1
|
Cohen Z, Petrenko E, Barisaac A, Abu-Zhayia E, Yanovich-Ben-Uriel C, Ayoub N, Aran D. SLAYER: a computational framework for identifying synthetic lethal interactions through integrated analysis of cancer dependencies. NAR Genom Bioinform 2025; 7:lqaf052. [PMID: 40276038 PMCID: PMC12019633 DOI: 10.1093/nargab/lqaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Synthetic lethality represents a promising therapeutic approach in precision oncology, yet systematic identification of clinically relevant synthetic lethal interactions remains challenging. Here, we present SLAYER (Synthetic Lethality AnalYsis for Enhanced taRgeted therapy), a computational framework that integrates cancer genomic data and genome-wide CRISPR knockout screens to identify potential synthetic lethal interactions. SLAYER employs parallel analytical approaches examining both direct mutation-dependency associations and pathway-mediated relationships across 1080 cancer cell lines. Our integrative method identified 682 putative interactions, which were refined to 148 high-confidence candidates through stringent filtering for effect size, druggability, and clinical prevalence. Systematic validation against protein interaction databases revealed an ∼14-fold enrichment of known associations among SLAYER predictions compared with random gene pairs. Through pathway-level analysis, we identified inhibition of the aryl hydrocarbon receptor (AhR) as potentially synthetically lethal with RB1 mutations in bladder cancer. Experimental studies demonstrated selective sensitivity to AhR inhibition in RB1-mutant versus wild-type bladder cancer cells, which probably operates through indirect pathway-mediated mechanisms rather than direct genetic interaction. In summary, by integrating mutation profiles, gene dependencies, and pathway relationships, our approach provides a resource for investigating genetic vulnerabilities across cancer types.
Collapse
Affiliation(s)
- Ziv Cohen
- The Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Ekaterina Petrenko
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Alma Sophia Barisaac
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Enas R Abu-Zhayia
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Nabieh Ayoub
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dvir Aran
- The Taub Faculty of Computer Science, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Bougnères P, Le Stunff C. Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy. Genes (Basel) 2025; 16:590. [PMID: 40428412 PMCID: PMC12111468 DOI: 10.3390/genes16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/11/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. METHODS This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. RESULTS In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. CONCLUSIONS Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons.
Collapse
Affiliation(s)
- Pierre Bougnères
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| | - Catherine Le Stunff
- MIRCen Institute, Commissariat à l’Energie Atomique, Laboratoire des Maladies Neurodégénératives, 92260 Fontenay-aux-Roses, France
- NEURATRIS, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm, University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Kim MJ, Mitchell AP. Strain-limited biofilm regulation through the Brg1-Rme1 circuit in Candida albicans. mSphere 2025; 10:e0098024. [PMID: 39745385 PMCID: PMC11774020 DOI: 10.1128/msphere.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 01/29/2025] Open
Abstract
Prominent virulence traits of Candida albicans include its ability to produce filamentous hyphal cells and grow as a biofilm. These traits are under control of numerous transcription factors (TFs), including Brg1 and Rme1. In the reference strain SC5314, a brg1Δ/Δ mutant has reduced levels of biofilm/filament production; a brg1Δ/Δ rme1Δ/Δ double mutant has wild-type levels of biofilm/filament production. Here, we asked whether this suppression relationship is preserved in four additional strain backgrounds: P76067, P57055, P87, and P75010. These strains represent diverse clades and biofilm/filament production abilities. We find that a rme1Δ/Δ mutation restores biofilm/filament production in a brg1Δ/Δ mutant of P76067, but not in brg1Δ/Δ mutants of P57055, P87, and P75010. We speculate that variation in activities of two functionally related TFs, Nrg1, and Ume6, may cause the strain-limited impact of the rme1Δ/Δ mutation. IMPORTANCE Candida albicans is a widespread fungal pathogen. The regulatory circuitry underlying virulence traits is well studied in the reference strain background, but not in other clinical isolate backgrounds. Here, we describe a pronounced example of strain variation in the control of two prominent virulence traits, biofilm formation and filamentation.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Kim MJ, White AM, Mitchell AP. Strain variation in Candida albicans glycolytic gene regulation. mSphere 2024; 9:e0057924. [PMID: 39431903 PMCID: PMC11580466 DOI: 10.1128/msphere.00579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Central carbon metabolism is vital for the proliferation of Candida albicans, a fungus that is prominent as a commensal and pathogen. Glycolytic genes are activated by overlapping activities of the transcription factors Tye7 and Gal4, as shown by studies in the SC5314 genetic background. However, regulatory relationships can vary among C. albicans isolates. Here, we analyzed Tye7- and Gal4-related phenotypes in five diverse clinical isolates of C. albicans. We tested growth properties and gene expression impact through Nanostring profiling and, for the two strains SC5314 and P87, RNA sequencing. Our results lead to three main conclusions. First, the functional redundancy of Tye7 and Gal4 for glycolytic gene activation is preserved among all strains tested. Second, at the gene expression level, strain P87 is an outlier with regard to tye7Δ/Δ impact, and strain SC5314 is an outlier with regard to gal4Δ/Δ impact. Third, while Gal4 is well known to be dispensable for induction of the GAL1, GAL7, and GAL10 galactose-specific metabolic genes, we find that gal4Δ/Δ mutants of several strains have a mild galactose fermentation defect, as assayed by growth on galactose with the respiration inhibitor antimycin A. Our findings indicate that even a central metabolic regulatory network is subject to strain variation and illustrates an unexpected genotype-phenotype relationship.The fungal commensal and pathogen Candida albicans rely upon metabolic flexibility to colonize and infect host niches. Central carbon metabolism is governed by two regulators, Tye7 and Gal4, as defined in the reference strain SC5314. Here, we have explored the impact of Tye7 and Gal4 on carbon utilization and gene expression across five diverse C. albicans clinical isolates. Novel aspects of this study are the finding that even a central metabolic regulatory network is subject to strain variation and the observation of an unexpected mutant phenotype.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Amelia M. White
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Luo J, Li L, Niu M, Kong D, Jiang Y, Poudel S, Shieh AW, Cheng L, Giase G, Grennan K, White KP, Chen C, Wang SH, Pinto D, Wang Y, Liu C, Peng J, Wang X. Genetic regulation of human brain proteome reveals proteins implicated in psychiatric disorders. Mol Psychiatry 2024; 29:3330-3343. [PMID: 38724566 PMCID: PMC11540848 DOI: 10.1038/s41380-024-02576-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 11/08/2024]
Abstract
Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Ling Li
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Mingming Niu
- Department of Structural Biology and Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Dehui Kong
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Annie W Shieh
- Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, 60637, USA
| | - Lijun Cheng
- Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, 60637, USA
| | - Gina Giase
- Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, 60637, USA
| | - Kay Grennan
- Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, 60637, USA
| | - Kevin P White
- Department of Biochemistry and Precision Medicine, National University, Singapore, 119077, Singapore
| | - Chao Chen
