrP, supporting a variety of previously proposed functions of PrP in metal sequestering and uptake, processes that could be effectively regulated through biomolecular condensation.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Passos C, Tomares D, Yassine H, Schnorr W, Hunter H, Wolfe-Feichter HK, Velier J, Dzurik KG, Grillo J, Gega A, Saxena S, Schrader J, Childers WS. BR-Bodies Facilitate Adaptive Responses and Survival During Copper Stress in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642215. [PMID: 40161778 PMCID: PMC11952403 DOI: 10.1101/2025.03.11.642215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Microbes must rapidly adapt to environmental stresses, including toxic heavy metals like copper, by sensing and mitigating their harmful effects. Here, we demonstrate that the phase separation properties of bacterial ribonucleoprotein bodies (BR-bodies) enhance Caulobacter crescentus fitness under copper stress. To uncover the underlying mechanism, we identified two key interactions between copper and the central scaffold of BR-bodies, RNase E. First, biochemical assays and fluorescence microscopy experiments show that reductive chelation of Cu2+ leads to cysteine oxidation, driving the transition of BR-bodies into more solid-like condensates. Second, tryptophan fluorescence and EPR assays reveal that RNase E binds Cu2+ at histidine sites, creating a protective microenvironment that prevents mismetallation and preserves PNPase activity. More broadly, this example highlights how metal-condensate interactions can regulate condensate material properties and establish specialized chemical environments that safeguard enzyme function.
Collapse
Affiliation(s)
- Christie Passos
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Dylan Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Hadi Yassine
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Wade Schnorr
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Hannah Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | | | - James Velier
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Kathryn G Dzurik
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Julia Grillo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Jared Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15260, USA
| |
Collapse
|
7
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
8
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 PMCID: PMC11795294 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Joshi A, Walimbe A, Sarkar S, Arora L, Kaur G, Jhandai P, Chatterjee D, Banerjee I, Mukhopadhyay S. Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates. Nat Commun 2024; 15:9215. [PMID: 39455581 PMCID: PMC11511825 DOI: 10.1038/s41467-024-53494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Physical properties of biomolecular condensates formed via phase separation of proteins and nucleic acids are associated with cell physiology and disease. Condensate properties can be regulated by several cellular factors including post-translational modifications. Here, we introduce an application of intermolecular energy migration via homo-FRET (Förster resonance energy transfer), a nanometric proximity ruler, to study the modulation in short- and long-range protein-protein interactions leading to the changes in the physical properties of condensates of fluorescently-tagged FUS (Fused in Sarcoma) that is associated with the formation of cytoplasmic and nuclear membraneless organelles. We show that homoFRET captures modulations in condensate properties of FUS by RNA, ATP, and post-translational arginine methylation. We also extend the homoFRET methodology to study the in-situ formation of cytoplasmic stress granules in mammalian cells. Our studies highlight the broad applicability of homoFRET as a potent generic tool for studying intracellular phase transitions involved in function and disease.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Gaganpreet Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Prince Jhandai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Physiological Sciences, Oklahoma State University, Oklahoma, OK, USA
| | - Dhruba Chatterjee
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India.
| |
Collapse
|
10
|
Silva CP, Picco AS, Galdino FE, de Burgos Martins de Azevedo M, Cathcarth M, Passos AR, Cardoso MB. Distinguishing Protein Corona from Nanoparticle Aggregate Formation in Complex Biological Media Using X-ray Photon Correlation Spectroscopy. NANO LETTERS 2024; 24:13293-13299. [PMID: 39361530 PMCID: PMC11505373 DOI: 10.1021/acs.nanolett.4c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.
Collapse
Affiliation(s)
- Caroline
E. P. Silva
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Agustin S. Picco
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina
| | - Flavia Elisa Galdino
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | | | - Marilina Cathcarth
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina
| | - Aline R. Passos
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Mateus Borba Cardoso
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| |
Collapse
|
11
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
12
|
Kamps J, Bader V, Winklhofer KF, Tatzelt J. Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper. J Biol Chem 2024; 300:107310. [PMID: 38657863 PMCID: PMC11126799 DOI: 10.1016/j.jbc.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
13
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|