1
|
Tran TU, Duong NT, Park DY, Bahng J, Duong HP, Do VD, Jeong MS, Lim SC. Spatially resolved optoelectronic puddles of WTe 2-2D Te heterostructure. NANOSCALE HORIZONS 2025; 10:1215-1223. [PMID: 40241425 DOI: 10.1039/d5nh00027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Two-dimensional (2D) semiconductors have attracted significant scientific interest because of their optical properties. Their applications in optoelectronic devices can be further expanded by combining them to form heterostructures. We characterized a WTe2-2D Te heterostructure through local probing of the photocurrent with respect to the magnitude, phase, and position. Photocurrent generation within the device is divided into distinct regions: photo-thermoelectric effects occur solely at the 2D Te-Au junction area, PV-dominant effects at the 2D-WTe2 interface, and thermoelectric-to-photovoltaic crossover effects at the WTe2-2D Te overlap area. These different photocurrents cannot be fused into a single domain because each area is governed by different generation mechanisms, which depend on the location of the device. The power dependence of each photocurrent type also varies within the device. Our results indicate that careful material selection and device structure design, based on the electronic, optical, and thermal properties of the channel materials, are essential to avoid forming different optoelectronic puddles that could counteract each other within a single device.
Collapse
Affiliation(s)
- Thi Uyen Tran
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Thanh Duong
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Dae Young Park
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Jaeuk Bahng
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hai Phuong Duong
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Van Dam Do
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Seong Chu Lim
- Department of Smart Fab. Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Li KH, Zhang XY, Hu LY, Su D, Liu ZG, Jin NX, Yang ZR, Li X, Bi XY, Wu JY, Song YJ, Zhang T. Wavelength-Controlled Triple-Mode Photoconductance-Polarity-Switching Field Effect Transistor for Secure Time-Variable Encrypted Optical Communication. ACS NANO 2025; 19:18607-18619. [PMID: 40349351 DOI: 10.1021/acsnano.5c02801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The controllable polarity switch between positive photoconductance (PPC) and negative photoconductance (NPC) in a photodetector is essential for the realization of versatile, innovative applications. Incorporating polarity-switching photoconductance with other response states, yet still posing challenges, allows for encoding multidimensional distinguishable optical information within a single device, which holds great potential for broadening application scope. Herein, three wavelength-controlled photoresponse modes are present in MoS2-based field effect transistor with lightly doped Si substrate by combining positive/negative photocurrent polarities with slow/fast response speeds. Specifically, a slow PPC response at 520 nm, along with fast bipolar infrared responses (NPC at 980 nm, PPC at 1310 nm), is integrated within a single MoS2 device. The opposite sub-bandgap infrared photoresponses are ascribed to the synergism of the bolometric effect and interfacial photogating, influenced by electrons photogenerated in Si. Based on the triple polarity-switching characteristic of the MoS2 device, the triple-channel real-time secure optical communication system with time-variable encryption algorithms is demonstrated, exponentially increasing the difficulty of brute-force cracking by synchronizing the time-variable key channel with two information channels. This work not only enhances the understanding of sub-bandgap photoresponse mechanisms in 2D material photodetectors but also offers promising avenues for the development of optoelectronics-assisted wireless communication technologies.