- Center for Medical Genetics and Human Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410083, China
| | - Sidney H Wang
- Center for Human Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Junmin Peng
- Department of Structural Biology and Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Xusheng Wang
- Department of Genetics, Genomics & Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
6
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
7
|
Oktriani R, Pirona AC, Kalmár L, Rahadian AS, Miao B, Bauer AS, Hoheisel JD, Boettcher M, Du H. Genome-Wide CRISPR Screen Identifies Genes Involved in Metastasis of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3684. [PMID: 39518122 PMCID: PMC11545026 DOI: 10.3390/cancers16213684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Early and aggressive metastasis is a major feature of pancreatic ductal adenocarcinoma. Understanding the processes underlying metastasis is crucial for making a difference to disease outcome. Towards these ends, we looked in a comprehensive manner for genes that are metastasis-specific. Methods: A genome-wide CRISPR-Cas9 gene knockout screen with 259,900 single guide RNA constructs was performed on pancreatic cancer cell lines with very high or very low metastatic capacity, respectively. Functional aspects of some of the identified genes were analysed in vitro. The injection of tumour cells with or without a gene knockout into mice was used to confirm the effect on metastasis. Results: The knockout of 590 genes-and, with higher analysis stringency, 67 genes-affected the viability of metastatic cells substantially, while these genes were not vital to non-metastasizing cells. Further evaluations identified different molecular processes related to this observation. One of the genes was MYBL2, encoding for a well-known transcription factor involved in the regulation of cell survival, proliferation, and differentiation in cancer tissues. In our metastasis-focussed study, no novel functional activity was detected for MYBL2, however. Instead, a metastasis-specific transformation of its genetic interaction with FOXM1 was observed. The interaction was synergistic in cells of low metastatic capacity, while there was a strong switch to a buffering mode in metastatic cells. In vivo analyses confirmed the strong effect of MYBL2 on metastasis. Conclusions: The genes found to be critical for the viability of metastatic cells form a basis for further investigations of the processes responsible for triggering and driving metastasis. As shown for MYBL2, unexpected processes of regulating metastasis might also be involved.
Collapse
Affiliation(s)
- Risky Oktriani
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Sekip Utara, Yogyakarta 55281, Indonesia
| | - Anna Chiara Pirona
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Lili Kalmár
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Ariani S. Rahadian
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany;
| | - Andrea S. Bauer
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
| | - Jörg D. Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
| | - Michael Boettcher
- Medical Faculty, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle, Germany;
| | - Haoqi Du
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (R.O.); (A.C.P.); (L.K.); (A.S.R.); (A.S.B.); (H.D.)
- School of Medicine, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| |
Collapse
|
8
|
Ortega MA, Celoy RM, Chacon F, Yuan Y, Xue LJ, Pandey SP, Drowns MR, Kvitko BH, Tsai CJ. Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis. THE PLANT CELL 2024; 36:4293-4308. [PMID: 39056470 PMCID: PMC11448890 DOI: 10.1093/plcell/koae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease resistance and abiotic stress tolerance but penalizes growth. This growth-defense trade-off has hindered the adoption of SA-based disease management strategies in agriculture. However, investigation of how SA inhibits plant growth has been challenging because many SA-hyperaccumulating Arabidopsis mutants have developmental defects due to the pleiotropic effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our results show the potential of decoupling SA-mediated growth and defense trade-offs for improving crop productivity.
Collapse
Affiliation(s)
- María A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Francisco Chacon
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saurabh P Pandey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - MaKenzie R Drowns
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30603, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Narasimha SM, Malpani T, Mohite OS, Nath JS, Raman K. Understanding flux switching in metabolic networks through an analysis of synthetic lethals. NPJ Syst Biol Appl 2024; 10:104. [PMID: 39289347 PMCID: PMC11408705 DOI: 10.1038/s41540-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Biological systems are robust and redundant. The redundancy can manifest as alternative metabolic pathways. Synthetic double lethals are pairs of reactions that, when deleted simultaneously, abrogate cell growth. However, removing one reaction allows the rerouting of metabolites through alternative pathways. Little is known about these hidden linkages between pathways. Understanding them in the context of pathogens is useful for therapeutic innovations. We propose a constraint-based optimisation approach to identify inter-dependencies between metabolic pathways. It minimises rerouting between two reaction deletions, corresponding to a synthetic lethal pair, and outputs the set of reactions vital for metabolic rewiring, known as the synthetic lethal cluster. We depict the results for different pathogens and show that the reactions span across metabolic modules, illustrating the complexity of metabolism. Finally, we demonstrate how the two classes of synthetic lethals play a role in metabolic networks and influence the different properties of a synthetic lethal cluster.
Collapse
Affiliation(s)
- Sowmya Manojna Narasimha
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Neuroscience Graduate Program, University of California San Diego, San Diego, CA, 92092, USA
| | - Tanisha Malpani
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
| | - Omkar S Mohite
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - J Saketha Nath
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Hyderabad, Hyderabad, 502 284, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI (WSAI), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
| |
Collapse
|
10
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Kazmirchuk TDD, Burnside DJ, Wang J, Jagadeesan SK, Al-Gafari M, Silva E, Potter T, Bradbury-Jost C, Ramessur NB, Ellis B, Takallou S, Hajikarimlou M, Moteshareie H, Said KB, Samanfar B, Fletcher E, Golshani A. Cymoxanil disrupts RNA synthesis through inhibiting the activity of dihydrofolate reductase. Sci Rep 2024; 14:11695. [PMID: 38778133 PMCID: PMC11111663 DOI: 10.1038/s41598-024-62563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
The agricultural fungicide cymoxanil (CMX) is commonly used in the treatment of plant pathogens, such as Phytophthora infestans. Although the use of CMX is widespread throughout the agricultural industry and internationally, the exact mechanism of action behind this fungicide remains unclear. Therefore, we sought to elucidate the biocidal mechanism underlying CMX. This was accomplished by first performing a large-scale chemical-genomic screen comprising the 4000 haploid non-essential gene deletion array of the yeast Saccharomyces cerevisiae. We found that gene families related to de novo purine biosynthesis and ribonucleoside synthesis were enriched in the presence of CMX. These results were confirmed through additional spot-test and colony counting assays. We next examined whether CMX affects RNA biosynthesis. Using qRT-PCR and expression assays, we found that CMX appears to target RNA biosynthesis possibly through the yeast dihydrofolate reductase (DHFR) enzyme Dfr1. To determine whether DHFR is a target of CMX, we performed an in-silico molecular docking assay between CMX and yeast, human, and P. infestans DHFR. The results suggest that CMX directly interacts with the active site of all tested forms of DHFR using conserved residues. Using an in vitro DHFR activity assay we observed that CMX inhibits DHFR activity in a dose-dependent relationship.
