1
|
Lin YN, Tong SY, Cao JW, Zong N, Chen JY, Yang FW, Wang CX, Liu LY, Xu WD, Yu YC. Distinct mitotic dynamics and neuronal migration patterns between gyri and sulci in the ferret neocortex during cortical folding. Neuroscience 2025; 576:69-79. [PMID: 40246222 DOI: 10.1016/j.neuroscience.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Neocortical folding (i.e., gyrification) is a key evolutionary and developmental feature of the brain, facilitating cortical surface expansion and enhanced cognitive function. However, the precise strategies and mechanisms underlying cortical folding remain incompletely understood. In this study, we systematically investigated the dynamic formation of neocortical folding in the ferret. Our findings reveal significant differences in neurogenesis and neuronal migration between the developing lateral gyrus (LG) and adjacent lateral sulcus (LS) of the ferret neocortex. Specifically, progenitors in the LG exhibited higher mitosis activity and a shorter S-phase duration compared to those in the LS. Additionally, immature neurons in the LG followed a fan-like migration pattern, whereas those in the LS exhibited a flower bud-like pattern. Organotypic slice cultures and time-lapse imaging further demonstrated that the migration trajectory of immature neurons to the neocortex is more straightforward in the LG than in the LS. Together, these results highlight distinct cellular behaviors between the developing gyrus and sulcus, providing novel insights into cellular mechanisms underlying cortex folding.
Collapse
Affiliation(s)
- You-Ning Lin
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Yuan Tong
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Wei Cao
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ni Zong
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun-Yang Chen
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Fu-Wei Yang
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Chen-Xi Wang
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wen-Dong Xu
- The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Pipicelli F, Villalba A, Hippenmeyer S. How radial glia progenitor lineages generate cell-type diversity in the developing cerebral cortex. Curr Opin Neurobiol 2025; 93:103046. [PMID: 40383049 DOI: 10.1016/j.conb.2025.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
The cerebral cortex is arguably the most complex organ in humans. The cortical architecture is characterized by a remarkable diversity of neuronal and glial cell types that make up its neuronal circuits. Following a precise temporally ordered program, radial glia progenitor (RGP) cells generate all cortical excitatory projection neurons and glial cell-types. Cortical excitatory projection neurons are produced either directly or via intermediate progenitors, through indirect neurogenesis. How the extensive cortical cell-type diversity is generated during cortex development remains, however, a fundamental open question. How do RGPs quantitatively and qualitatively generate all the neocortical neurons? How does direct and indirect neurogenesis contribute to the establishment of neuronal and lineage heterogeneity? Whether RGPs represent a homogeneous and/or multipotent progenitor population, or if RGPs consist of heterogeneous groups is currently also not known. In this review, we will summarize the latest findings that contributed to a deeper insight into the above key questions.
Collapse
Affiliation(s)
- Fabrizia Pipicelli
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ana Villalba
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
3
|
Naher S, Iemura K, Miyashita S, Hoshino M, Tanaka K, Niwa S, Tsai JW, Kikkawa T, Osumi N. Kinesin-like motor protein KIF23 maintains neural stem and progenitor cell pools in the developing cortex. EMBO J 2025; 44:331-355. [PMID: 39632980 PMCID: PMC11729872 DOI: 10.1038/s44318-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Accurate mitotic division of neural stem and progenitor cells (NSPCs) is crucial for the coordinated generation of progenitors and mature neurons, which determines cortical size and structure. While mutations in the kinesin-like motor protein KIF23 gene have been recently linked to microcephaly in humans, the underlying mechanisms remain elusive. Here, we explore the pivotal role of KIF23 in embryonic cortical development. We characterize the dynamic expression of KIF23 in the cortical NSPCs of mice, ferrets, and humans during embryonic neurogenesis. Knockdown of Kif23 in mice results in precocious neurogenesis and neuronal apoptosis, attributed to an accelerated cell cycle exit, likely resulting from disrupted mitotic spindle orientation and impaired cytokinesis. Additionally, KIF23 depletion perturbs the apical surface structure of NSPCs by affecting the localization of apical junction proteins. We further demonstrate that the phenotypes induced by Kif23 knockdown are rescued by introducing wild-type human KIF23, but not by a microcephaly-associated variant. Our findings unveil a previously unexplored role of KIF23 in neural stem and progenitor cell maintenance via regulating spindle orientation and apical structure in addition to cytokinesis, shedding light on microcephaly pathogenesis.