Collapse
Affiliation(s)
- Ke-Han Li
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Xiao-Yang Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University, Suzhou Campus, Suzhou 215123, China
| | - Li-Yu Hu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Dan Su
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhao-Guo Liu
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Nan-Xi Jin
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zong-Ru Yang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Xuan Li
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Xiao-Ying Bi
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jing-Yuan Wu
- Department of Optoelectronic Science and Engineering, College of Science, Donghua University, Shanghai 201620, China
| | - Yuan-Jun Song
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University, Suzhou Campus, Suzhou 215123, China
| |
Collapse
|
3
|
Li B, Lin N, Wang Z, Chen B, Lan C, Li X, Meng Y, Wang W, Ding M, Xie P, Zhang Y, Wu Z, Li D, Chen FR, Chan CH, Wang Z, Ho JC. Tunable Bipolar Photothermoelectric Response from Mott Activation for In-Sensor Image Preprocessing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502915. [PMID: 40277185 DOI: 10.1002/adma.202502915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Indexed: 04/26/2025]
Abstract
In-sensor image preprocessing, a subset of edge computing, offers a solution to mitigate frequent analog-digital conversions and the von Neumann bottleneck in conventional digital hardware. However, an efficient in-sensor device array with large-scale integration capability for high-density and low-power sensory processing is still lacking and highly desirable. This work introduces an adjustable broadband photothermoelectric detector based on a phase-change vanadium dioxide thin-film transistor. This transistor employs a vanadium dioxide/gallium nitride three-terminal structure with a gate-tunable phase transition at the gate-source junctions. This design allows for modulable photothermoelectric responsivities and alteration of the short-circuit photocurrent's polarities. The devices exhibit linear gate dependence for the broadband photoresponse and linear light-intensity dependence for both positive and negative photoresponsivities. The device's energy consumption is as low as 8 pJ per spike, which is one order of magnitude lower than that of previous Mott materials-based in-sensor preprocessing devices. A wafer-scale bipolar phototransistor array has also been fabricated by standard micro-/nano-fabrication techniques, exhibiting excellent stability and endurance (over 5000 cycles). More importantly, an integrated in-sensor convolutional network is successfully designed for simultaneous broadband image classification, medical image denoising, and retinal vessel segmentation, delivering exceptional performance and paving the way for future smart edge sensors.
Collapse
Affiliation(s)
- Bowen Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ning Lin
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zhaowu Wang
- School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Baojie Chen
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Changyong Lan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaocui Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Mingqi Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zenghui Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Chi Hou Chan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Zhang J, Chen J, Zheng S, Zhang D, Luo S, Luo H. High-Performance Self-Powered Photodetector Enabled by Te-Doped GeH Nanostructures Engineering. SENSORS (BASEL, SWITZERLAND) 2025; 25:2530. [PMID: 40285224 PMCID: PMC12030971 DOI: 10.3390/s25082530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Two-dimensional (2D) Xenes, including graphene where X represents C, Si, Ge, and Te, represent a groundbreaking class of materials renowned for their extraordinary electrical transport properties, robust photoresponse, and Quantum Spin Hall effects. With the growing interest in 2D materials, research on germanene-based systems remains relatively underexplored despite their potential for tailored optoelectronic functionalities. Herein, we demonstrate a facile and rapid chemical synthesis of tellurium-doped germanene hydride (Te-GeH) nanostructures (NSs), achieving precise atomic-scale control. The 2D Te-GeH NSs exhibit a broadband optical absorption spanning ultraviolet (UV) to visible light (VIS), which is a critical feature for multifunctional photodetection. Leveraging this property, we engineer photoelectrochemical (PEC) photodetectors via a simple drop-casting technique. The devices deliver excellent performance, including a high responsivity of 708.5 µA/W, ultrafast response speeds (92 ms rise, 526 ms decay), and a wide operational bandwidth. Remarkably, the detectors operate efficiently at zero-bias voltage, outperforming most existing 2D-material-based PEC systems, and function as self-powered broadband photodetectors. This work not only advances the understanding of germanene derivatives but also unlocks their potential for next-generation optoelectronics, such as energy-efficient sensors and adaptive optical networks.
Collapse
Affiliation(s)
- Junting Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiexin Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuojia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Da Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Huixia Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Wu H, Lian S, Zhang J, Wang B, Bai W, Ding G, Yang S, Liu Z, Zheng L, Ye C, Wang G. Construction and Multifunctional Photonic Applications of Light Absorption-Enhanced Silicon-Based Schottky Coupled Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406164. [PMID: 39548918 DOI: 10.1002/smll.202406164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Indexed: 11/18/2024]
Abstract
To expand the detection capabilities of silicon (Si)-based photodetector and address key scientific challenges such as low light absorption efficiency and short carrier lifetime in Si-based graphene photodetector. This work introduces a novel Si-based Schottky coupled structure by in situ growth of 3D-graphene and molybdenum disulfide quantum dots (MoS2 QDs) on Si substrates using chemical vapor deposition (CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques. The findings validate the "dual-enhanced absorption" effect, enhancing the understanding of the mechanisms that improve optoelectronic performance. The synergistic effect of 3D-graphene's natural nano-resonant cavity and MoS2 QDs enhances light absorption efficiency and extends carrier lifetime. Introducing MoS2 QDs broadens and intensifies the built-in electric field, promoting the separation of photogenerated electrons and holes. The photodetector exhibits a wideband light response in the wavelength range of 380-2200 nm. It stably outputs photocurrent under high-frequency (1 kHz) modulated laser (2200 nm), with a responsivity (R) of 40 mA W-1 and detectivity (D*) of 1.15 × 109 Jones. Photodetectors show the ability to process and encrypt complex binary signals and achieve versatility in "AND" gate and "OR" gate logic operations, as well as image sensing (240 × 200 pixels).