Collapse
Affiliation(s)
| | - Daniel J Burnside
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Jiashu Wang
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Sasi Kumar Jagadeesan
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Mustafa Al-Gafari
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Eshan Silva
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Taylor Potter
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Calvin Bradbury-Jost
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Nishka Beersing Ramessur
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Brittany Ellis
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah Takallou
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Kamaleldin B Said
- Department of Pathology and Microbiology, University of Hail, 55476, Hail, Saudi Arabia
| | - Bahram Samanfar
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, Canada
| | - Eugene Fletcher
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Ashkan Golshani
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
13
|
Steinbuch SC, Lüß AM, Eltrop S, Götte M, Kiesel L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int J Mol Sci 2024; 25:4306. [PMID: 38673891 PMCID: PMC11050613 DOI: 10.3390/ijms25084306] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endometriosis is a chronic condition affecting reproductive-aged women, characterized by the growth of ectopic endometrial tissue. Despite being benign, endometriosis is associated with an increased risk of certain cancers, including endometriosis-associated ovarian cancer (EAOC). Ovarian cancer is rare, but more common in women with endometriosis, particularly endometrioid and clear-cell carcinomas. Factors such as hormonal imbalance, reproductive history, environmental exposures, and genetic predisposition contribute to the malignant transformation of endometriosis. Thus, understanding potential risk factors causing malignancy is crucial. Over the past few decades, various genetic mutations, microRNAs, as well as tumor microenvironmental factors have been identified, impacting pathways like PI3K/AKT/mTOR, DNA repair mechanisms, oxidative stress, and inflammation. Thus, this review aims to summarize molecular studies involved in EAOC pathogenesis as potential therapeutic targets. However, further research is needed to better understand the molecular and environmental factors driving EAOC development, to target the susceptibility of endometriotic lesions to malignant progression, and to identify effective therapeutic strategies.
Collapse
Affiliation(s)
- Sophie Charlotte Steinbuch
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anne-Marie Lüß
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stephanie Eltrop
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
14
|
Rahbani JF, Bunk J, Lagarde D, Samborska B, Roesler A, Xiao H, Shaw A, Kaiser Z, Braun JL, Geromella MS, Fajardo VA, Koza RA, Kazak L. Parallel control of cold-triggered adipocyte thermogenesis by UCP1 and CKB. Cell Metab 2024; 36:526-540.e7. [PMID: 38272036 DOI: 10.1016/j.cmet.2024.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.
Collapse
Affiliation(s)
- Janane F Rahbani
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jakub Bunk
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Damien Lagarde
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Bozena Samborska
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Roesler
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Abhirup Shaw
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Zafir Kaiser
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Robert A Koza
- MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Lawrence Kazak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
15
|
Worledge CS, Kostelecky RE, Zhou L, Bhagavatula G, Colgan SP, Lee JS. Allopurinol Disrupts Purine Metabolism to Increase Damage in Experimental Colitis. Cells 2024; 13:373. [PMID: 38474337 PMCID: PMC10930830 DOI: 10.3390/cells13050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.
Collapse
Affiliation(s)
- Corey S. Worledge
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Rachael E. Kostelecky
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Liheng Zhou
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Geetha Bhagavatula
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.W.); (R.E.K.); (L.Z.); (G.B.); (S.P.C.)
| |
Collapse
|
16
|
Kowalski A. Sequence-based prediction of the effects of histones H1 post-translational modifications: impact on the features related to the function. J Biomol Struct Dyn 2024:1-10. [PMID: 38353488 DOI: 10.1080/07391102.2024.2316773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/04/2024] [Indexed: 03/11/2025]
Abstract
Post-translational modifications modulate histones H1 activity but their impact on proteins features was not studied so far. Therefore, this work was intended to answer how the most common modifications, i.e. acetylation, methylation, phosphorylation and ubiquitination, can influence on histones H1 to alter their physicochemical and molecular properties. Investigations were done with the use of sequence-based predictors trained on various protein features. Because a full set of histones H1 modifications is not included in the databases of histone proteins, the survey was performed on the human, animals, plants, fungi and protist sequences selected from UniProtKB/Swiss-Prot database. Quantitative proportions of modifications were similar between the groups of organisms (CV = 0.11) but different within the group (p < 0.05). The effects of modifications were evaluated with the use of mutated sequences obtained through the substitution of modified residue of Lys, Ser and Thr by a neutral residue of the Ala. An advantage of deleterious mutations at the sites of acetylation, methylation and ubiquitination over the sites of phosphorylation (p < 0.05) indicate that this modification have more redundant character. Modifications evoke an increase of protein solubility and stability as well as acceleration of folding kinetics and a weaken of binding affinity. Besides, they also maintain a higher extent of intrinsic structural disorder. The obtained results prove that modifications should be perceived as relevant factors influencing physicochemical features determining molecular properties. Thus, histones H1 functioning is strictly correlated with the status of modifications.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
17
|
Ciesielski TH, Sirugo G, Iyengar SK, Williams SM. Characterizing the pathogenicity of genetic variants: the consequences of context. NPJ Genom Med 2024; 9:3. [PMID: 38195641 PMCID: PMC10776585 DOI: 10.1038/s41525-023-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Ronin Institute, Montclair, NJ, USA.
| | - Giorgio Sirugo
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K Iyengar
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| |
Collapse
|
18
|
Peters L, Venkatachalam A, Ben-Neriah Y. Tissue-Predisposition to Cancer Driver Mutations. Cells 2024; 13:106. [PMID: 38247798 PMCID: PMC10814991 DOI: 10.3390/cells13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Driver mutations are considered the cornerstone of cancer initiation. They are defined as mutations that convey a competitive fitness advantage, and hence, their mutation frequency in premalignant tissue is expected to exceed the basal mutation rate. In old terms, that translates to "the survival of the fittest" and implies that a selective process underlies the frequency of cancer driver mutations. In that sense, each tissue is its own niche that creates a molecular selective pressure that may favor the propagation of a mutation or not. At the heart of this stands one of the biggest riddles in cancer biology: the tissue-predisposition to cancer driver mutations. The frequency of cancer driver mutations among tissues is non-uniform: for instance, mutations in APC are particularly frequent in colorectal cancer, and 99% of chronic myeloid leukemia patients harbor the driver BCR-ABL1 fusion mutation, which is rarely found in solid tumors. Here, we provide a mechanistic framework that aims to explain how tissue-specific features, ranging from epigenetic underpinnings to the expression of viral transposable elements, establish a molecular basis for selecting cancer driver mutations in a tissue-specific manner.