Collapse
Affiliation(s)
- Sharmin Naher
- Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan.
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
4
|
Cwetsch AW, Gil-Sanz C. Electroporation Techniques to Target Subependymal Zone Neurogenic Niche. Methods Mol Biol 2025; 2899:171-182. [PMID: 40067624 DOI: 10.1007/978-1-0716-4386-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
In vivo electroporation is a technique that allows for the transfection of specific neuronal progenitor pools in the developing embryo or during early postnatal stages. By combining plasmid DNA injection with the application of electric pulses, this method directs DNA to the targeted region, facilitating its entry into neural stem cells. This approach enables functional experiments by perturbing genes of interest and conducting cell-tracking studies using fluorescent proteins. The technique offers temporal flexibility to target neural stem cells in the subependymal zone (SEZ) niche either embryonically or postnatally, depending on the experiment. The SEZ is a key region in the lateral ventricle walls of adult mammals where neurogenesis continues, being the most significant germinal niche in rodents. In this protocol, we describe the procedures for performing genetic manipulations in utero and during the postnatal stage using electroporation for SEZ studies.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Departamento de Biología Celular, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Cristina Gil-Sanz
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Departamento de Biología Celular, Universidad de Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Del-Valle-Anton L, Amin S, Borrell V. Microdissection and Single-Cell Suspension of Neocortical Layers From Ferret Brain for Single-Cell Assays. Bio Protoc 2024; 14:e5133. [PMID: 39735300 PMCID: PMC11669907 DOI: 10.21769/bioprotoc.5133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 12/31/2024] Open
Abstract
Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole. Here, we describe the methodology to study this layered tissue in all its complexity by microdissecting two germinal layers at two developmental time points. This protocol is combined with a step-by-step explanation of tissue dissociation that provides high-quality cells ready to be analyzed by the newly developed single-cell assays, such as scRNA-seq, scATAC-seq, and TrackerSeq. Altogether, this approach increases the resolution of the genetic analyses from the cerebral cortex compared to bulk studies. It also facilitates the study of laboratory animal models that recapitulate human cortical development better than mice, like ferrets. Key features • Microdissection of individual germinal layers in the developing cerebral cortex from living brain slices. • Enzymatic and mechanical dissociation generates single-cell suspensions available for high-throughput single-cell assays. • Protocol optimized for embryonic and early postnatal ferret cortex.
Collapse
Affiliation(s)
- Lucia Del-Valle-Anton
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Salma Amin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
6
|
Imamura M, Yoshino M, Kawasaki H. Investigation of the development and evolution of the mammalian cerebrum using gyrencephalic ferrets. Eur J Cell Biol 2024; 103:151466. [PMID: 39546916 DOI: 10.1016/j.ejcb.2024.151466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian brains have evolved a neocortex, which has diverged in size and morphology in different species over the course of evolution. In some mammals, a substantial increase in the number of neurons and glial cells resulted in the expansion and folding of the cerebrum, and it is believed that these evolutionary changes contributed to the acquisition of higher cognitive abilities in mammals. However, their underlying molecular and cellular mechanisms remain insufficiently elucidated. A major difficulty in addressing these mechanisms stemmed from the lack of appropriate animal models, as conventional experimental animals such as mice and rats have small brains without structurally obvious folds. Therefore, researchers including us have focused on using ferrets instead of mice and rats. Ferrets are domesticated carnivorous mammals with a gyrencephalic cerebrum, and, notably, they are amenable to genetic manipulations including in utero electroporation to knock out genes in the cerebrum. In this review, we highlight recent research into the mechanisms underlying the development and evolution of cortical folds using ferrets.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayuko Yoshino
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
7
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
8
|
Sterling NA, Cho SH, Kim S. Entosis implicates a new role for P53 in microcephaly pathogenesis, beyond apoptosis. Bioessays 2024; 46:e2300245. [PMID: 38778437 DOI: 10.1002/bies.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Entosis, a form of cell cannibalism, is a newly discovered pathogenic mechanism leading to the development of small brains, termed microcephaly, in which P53 activation was found to play a major role. Microcephaly with entosis, found in Pals1 mutant mice, displays P53 activation that promotes entosis and apoptotic cell death. This previously unappreciated pathogenic mechanism represents a novel cellular dynamic in dividing cortical progenitors which is responsible for cell loss. To date, various recent models of microcephaly have bolstered the importance of P53 activation in cell death leading to microcephaly. P53 activation caused by mitotic delay or DNA damage manifests apoptotic cell death which can be suppressed by P53 removal in these animal models. Such genetic studies attest P53 activation as quality control meant to eliminate genomically unfit cells with minimal involvement in the actual function of microcephaly associated genes. In this review, we summarize the known role of P53 activation in a variety of microcephaly models and introduce a novel mechanism wherein entotic cell cannibalism in neural progenitors is triggered by P53 activation.