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Shanshui Lian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinqiu Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Bingkun Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Wenjun Bai
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Siwei Yang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zhiduo Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Zheng
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
6
|
Yang Q, Hu J, Li H, Du Q, Feng S, Yang D, Zhang Y, Shen J. All-Optical Modulation Photodetectors Based on the CdS/Graphene/Ge Sandwich Structures for Integrated Sensing-Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413662. [PMID: 39840929 PMCID: PMC11923923 DOI: 10.1002/advs.202413662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
In this manuscript, an all-optical modulation photodetector based on a CdS/graphene/Ge sandwich structure is designed. In the presence of the modulation (near-infrared) light, the Fermi level of the graphene channel shifts, allowing for the tuning of the visible light response speed as well as achieving a broad responsivity range from negative (-3376 A/W) to positive (3584 A/W) response. Based on this, logical operations are performed by adjusting the power of the modulation light superimposed with the signal light. This facilitates more covert, all-optical, high-speed encrypted communication. The ultrahigh tunability and nearly symmetric positive and negative photoconductivity of all-optical modulation photodetectors significantly enhance the computational capacity of neuromorphic hardware. The proposed device exhibits substantial advantages in applications requiring high fault tolerance for integrated sensing-computing (ISC) and high-resolution motion object recognition, providing insights for the development of next-generation high-bandwidth, low-power-consumption ISC devices.
Collapse
Affiliation(s)
- Qi Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Jie Hu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Haozhou Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Qing Du
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuanglong Feng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Dong Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Yupeng Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Shen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| |
Collapse
|
7
|
Ma J, Zhao Z, Zhao Y, Zhang J, Feng J, Gao H, Yang J, Yuan M, Qin Z, He K, Li T, Bai J, Li W, Wei X, Huang Z, Li F, Jiang L, Wu Y. Self-Assembled Subwavelength Nanophotonic Structures for Spatial Object Localization and Tracking. J Am Chem Soc 2025; 147:6561-6571. [PMID: 39960643 DOI: 10.1021/jacs.4c14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Subwavelength resonant nanostructures have facilitated strong light-matter interactions and tunable degrees of freedom of light, such as spectrum, polarization, and direction, thus boosting photonic applications toward light emission, manipulation, and detection. For photodetection, resonant nanostructures have enabled emerging technologies, such as light detection and ranging, spectrometers, and polarimeters, within an ultracompact footprint. However, resonant nanophotonics usually relies on nanofabrication technology, which suffers from the trade-offs between precision and scalability. Here, we first realize the self-assembly of subwavelength resonant nanostructures of metal-halide perovskites for spatial object localization and tracking. By steering crystallization along capillary corner bridges localized at edges, we achieve single crystallinity, subwavelength size, and resonant coupling between perovskite nanowires, thus leading to an angle-resolved photodetector with an angular resolution of 0.523°. Furthermore, we integrate multiple pairs of coupled resonant nanowires along two orthogonal orientations to form angle-resolved photodetector arrays for spatial light localization of both static and moving objects with an error of less than 0.6 cm. These findings create a platform for self-assembled resonant nanostructures, thus paving the way for multifunctional nanophotonic and optoelectronic devices.