Collapse
Affiliation(s)
| | | | - Yinon Ben-Neriah
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research (IMRIC), The Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (L.P.); (A.V.)
| |
Collapse
|
19
|
Abstract
Recent advances in pharmacotherapies that promote appetite suppression have shown remarkable weight loss. Therapies targeting energy expenditure lag behind, and as such none have yet been identified to be safe and efficacious for sustaining negative energy balance toward weight loss. Multiple energy dissipating pathways have been identified in adipose tissue and muscle. The molecular effectors of some of these pathways have been identified, but much is still left to be learned about their regulation. Understanding the molecular underpinnings of metabolic inefficiency in adipose tissue and muscle is required if these pathways are to be therapeutically targeted in the context of obesity and obesity-accelerated diseases.
Collapse
Affiliation(s)
- Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
20
|
Barman P, Kaja A, Chakraborty P, Bhaumik SR. Chromatin and non-chromatin immunoprecipitations to capture protein-protein and protein-nucleic acid interactions in living cells. Methods 2023; 218:158-166. [PMID: 37611837 PMCID: PMC10528071 DOI: 10.1016/j.ymeth.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Proteins are expressed from genes via sequential biological processes of transcription, mRNA processing, export and translation, and play their roles in maintaining cellular functions via interactions with proteins, DNAs or RNAs. Thus, it is important to study the protein interactions during biological processes in living cells towards understanding their mechanisms-of-action in real time. Methodologies have been developed over the years to study protein interactions in vivo. One state-of-the-art approach is formaldehyde crosslinking-based immuno- or chemi-precipitation to analyze selective as well as genome/proteome-wide interactions in living cells. It is a popular and widely used methodology for cellular analysis of the protein-protein and protein-nucleic acid interactions. Here, we describe this approach to analyze protein-protein/nucleic acid interactions in vivo.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
21
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
22
|
Jin M, Hurley LH, Xu H. A synthetic lethal approach to drug targeting of G-quadruplexes based on CX-5461. Bioorg Med Chem Lett 2023; 91:129384. [PMID: 37339720 DOI: 10.1016/j.bmcl.2023.129384] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
DNA G-quadruplex (G4) structures are enriched at human genome loci critical for cancer development, such as in oncogene promoters, telomeres, and rDNA. Medicinal chemistry approaches to developing drugs that target G4 structures date back to over 20 years ago. Small-molecule drugs were designed to target and stabilize G4 structures, thereby blocking replication and transcription, resulting in cancer cell death. CX-3543 (Quarfloxin) was the first G4-targeting drug to enter clinical trials in 2005; however, because of the lack of efficacy, it was withdrawn from Phase 2 clinical trials. Efficacy problems also occurred in the clinical trial of patients with advanced hematologic malignancies using CX-5461 (Pidnarulex), another G4-stabilizing drug. Only after the discovery of synthetic lethal (SL) interactions between Pidnarulex and the BRCA1/2-mediated homologous recombination (HR) pathway in 2017, promising clinical efficacy was achieved. In this case, Pidnarulex was used in a clinical trial to treat solid tumors deficient in BRCA2 and PALB2. The history of the development of Pidnarulex highlights the importance of SL in identifying cancer patients responsive to G4-targeting drugs. In order to identify additional cancer patients responsive to Pidnarulex, several genetic interaction screens have been performed with Pidnarulex and other G4-targeting drugs using human cancer cell lines or C. elegans. Screening results confirmed the synthetic lethal interaction between G4 stabilizers and HR genes and also uncovered other novel genetic interactions, including genes in other DNA damage repair pathways and genes in transcription, epigenetic, and RNA processing deficiencies. In addition to patient identification, synthetic lethality is also important for the design of drug combination therapy for G4-targeting drugs in order to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Meiyu Jin
- Horizon Omics Biotech Limited, E3, North Lake Science Park B, Changchun, Jilin Province 13000, China
| | - Laurence H Hurley
- R. Ken Coit College of Pharmacy, 1703 E. Mabel St., University of Arizona, Tucson, AZ 85724, United States; Reglagene, 3320 N. Campbell Ave., Suite 200, Tucson, AZ 85719, United States.
| | - Hong Xu
- Horizon Omics Biotech Limited, E3, North Lake Science Park B, Changchun, Jilin Province 13000, China.
| |
Collapse
|
23
|
Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, Mathieu A, Huguet G, Duan J, Warrier V, Portalier S, Dry L, Leblond CS, Douard E, Amsellem F, Malesys S, Maruani A, Toro R, Børglum AD, Grove J, Baron-Cohen S, Packer A, Chung WK, Jacquemont S, Delorme R, Bourgeron T. Phenotypic effects of genetic variants associated with autism. Nat Med 2023; 29:1671-1680. [PMID: 37365347 PMCID: PMC10353945 DOI: 10.1038/s41591-023-02408-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.