Collapse
Affiliation(s)
- Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Corrigan EK, DeBerardine M, Poddar A, Turrero García M, Schmitz MT, Harwell CC, Paredes MF, Krienen FM, Pollen AA. Conservation, alteration, and redistribution of mammalian striatal interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605664. [PMID: 39131311 PMCID: PMC11312536 DOI: 10.1101/2024.07.29.605664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Mammalian brains vary in size, structure, and function, but the extent to which evolutionarily novel cell types contribute to this variation remains unresolved1-4. Recent studies suggest there is a primate-specific population of striatal inhibitory interneurons, the TAC3 interneurons5. However, there has not yet been a detailed analysis of the spatial and phylogenetic distribution of this population. Here, we profile single cell gene expression in the developing pig (an ungulate) and ferret (a carnivore), representing 94 million years divergence from primates, and assign newborn inhibitory neurons to initial classes first specified during development6. We find that the initial class of TAC3 interneurons represents an ancestral striatal population that is also deployed towards the cortex in pig and ferret. In adult mouse, we uncover a rare population expressing Tac2, the ortholog of TAC3, in ventromedial striatum, prompting a reexamination of developing mouse striatal interneuron initial classes by targeted enrichment of their precursors. We conclude that the TAC3 interneuron initial class is conserved across Boreoeutherian mammals, with the mouse population representing Th striatal interneurons, a subset of which expresses Tac2. This study suggests that initial classes of telencephalic inhibitory neurons are largely conserved and that during evolution, neuronal types in the mammalian brain change through redistribution and fate refinement, rather than by derivation of novel precursors early in development.
Collapse
Affiliation(s)
- Emily K. Corrigan
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Aunoy Poddar
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Turrero García
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Corey C. Harwell
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
| | - Mercedes F. Paredes
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fenna M. Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alex A. Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Singh A, Del-Valle-Anton L, de Juan Romero C, Zhang Z, Ortuño EF, Mahesh A, Espinós A, Soler R, Cárdenas A, Fernández V, Lusby R, Tiwari VK, Borrell V. Gene regulatory landscape of cerebral cortex folding. SCIENCE ADVANCES 2024; 10:eadn1640. [PMID: 38838158 PMCID: PMC11152136 DOI: 10.1126/sciadv.adn1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Folding of the cerebral cortex is a key aspect of mammalian brain development and evolution, and defects are linked to severe neurological disorders. Primary folding occurs in highly stereotyped patterns that are predefined in the cortical germinal zones by a transcriptomic protomap. The gene regulatory landscape governing the emergence of this folding protomap remains unknown. We characterized the spatiotemporal dynamics of gene expression and active epigenetic landscape (H3K27ac) across prospective folds and fissures in ferret. Our results show that the transcriptomic protomap begins to emerge at early embryonic stages, and it involves cell-fate signaling pathways. The H3K27ac landscape reveals developmental cell-fate restriction and engages known developmental regulators, including the transcription factor Cux2. Manipulating Cux2 expression in cortical progenitors changed their proliferation and the folding pattern in ferret, caused by selective transcriptional changes as revealed by single-cell RNA sequencing analyses. Our findings highlight the key relevance of epigenetic mechanisms in defining the patterns of cerebral cortex folding.
Collapse
Affiliation(s)
- Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Lucia Del-Valle-Anton
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Eduardo Fernández Ortuño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Alexandre Espinós
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Rafael Soler
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|