Collapse
Affiliation(s)
- Jianpeng Ma
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziguang Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingjie Zhao
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jingyuan Zhang
- Department of Physics, Shanxi Datong University, Datong 037009, China
| | - Jiangang Feng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Junchuan Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhenglian Qin
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke He
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tenglong Li
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junli Bai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xiao Wei
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zihao Huang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Fengmian Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Shao H, Wang W, Zhang Y, Gao B, Jiang C, Li Y, Xie P, Yan Y, Shen Y, Wu Z, Wang R, Ji Y, Ling H, Huang W, Ho JC. Adaptive In-Sensor Computing for Enhanced Feature Perception and Broadband Image Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414261. [PMID: 39659128 DOI: 10.1002/adma.202414261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Traditional imaging systems struggle in weak or complex lighting environments due to their fixed spectral responses, resulting in spectral mismatches and degraded image quality. To address these challenges, a bioinspired adaptive broadband image sensor is developed. This innovative sensor leverages a meticulously designed type-I heterojunction alignment of 0D perovskite quantum dots (PQDs) and 2D black phosphorus (BP). This configuration enables efficient carrier injection control and advanced computing capabilities within an integrated phototransistor array. The sensor's unique responses to both visible and infrared (IR) light facilitate selective enhancement and precise feature extraction under varying lighting conditions. Furthermore, it supports real-time convolution and image restoration within a convolutional autoencoder (CAE) network, effectively countering image degradation by capturing spectral features. Remarkably, the hardware responsivity weights perform comparably to software-trained weights, achieving an image restoration accuracy of over 85%. This approach offers a robust and versatile solution for machine vision applications that demand precise and adaptive imaging in dynamic lighting environments.
Collapse
Affiliation(s)
- He Shao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Boxiang Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chunsheng Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yezhan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yan Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yi Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zenghui Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ruiheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Yu Ji
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| |
Collapse
|
9
|
Gong Y, Duan R, Hu Y, Wu Y, Zhu S, Wang X, Wang Q, Lau SP, Liu Z, Tay BK. Reconfigurable and nonvolatile ferroelectric bulk photovoltaics based on 3R-WS 2 for machine vision. Nat Commun 2025; 16:230. [PMID: 39747133 PMCID: PMC11695928 DOI: 10.1038/s41467-024-55562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS2) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device. The device is composed of graphene/3R-WS2/graphene all van der Waals layered structure, demonstrating a wide range of nonvolatile reconfigurable photoresponsivity from positive to negative ( ± 0.92 A W-1) modulated by the polarization of 3R-WS2. Further, we integrate this system with a convolutional neural network to achieve high-accuracy (100%) color image recognition at σ = 0.3 noise level within six epochs. Our findings highlight the transformative potential of bulk photovoltaic effect-based devices for efficient machine vision systems.
Collapse
Affiliation(s)
- Yue Gong
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yi Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xingli Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- IRL3288 CINTRA (CNRS NTU THALES), Nanyang Technological University, Singapore, 637553, Singapore.
| | - Qijie Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Beng Kang Tay
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- IRL3288 CINTRA (CNRS NTU THALES), Nanyang Technological University, Singapore, 637553, Singapore.
| |
Collapse
|
10
|
Jian Y, Gao W, Qin Y, Guo H, Wu X, Jia Z, Wen H, Li Z, Ma Z, Li X, Tang J, Liu J. Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition. ACS Sens 2024; 9:6471-6481. [PMID: 39636957 DOI: 10.1021/acssensors.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600-800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.
Collapse
Affiliation(s)
- Yuqing Jian
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Wei Gao
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Xiaoyu Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenyan Jia
- Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Huanfei Wen
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zhonghao Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zongmin Ma
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| |
Collapse
|
11
|
Yuan C, Xu KX, Huang YT, Xu JJ, Zhao WW. An Aquatic Autonomic Nervous System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407654. [PMID: 39377312 DOI: 10.1002/adma.202407654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Reproducing human nervous systems with endogenous mechanisms has attracted increasing attention, driven by its great potential in streamlining the neuro-electronic interfaces with bilateral signaling. Here, an artificial aquatic autonomic nervous system (ANS) with switchable excitatory/inhibitory characteristics and acetylcholine (ACh)-mediated plasticity is reported based on the newly emerged organic photoelectrochemical transistor (OPECT). Under the modulation of spatial light and ACh, the system exhibits an immediate switch between excitation and inhibition, and many pulse patterns as well as advanced ANS functions are mimicked. To demonstrate its potential usage, the artificial ANS is then utilized to control artificial pupils and muscles to emulate real biological responses during an emergency. In contrast to previous solid-state attempts, this ANS is aqueous compatible just like biological nervous systems, which are capable of real neurotransmitter mediation.