Collapse
Affiliation(s)
- Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Richard J L Anney
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Clara Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Guillaume Huguet
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Jinjie Duan
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Swan Portalier
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Louise Dry
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Elise Douard
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Frédérique Amsellem
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| |
Collapse
|
24
|
Kumar S, Gerstein M. Unified views on variant impact across many diseases. Trends Genet 2023; 39:442-450. [PMID: 36858880 PMCID: PMC10192142 DOI: 10.1016/j.tig.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 03/03/2023]
Abstract
Genomic studies of human disorders are often performed by distinct research communities (i.e., focused on rare diseases, common diseases, or cancer). Despite underlying differences in the mechanistic origin of different disease categories, these studies share the goal of identifying causal genomic events that are critical for the clinical manifestation of the disease phenotype. Moreover, these studies face common challenges, including understanding the complex genetic architecture of the disease, deciphering the impact of variants on multiple scales, and interpreting noncoding mutations. Here, we highlight these challenges in depth and argue that properly addressing them will require a more unified vocabulary and approach across disease communities. Toward this goal, we present a unified perspective on relating variant impact to various genomic disorders.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Mao Y, Solis NV, Filler SG, Mitchell AP. Functional Dichotomy for a Hyphal Repressor in Candida albicans. mBio 2023; 14:e0013423. [PMID: 36883818 PMCID: PMC10127614 DOI: 10.1128/mbio.00134-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nrg1 is a repressor of hypha formation and hypha-associated gene expression in the fungal pathogen Candida albicans. It has been well studied in the genetic background of the type strain SC5314. Here, we tested Nrg1 function in four other diverse clinical isolates through an analysis of nrg1Δ/Δ mutants, with SC5314 included as a control. In three strains, nrg1Δ/Δ mutants unexpectedly produced aberrant hyphae under inducing conditions, as assayed by microscopic observation and endothelial cell damage. The nrg1Δ/Δ mutant of strain P57055 had the most severe defect. We examined gene expression features under hypha-inducing conditions by RNA-sequencing (RNA-Seq) for the SC5314 and P57055 backgrounds. The SC5314 nrg1Δ/Δ mutant expressed six hypha-associated genes at reduced levels compared with wild-type SC5314. The P57055 nrg1Δ/Δ mutant expressed 17 hypha-associated genes at reduced levels compared with wild-type P57055, including IRF1, RAS2, and ECE1. These findings indicate that Nrg1 has a positive role in hypha-associated gene expression and that this role is magnified in strain P57055. Remarkably, the same hypha-associated genes affected by the nrg1Δ/Δ mutation in strain P57055 were also naturally expressed at lower levels in wild-type P57055 than those in wild-type SC5314. Our results suggest that strain P57055 is defective in a pathway that acts in parallel with Nrg1 to upregulate the expression of several hypha-associated genes. IMPORTANCE Hypha formation is a central virulence trait of the fungal pathogen Candida albicans. Control of hypha formation has been studied in detail in the type strain but not in other diverse C. albicans clinical isolates. Here, we show that the hyphal repressor Nrg1 has an unexpected positive role in hypha formation and hypha-associated gene expression, as revealed by the sensitized P57055 strain background. Our findings indicate that reliance on a single type strain limits understanding of gene function and illustrate that strain diversity is a valuable resource for C. albicans molecular genetic analysis.
Collapse
Affiliation(s)
- Yinhe Mao
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
26
|
Heigwer F, Scheeder C, Bageritz J, Yousefian S, Rauscher B, Laufer C, Beneyto-Calabuig S, Funk MC, Peters V, Boulougouri M, Bilanovic J, Miersch T, Schmitt B, Blass C, Port F, Boutros M. A global genetic interaction network by single-cell imaging and machine learning. Cell Syst 2023; 14:346-362.e6. [PMID: 37116498 DOI: 10.1016/j.cels.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/17/2022] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.
Collapse
Affiliation(s)
- Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen am Rhein, Germany
| | - Christian Scheeder
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Josephine Bageritz
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Center of Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Schayan Yousefian
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christina Laufer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergi Beneyto-Calabuig
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maja Christina Funk
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Vera Peters
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maria Boulougouri
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jana Bilanovic
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
27
|
Arcuschin CD, Pinkasz M, Schor IE. Mechanisms of robustness in gene regulatory networks involved in neural development. Front Mol Neurosci 2023; 16:1114015. [PMID: 36814969 PMCID: PMC9940843 DOI: 10.3389/fnmol.2023.1114015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
The functions of living organisms are affected by different kinds of perturbation, both internal and external, which in many cases have functional effects and phenotypic impact. The effects of these perturbations become particularly relevant for multicellular organisms with complex body patterns and cell type heterogeneity, where transcriptional programs controlled by gene regulatory networks determine, for example, the cell fate during embryonic development. Therefore, an essential aspect of development in these organisms is the ability to maintain the functionality of their genetic developmental programs even in the presence of genetic variation, changing environmental conditions and biochemical noise, a property commonly termed robustness. We discuss the implication of different molecular mechanisms of robustness involved in neurodevelopment, which is characterized by the interplay of many developmental programs at a molecular, cellular and systemic level. We specifically focus on processes affecting the function of gene regulatory networks, encompassing transcriptional regulatory elements and post-transcriptional processes such as miRNA-based regulation, but also higher order regulatory organization, such as gene network topology. We also present cases where impairment of robustness mechanisms can be associated with neurodevelopmental disorders, as well as reasons why understanding these mechanisms should represent an important part of the study of gene regulatory networks driving neural development.
Collapse
Affiliation(s)
- Camila D. Arcuschin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Pinkasz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ignacio E. Schor
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2023; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Amici DR, Cingoz H, Alasady MJ, Alhayek S, Phoumyvong CM, Sahni N, Yi SS, Mendillo ML. The HAPSTR2 retrogene buffers stress signaling and resilience in mammals. Nat Commun 2023; 14:152. [PMID: 36631436 PMCID: PMC9834230 DOI: 10.1038/s41467-022-35697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.
Collapse
Affiliation(s)
- David R Amici
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Harun Cingoz
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Milad J Alasady
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Sammy Alhayek
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Claire M Phoumyvong
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, 78712, USA
| | - Marc L Mendillo
- Dept. of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60610, USA.
| |
Collapse
|
30
|
Rao TVP, Kuzminov A. Robust linear DNA degradation supports replication-initiation-defective mutants in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac228. [PMID: 36165702 PMCID: PMC9635670 DOI: 10.1093/g3journal/jkac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
RecBCD helicase/nuclease supports replication fork progress via recombinational repair or linear DNA degradation, explaining recBC mutant synthetic lethality with replication elongation defects. Since replication initiation defects leave chromosomes without replication forks, these should be insensitive to the recBCD status. Surprisingly, we found that both Escherichia coli dnaA46(Ts) and dnaC2(Ts) initiation mutants at semi-permissive temperatures are also recBC-colethal. Interestingly, dnaA46 recBC lethality suppressors suggest underinitiation as the problem, while dnaC2 recBC suppressors signal overintiation. Using genetic and physical approaches, we studied the dnaA46 recBC synthetic lethality, for the possibility that RecBCD participates in replication initiation. Overproduced DnaA46 mutant protein interferes with growth of dnaA+ cells, while the residual viability of the dnaA46 recBC mutant depends on the auxiliary replicative helicase Rep, suggesting replication fork inhibition by the DnaA46 mutant protein. The dnaA46 mutant depends on linear DNA degradation by RecBCD, rather than on recombinational repair. At the same time, the dnaA46 defect also interacts with Holliday junction-moving defects, suggesting reversal of inhibited forks. However, in contrast to all known recBC-colethals, which fragment their chromosomes, the dnaA46 recBC mutant develops no chromosome fragmentation, indicating that its inhibited replication forks are stable. Physical measurements confirm replication inhibition in the dnaA46 mutant shifted to semi-permissive temperatures, both at the level of elongation and initiation, while RecBCD gradually restores elongation and then initiation. We propose that RecBCD-catalyzed resetting of inhibited replication forks allows replication to displace the "sticky" DnaA46(Ts) protein from the chromosomal DNA, mustering enough DnaA for new initiations.
Collapse
Affiliation(s)
| | - Andrei Kuzminov
- Corresponding author: Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
31
|
Bäckström A, Yudovich D, Žemaitis K, Nilsén Falck L, Subramaniam A, Larsson J. Combinatorial gene targeting in primary human hematopoietic stem and progenitor cells. Sci Rep 2022; 12:18169. [PMID: 36307542 PMCID: PMC9616885 DOI: 10.1038/s41598-022-23118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The CRISPR/Cas9 system offers enormous versatility for functional genomics but many applications have proven to be challenging in primary human cells compared to cell lines or mouse cells. Here, to establish a paradigm for multiplexed gene editing in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs), we used co-delivery of lentiviral sgRNA vectors expressing either Enhanced Green Fluorescent Protein (EGFP) or Kusabira Orange (KuO), together with Cas9 mRNA, to simultaneously edit two genetic loci. The fluorescent markers allow for tracking of either single- or double-edited cells, and we could achieve robust double knockout of the cell surface molecules CD45 and CD44 with an efficiency of ~ 70%. As a functional proof of concept, we demonstrate that this system can be used to model gene dependencies for cell survival, by simultaneously targeting the cohesin genes STAG1 and STAG2. Moreover, we show combinatorial effects with potential synergy for HSPC expansion by targeting the Aryl Hydrocarbon Receptor (AHR) in conjunction with members of the CoREST complex. Taken together, our traceable multiplexed CRISPR/Cas9 system enables studies of genetic dependencies and cooperation in primary HSPCs, and has important implications for modelling polygenic diseases, as well as investigation of the underlying mechanisms of gene interactions.
Collapse
Affiliation(s)
- Alexandra Bäckström
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - David Yudovich
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Kristijonas Žemaitis
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Ludvig Nilsén Falck
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Agatheeswaran Subramaniam
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Jonas Larsson
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| |
Collapse
|
32
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
33
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
34
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
35
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
36
|
Cyplik A, Bocianowski J. Analytical and numerical comparisons of two methods of estimation of additive × additive × additive interaction of QTL effects. J Appl Genet 2022; 63:213-221. [PMID: 34940940 PMCID: PMC8979904 DOI: 10.1007/s13353-021-00676-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022]
Abstract
This paper presents the analytical and numerical comparison of two methods of estimation of additive × additive × additive (aaa) interaction of QTL effects. The first method takes into account only the plant phenotype, while in the second we also included genotypic information from molecular marker observation. Analysis was made on 150 doubled haploid (DH) lines of barley derived from cross Steptoe × Morex and 145 DH lines from Harrington × TR306 cross. In total, 153 sets of observation was analyzed. In most cases, aaa interactions were found with an exert effect on QTL. Results also show that with molecular marker observations, obtained estimators had smaller absolute values than phenotypic estimators.
Collapse
Affiliation(s)
- Adrian Cyplik
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland.
| |
Collapse
|
37
|
Imenez Silva PH, Wagner CA. Physiological relevance of proton-activated GPCRs. Pflugers Arch 2022; 474:487-504. [PMID: 35247105 PMCID: PMC8993716 DOI: 10.1007/s00424-022-02671-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The detection of H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-specialized pH-sensing mechanisms. The proton-activated G protein-coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 (Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal adaption to changes in acid-base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these receptors in physiological processes and will briefly discuss some implications for disease processes.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
38
|
Phenomics approaches to understand genetic networks and gene function in yeast. Biochem Soc Trans 2022; 50:713-721. [PMID: 35285506 PMCID: PMC9162466 DOI: 10.1042/bst20210285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/03/2023]
Abstract
Over the past decade, major efforts have been made to systematically survey the characteristics or phenotypes associated with genetic variation in a variety of model systems. These so-called phenomics projects involve the measurement of 'phenomes', or the set of phenotypic information that describes an organism or cell, in various genetic contexts or states, and in response to external factors, such as environmental signals. Our understanding of the phenome of an organism depends on the availability of reagents that enable systematic evaluation of the spectrum of possible phenotypic variation and the types of measurements that can be taken. Here, we highlight phenomics studies that use the budding yeast, a pioneer model organism for functional genomics research. We focus on genetic perturbation screens designed to explore genetic interactions, using a variety of phenotypic read-outs, from cell growth to subcellular morphology.
Collapse
|
39
|
Hösli L, Zuend M, Bredell G, Zanker HS, Porto de Oliveira CE, Saab AS, Weber B. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep 2022; 39:110599. [PMID: 35385728 DOI: 10.1016/j.celrep.2022.110599] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes establish extensive networks via gap junctions that allow each astrocyte to connect indirectly to the vasculature. However, the proportion of astrocytes directly associated with blood vessels is unknown. Here, we quantify structural contacts of cortical astrocytes with the vasculature in vivo. We show that all cortical astrocytes are connected to at least one blood vessel. Moreover, astrocytes contact more vessels in deeper cortical layers where vessel density is known to be higher. Further examination of different brain regions reveals that only the hippocampus, which has the lowest vessel density of all investigated brain regions, harbors single astrocytes with no apparent vascular connection. In summary, we show that almost all gray matter astrocytes have direct contact to the vasculature. In addition to the glial network, a direct vascular access may represent a complementary pathway for metabolite uptake and distribution.