Collapse
Affiliation(s)
- Cheng Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ke-Xin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Guo Q, Ji D, Wang Q, Peng L, Zhang C, Wu Y, Kong D, Luo S, Liu W, Chen G, Wei D, Liu Y, Wei D. Supercapacitively Liquid-Solid Dual-State Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406345. [PMID: 39246122 DOI: 10.1002/adma.202406345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Photo-transduction of solid-state optoelectronics occurs in semiconductors or their interfaces. Considering the confined active area and interfacial capacitance of solid-state materials, solid-state optoelectronics faces inherent limitations in photo-transduction, especially for bionic vision, and the performance is lower than that of living systems. For example, a photoreceptor generates pA-level photocurrent when absorbing a single photon. Here, a liquid-solid dual-state phototransistor is demonstrated, in which photo-transduction and modulation take place at the microporous interface between semiconductors and water, mimicking principles of the photoreceptor. When operating in the water, an orderly stacked photo-harvesting covalent organic framework layer generates supercapacitively photogating modulation of the channel conductivity via a dual-state interface, achieving responsivity of 4.6 × 1010 A W-1 and detectivity of 1.62 × 1016 Jones at room temperature, several orders of magnitude higher than other photodetectors. Such bio-inspired dual-state optoelectronics enables high-contrast scotopic neuromorphic imaging with responsivity greater than photoreceptors, holding promise for constructing optoelectronic systems with performance beyond conventional solid-state optoelectronics.
Collapse
Affiliation(s)
- Qianying Guo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Cong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Gang Chen
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, China
| |
Collapse
|
13
|
Qian Y, Huang-Fu ZC, Li H, Zhang T, Li X, Schmidt S, Fisher H, Brown JB, Harutyunyan A, Chen H, Chen G, Rao Y. Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth. JACS AU 2024; 4:3921-3930. [PMID: 39483221 PMCID: PMC11522907 DOI: 10.1021/jacsau.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Collapse
Affiliation(s)
- Yuqin Qian
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Hao Li
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Xia Li
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Sydney Schmidt
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Haley Fisher
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Jesse B. Brown
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Avetik Harutyunyan
- Honda
Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, the University
of Texas at Austin, Austin, Texas 78758, United States
| | - Gugang Chen
- Honda
Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Yi Rao
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| |
Collapse
|
14
|
Cao A, Chen N, Zhu W, Chen Z. Graphene-Based Dual-Band Metasurface Absorber with High Frequency Ratio. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1522. [PMID: 39330678 PMCID: PMC11435161 DOI: 10.3390/nano14181522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
In this paper, we propose a novel dual-band metasurface absorber with a high frequency ratio based on graphene. By carefully designing a centrally symmetrical graphene pattern and positioning it on a glass medium, while utilizing ITO as a ground, the metasurface absorber achieves remarkable high frequency ratio microwave absorption. Specifically, this metasurface absorber exhibits two distinct resonance points at 3.7 GHz and 14 GHz, with an impressive frequency ratio over 3.5. It achieves over 90% absorption efficiency in the frequency ranges of 3.5-4.5 GHz and 13.5-14.5 GHz, highlighting its capability to effectively absorb microwaves across widely spaced frequency bands. Furthermore, the metasurface absorber demonstrates optical transparency and polarization insensitivity, adding to its versatility and potential applications. The measured results of the fabricated prototype validate its design and potential for practical use.
Collapse
Affiliation(s)
- Anjie Cao
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Satellite Engineering, Shanghai 201109, China
| | - Nengfu Chen
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiren Zhu
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhansheng Chen
- Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
| |
Collapse
|
15
|
Bonavolontà C, Vettoliere A, Pannico M, Crisci T, Ruggiero B, Silvestrini P, Valentino M. Investigation of Graphene Single Layer on P-Type and N-Type Silicon Heterojunction Photodetectors. SENSORS (BASEL, SWITZERLAND) 2024; 24:6068. [PMID: 39338813 PMCID: PMC11435646 DOI: 10.3390/s24186068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Photodetectors are of great interest in several technological applications thanks to their capability to convert an optical signal into an electrical one through light-matter interactions. In particular, broadband photodetectors based on graphene/silicon heterojunctions could be useful in multiple applications due to their compelling performances. Here, we present a 2D photodiode heterojunction based on a graphene single layer deposited on p-type and n-type Silicon substrates. We report on the electro-optical properties of the device that have been measured in dark and light conditions in a spectral range from 400 nm to 800 nm. The comparison of the device's performance in terms of responsivity and rectification ratio is presented. Raman spectroscopy provides information on the graphene single layer's quality and oxidation. The results showcase the importance of the doping of the silicon substrate to realize an efficient heterojunction that improves the photoresponse, reducing the dark current.