Collapse
Affiliation(s)
- Ladina Hösli
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Gustav Bredell
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Henri S Zanker
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Carlos Eduardo Porto de Oliveira
- ETH Zurich, Computer Vision Laboratory, Department of Information Technology and Electrical Engineering, 8092 Zurich, Switzerland
| | - Aiman S Saab
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Kocaoglu B, Alexander WH. Degeneracy measures in biologically plausible random Boolean networks. BMC Bioinformatics 2022; 23:71. [PMID: 35164672 PMCID: PMC8845291 DOI: 10.1186/s12859-022-04601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Degeneracy—the ability of structurally different elements to perform similar functions—is a property of many biological systems. Highly degenerate systems show resilience to perturbations and damage because the system can compensate for compromised function due to reconfiguration of the underlying network dynamics. Degeneracy thus suggests how biological systems can thrive despite changes to internal and external demands. Although degeneracy is a feature of network topologies and seems to be implicated in a wide variety of biological processes, research on degeneracy in biological networks is mostly limited to weighted networks. In this study, we test an information theoretic definition of degeneracy on random Boolean networks, frequently used to model gene regulatory networks. Random Boolean networks are discrete dynamical systems with binary connectivity and thus, these networks are well-suited for tracing information flow and the causal effects. By generating networks with random binary wiring diagrams, we test the effects of systematic lesioning of connections and perturbations of the network nodes on the degeneracy measure. Results Our analysis shows that degeneracy, on average, is the highest in networks in which ~ 20% of the connections are lesioned while 50% of the nodes are perturbed. Moreover, our results for the networks with no lesions and the fully-lesioned networks are comparable to the degeneracy measures from weighted networks, thus we show that the degeneracy measure is applicable to different networks. Conclusions Such a generalized applicability implies that degeneracy measures may be a useful tool for investigating a wide range of biological networks and, therefore, can be used to make predictions about the variety of systems’ ability to recover function. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04601-5.
Collapse
Affiliation(s)
- Basak Kocaoglu
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA. .,The Brain Institute, Florida Atlantic University, Jupiter, FL, 33431, USA.
| | - William H Alexander
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.,Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA.,The Brain Institute, Florida Atlantic University, Jupiter, FL, 33431, USA
| |
Collapse
|
41
|
Fong SH, Munson BP, Ideker T. Uncovering Tumorigenesis Circuitry with Combinatorial CRISPR. Cancer Res 2021; 81:6078-6079. [PMID: 34911780 DOI: 10.1158/0008-5472.can-21-3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Oncogenesis relies on the alteration of multiple driver genes, but precisely which groups of alterations lead to cancer is not well understood. To chart these combinations, Zhao and colleagues use the CRISPR-Cas9 system to knockout all pairwise combinations among 52 tumor suppressor genes, with the goal of identifying groups of alterations that collaborate to promote cell growth. Interaction screens are performed across multiple models of tumorigenesis in cell cultures and mice, revealing clear cooperation among NF2, PTEN, and TP53 in multiple models. These and other strongly synergistic interactions are characterized further by single-cell transcriptomic profiling. This methodology presents a scalable approach to move beyond single-gene drivers to map the complex gene networks that give rise to tumorigenesis.See related article by Zhao et al., p. 6090.
Collapse
Affiliation(s)
- Samson H Fong
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California.,Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Brenton P Munson
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California.,Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California. .,Department of Bioengineering, University of California San Diego, La Jolla, California.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), San Francisco, California
| |
Collapse
|
42
|
Hayward SB, Ciccia A. Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Curr Opin Genet Dev 2021; 71:171-181. [PMID: 34583241 PMCID: PMC8671205 DOI: 10.1016/j.gde.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-dependent genome editing enables the study of genes and mutations on a large scale. Here we review CRISPR-based functional genomics technologies that generate gene knockouts and single nucleotide variants (SNVs) and discuss how their use has provided new important insights into the function of homologous recombination (HR) genes. In particular, we highlight discoveries from CRISPR screens that have contributed to define the response to PARP inhibition in cells deficient for the HR genes BRCA1 and BRCA2, uncover genes whose loss causes synthetic lethality in combination with BRCA1/2 deficiency, and characterize the function of BRCA1/2 SNVs of uncertain clinical significance. Further use of these approaches, combined with next-generation CRISPR-based technologies, will aid to dissect the genetic network of the HR pathway, define the impact of HR mutations on cancer etiology and treatment, and develop novel targeted therapies for HR-deficient tumors.
Collapse
Affiliation(s)
- Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
43
|
Samakovli D, Tichá T, Vavrdová T, Závorková N, Pecinka A, Ovečka M, Šamaj J. HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis. PLANT PHYSIOLOGY 2021; 186:1526-1544. [PMID: 33856486 PMCID: PMC8260137 DOI: 10.1093/plphys/kiab171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
The YODA (YDA) kinase pathway is intimately associated with the control of Arabidopsis (Arabidopsis thaliana) embryo development, but little is known regarding its regulators. Using genetic analysis, HEAT SHOCK PROTEIN 90 (HSP90) proteins emerge as potent regulators of YDA in the process of embryo development and patterning. This study is focused on the characterization and quantification of early embryonal traits of single and double hsp90 and yda mutants. HSP90s genetic interactions with YDA affected the downstream signaling pathway to control the development of both basal and apical cell lineage of embryo. Our results demonstrate that the spatiotemporal expression of WUSCHEL-RELATED HOMEOBOX 8 (WOX8) and WOX2 is changed when function of HSP90s or YDA is impaired, suggesting their essential role in the cell fate determination and possible link to auxin signaling during early embryo development. Hence, HSP90s together with YDA signaling cascade affect transcriptional networks shaping the early embryo development.
Collapse
Affiliation(s)
- Despina Samakovli
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Tichá
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Natálie Závorková
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc 779 00, Czech Republic
| | - Miroslav Ovečka
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| |
Collapse
|
44
|
Akimov Y, Aittokallio T. Re-defining synthetic lethality by phenotypic profiling for precision oncology. Cell Chem Biol 2021; 28:246-256. [PMID: 33631125 DOI: 10.1016/j.chembiol.2021.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
High-throughput functional and genomic screening techniques provide systematic means for phenotypic discovery. Using synthetic lethality (SL) as a paradigm for anticancer drug and target discovery, we describe how these screening technologies may offer new possibilities to identify therapeutically relevant and selective SL interactions by addressing some of the challenges that have made robust discovery of SL candidates difficult. We further introduce an extended concept of SL interaction, in which a simultaneous perturbation of two or more cellular components reduces cell viability more than expected by their individual effects, which we feel is highly befitting for anticancer applications. We also highlight the potential benefits and challenges related to computational quantification of synergistic interactions and cancer selectivity. Finally, we explore how tumoral heterogeneity can be exploited to find phenotype-specific SL interactions for precision oncology using high-throughput functional screening and the exciting opportunities these methods provide for the identification of subclonal SL interactions.