Collapse
Affiliation(s)
- Carmela Bonavolontà
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy; (A.V.); (M.V.)
| | - Antonio Vettoliere
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy; (A.V.); (M.V.)
| | - Marianna Pannico
- CNR-IPCB, Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Teresa Crisci
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Pietro Castellino 111, I-80131 Napoli, Italy
| | - Berardo Ruggiero
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy; (A.V.); (M.V.)
| | - Paolo Silvestrini
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy; (A.V.); (M.V.)
- DMF—Department of Mathematics and Physics, Università della Campania “L. Vanvitelli”, I-81100 Caserta, Italy
| | - Massimo Valentino
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy; (A.V.); (M.V.)
| |
Collapse
|
16
|
Han F, Mi G, Luo Y, Lv J. Photovoltage-Driven Photoconductor Based on Horizontal p- n- p Junction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1483. [PMID: 39330642 PMCID: PMC11435119 DOI: 10.3390/nano14181483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The photoconductive gain theory demonstrates that the photoconductive gain is related to the ratio of carrier lifetime to carrier transit time. Theoretically, to achieve higher gain, one can either prolong the carrier lifetime or select materials with high mobility to shorten the transit time. However, the former slows the response speed of the device, while the latter increases the dark current and degrades device sensitivity. To address this challenge, a horizontal p-n-p junction-based photoconductor is proposed in this work. This device utilizes the n-region as the charge transport channel, with the charge transport direction perpendicular to the p-n-p junction. This design offers two advantages: (i) the channel is depleted by the space charge layer generated by the p and n regions, enabling the device to maintain a low dark current. (ii) The photovoltage generated in the p-n junction upon light absorption can compress the space charge layer and expand the conductive path in the n-region, enabling the device to achieve high gain and responsivity without relying on long carrier lifetimes. By adopting this device structure design, a balance between responsivity, dark current, and response speed is achieved, offering a new approach to designing high-performance photodetectors based on both traditional materials and emerging nanomaterials.
Collapse
Affiliation(s)
- Feng Han
- School of Defence Science & Technology, Xi'an Technological University, No.2 Xuefu Middle Road, Xi'an 710021, China
| | - Guanyu Mi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jian Lv
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
17
|
Wang L, Wang H, Liu J, Wang Y, Shao H, Li W, Yi M, Ling H, Xie L, Huang W. Negative Photoconductivity Transistors for Visuomorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403538. [PMID: 39040000 DOI: 10.1002/adma.202403538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haotian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Jing Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - He Shao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Mingdong Yi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KloFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
18
|
Ma Y, Liang H, Guan X, Xu S, Tao M, Liu X, Zheng Z, Yao J, Yang G. Two-dimensional layered material photodetectors: what could be the upcoming downstream applications beyond prototype devices? NANOSCALE HORIZONS 2024. [PMID: 39046195 DOI: 10.1039/d4nh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.
Collapse
Affiliation(s)
- Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Xinyi Guan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Shuhua Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Meiling Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Xinyue Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
19
|
Zhang L, Yang Q, Zhu Z. The Application of Multi-Parameter Multi-Modal Technology Integrating Biological Sensors and Artificial Intelligence in the Rapid Detection of Food Contaminants. Foods 2024; 13:1936. [PMID: 38928877 PMCID: PMC11203047 DOI: 10.3390/foods13121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Against the backdrop of continuous socio-economic development, there is a growing concern among people about food quality and safety. Individuals are increasingly realizing the critical importance of healthy eating for bodily health; hence the continuous rise in demand for detecting food pollution. Simultaneously, the rapid expansion of global food trade has made people's pursuit of high-quality food more urgent. However, traditional methods of food analysis have certain limitations, mainly manifested in the high degree of reliance on personal subjective judgment for assessing food quality. In this context, the emergence of artificial intelligence and biosensors has provided new possibilities for the evaluation of food quality. This paper proposes a comprehensive approach that involves aggregating data relevant to food quality indices and developing corresponding evaluation models to highlight the effectiveness and comprehensiveness of artificial intelligence and biosensors in food quality evaluation. The potential prospects and challenges of this method in the field of food safety are comprehensively discussed, aiming to provide valuable references for future research and practice.
Collapse
Affiliation(s)
- Longlong Zhang
- Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou 515063, China
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
| | - Qiuping Yang
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Zhu
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Bag A, Ghosh G, Sultan MJ, Chouhdry HH, Hong SJ, Trung TQ, Kang GY, Lee NE. Bio-Inspired Sensory Receptors for Artificial-Intelligence Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403150. [PMID: 38699932 DOI: 10.1002/adma.202403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Indexed: 05/05/2024]
Abstract
In the era of artificial intelligence (AI), there is a growing interest in replicating human sensory perception. Selective and sensitive bio-inspired sensory receptors with synaptic plasticity have recently gained significant attention in developing energy-efficient AI perception. Various bio-inspired sensory receptors and their applications in AI perception are reviewed here. The critical challenges for the future development of bio-inspired sensory receptors are outlined, emphasizing the need for innovative solutions to overcome hurdles in sensor design, integration, and scalability. AI perception can revolutionize various fields, including human-machine interaction, autonomous systems, medical diagnostics, environmental monitoring, industrial optimization, and assistive technologies. As advancements in bio-inspired sensing continue to accelerate, the promise of creating more intelligent and adaptive AI systems becomes increasingly attainable, marking a significant step forward in the evolution of human-like sensory perception.
Collapse
Affiliation(s)
- Atanu Bag
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Gargi Ghosh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - M Junaid Sultan
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hamna Haq Chouhdry
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Seok Ju Hong
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Geun-Young Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Research Centre for Advanced Materials Technology, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Institute of Quantum Biophysics (IQB) and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
21
|
Wu Y, Nie C, Sun F, Jiang X, Zhang X, Fu J, Peng Y, Wei X. Uncooled Broadband Photodetection via Light Trapping in Conformal PtTe 2-Silicon Nanopillar Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22632-22640. [PMID: 38642041 DOI: 10.1021/acsami.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Dirac semimetals have demonstrated significant attraction in the field of optoelectronics due to their unique bandgap structure and high carrier mobility. Combining them with classical semiconductor materials to form heterojunctions enables broadband optoelectronic conversion at room temperature. However, the low light absorption of layered Dirac semimetals substantially limits the device's responsivity in the infrared band. Herein, a three-dimensional (3D) heterostructure, composed of silicon nanopillars (SiNPs) and a conformal PtTe2 film, is proposed and demonstrated to enhance the photoresponsivity for uncooled broadband detection. The light trapping effect in the 3D heterostructure efficiently promotes the interaction between light and PtTe2, while also enhancing the light absorption efficiency of silicon, which enables the enhancement of the device responsivity across a broadband spectrum. Experimentally, the PtTe2-SiNPs heterojunction device demonstrates excellent photoelectric conversion behavior across the visible, near-infrared, and long-wave infrared (LWIR) bands, with its responsivity demonstrating an order-of-magnitude improvement compared to the counterparts with planar silicon heterojunctions. Under 11 μm laser irradiation, the noise equivalent power (NEP) can reach 1.76 nW·Hz-1/2 (@1 kHz). These findings offer a strategic approach to the design and fabrication of high-performance broadband photodetectors based on Dirac semimetals.
Collapse
Affiliation(s)
- Yuequan Wu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Changbin Nie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiying Sun
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xilong Jiang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xianning Zhang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jintao Fu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Peng
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzhan Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Liu J, Wang Y, Liu Y, Wu Y, Bian B, Shang J, Li R. Recent Progress in Wearable Near-Sensor and In-Sensor Intelligent Perception Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:2180. [PMID: 38610389 PMCID: PMC11014300 DOI: 10.3390/s24072180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
As the Internet of Things (IoT) becomes more widespread, wearable smart systems will begin to be used in a variety of applications in people's daily lives, not only requiring the devices to have excellent flexibility and biocompatibility, but also taking into account redundant data and communication delays due to the use of a large number of sensors. Fortunately, the emerging paradigms of near-sensor and in-sensor computing, together with the proposal of flexible neuromorphic devices, provides a viable solution for the application of intelligent low-power wearable devices. Therefore, wearable smart systems based on new computing paradigms are of great research value. This review discusses the research status of a flexible five-sense sensing system based on near-sensor and in-sensor architectures, considering material design, structural design and circuit design. Furthermore, we summarize challenging problems that need to be solved and provide an outlook on the potential applications of intelligent wearable devices.
Collapse
Affiliation(s)
- Jialin Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Yitao Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
- Materials and Optoelectronics Research Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runwei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
- Materials and Optoelectronics Research Center, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|