Collapse
Affiliation(s)
- Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway; Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
45
|
Enriquez-Hesles E, Smith DL, Maqani N, Wierman MB, Sutcliffe MD, Fine RD, Kalita A, Santos SM, Muehlbauer MJ, Bain JR, Janes KA, Hartman JL, Hirschey MD, Smith JS. A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. J Biol Chem 2021; 296:100125. [PMID: 33243834 PMCID: PMC7949035 DOI: 10.1074/jbc.ra120.015402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Caloric restriction (CR) improves health span and life span of organisms ranging from yeast to mammals. Understanding the mechanisms involved will uncover future interventions for aging-associated diseases. In budding yeast, Saccharomyces cerevisiae, CR is commonly defined by reduced glucose in the growth medium, which extends both replicative and chronological life span (CLS). We found that conditioned media collected from stationary-phase CR cultures extended CLS when supplemented into nonrestricted (NR) cultures, suggesting a potential cell-nonautonomous mechanism of CR-induced life span regulation. Chromatography and untargeted metabolomics of the conditioned media, as well as transcriptional responses associated with the longevity effect, pointed to specific amino acids enriched in the CR conditioned media (CRCM) as functional molecules, with L-serine being a particularly strong candidate. Indeed, supplementing L-serine into NR cultures extended CLS through a mechanism dependent on the one-carbon metabolism pathway, thus implicating this conserved and central metabolic hub in life span regulation.
Collapse
Affiliation(s)
- Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Daniel L Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Nutrition Science, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Matthew D Sutcliffe
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Agata Kalita
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sean M Santos
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Muehlbauer
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - James R Bain
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Kevin A Janes
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John L Hartman
- Department of Genetics, Nutrition and Obesity Research Center, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew D Hirschey
- Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
46
|
Navare AT, Mast FD, Olivier JP, Bertomeu T, Neal M, Carpp LN, Kaushansky A, Coulombe-Huntington J, Tyers M, Aitchison JD. Viral protein engagement of GBF1 induces host cell vulnerability through synthetic lethality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020; 221:2020.10.12.336487. [PMID: 33173868 PMCID: PMC7654857 DOI: 10.1101/2020.10.12.336487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal partners of cancer-specific mutations. Synthetic lethal interactions of viral-induced hypomorphs have the potential to be similarly targeted for the development of host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for synthetic lethal partners of GBF1 revealed ARF1 as the top hit, disruption of which, selectively killed cells that synthesize poliovirus 3A. Thus, viral protein interactions can induce hypomorphs that render host cells vulnerable to perturbations that leave uninfected cells intact. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2. SUMMARY Using a viral-induced hypomorph of GBF1, Navare et al., demonstrate that the principle of synthetic lethality is a mechanism to selectively kill virus-infected cells.
Collapse
Affiliation(s)
- Arti T Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Maxwell Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lindsay N Carpp
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Integrative omics analysis reveals relationships of genes with synthetic lethal interactions through a pan-cancer analysis. Comput Struct Biotechnol J 2020; 18:3243-3254. [PMID: 33240468 PMCID: PMC7658657 DOI: 10.1016/j.csbj.2020.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic lethality is thought to play an important role in anticancer therapies. Herein, to understand the potential distributions and relationships between synthetic lethal interactions between genes, especially for pairs deriving from different sources, we performed an integrative analysis of genes at multiple molecular levels. Based on inter-species phylogenetic conservation of synthetic lethal interactions, gene pairs from yeast and humans were analyzed; a total of 37,588 candidate gene pairs containing 7,816 genes were collected. Of these, 49.74% of genes had 2–10 interactions, 22.93% were involved in hallmarks of cancer, and 21.61% were identified as core essential genes. Many genes were shown to have important biological roles via functional enrichment analysis, and 65 were identified as potentially crucial in the pathophysiology of cancer. Gene pairs with dysregulated expression patterns had higher prognostic values. Further screening based on mutation and expression levels showed that remaining gene pairs were mainly derived from human predicted or validated pairs, while most predicted pairs from yeast were filtered from analysis. Genes with synthetic lethality were further analyzed with their interactive microRNAs (miRNAs) at the isomiR level which have been widely studied as negatively regulatory molecules. The miRNA–mRNA interaction network revealed that many synthetic lethal genes contributed to the cell cycle (seven of 12 genes), cancer pathways (five of 12 genes), oocyte meiosis, the p53 signaling pathway, and hallmarks of cancer. Our study contributes to the understanding of synthetic lethal interactions and promotes the application of genetic interactions in further cancer precision medicine.
Collapse
Key Words
- ACC, adrenocortical carcinoma
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- Cancer therapy
- DLBC, lymphoid neoplasm diffuse large B-cell lymphoma
- ESCA, esophageal carcinoma
- GBM, glioblastoma multiforme
- HNSC, head and neck squamous cell carcinoma
- KICH, kidney chromophobe
- KIRC, kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LAML, acute myeloid leukemia
- LGG, brain lower grade glioma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- MESO, mesothelioma
- OV, ovarian serous cystadenocarcinoma
- PAAD, pancreatic adenocarcinoma
- PCPG, pheochromocytoma and paraganglioma
- PRAD, prostate adenocarcinoma
- Pan-cancer analysis
- READ, rectum adenocarcinoma
- RNA interaction
- SARC, sarcoma
- SKCM, skin cutaneous melanoma
- STAD, stomach adenocarcinoma
- Synthetic lethality
- TGCT, testicular germ cell tumors
- THCA, thyroid carcinoma
- THYM, thymoma
- TSG, tumor suppressor gene
- UCEC, uterine corpus endometrial carcinoma
- UCS, uterine carcinosarcoma
- UVM, uveal melanoma
Collapse
|
48
|
Cytoplasmic ERα and NFκB Promote Cell Survival in Mouse Mammary Cancer Cell Lines. Discov Oncol 2020; 11:76-86. [PMID: 32008217 DOI: 10.1007/s12672-020-00378-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
There is a desperate need in the field for mouse mammary tumors and cell lines that faithfully mimic estrogen receptor (ER) expression and activity found in human breast cancers. We found that several mouse mammary cancer cell lines express ER but fail to demonstrate classical estrogen-driven proliferation or transcriptional activity. We investigated whether these cell lines may be used to model tamoxifen resistance by using small molecule inhibitors to signaling pathways known to contribute to resistance. We found that the combination of NFκB inhibition and ER antagonists significantly reduced cell proliferation in vitro, as well as growth of syngeneic tumors. Surprisingly, we found that ER was localized to the cytoplasm, regardless of any type of treatment. Based on this, we probed extra-nuclear functions of ER and found that co-inhibition of ER and NFκB led to an increase in oxidative stress and apoptosis. Together, these findings suggest that cytoplasmic ER and NFκB may play redundant roles in protecting mammary cancer cells from oxidative stress and cell death. Although this study has not identified a mouse model with classical ER activity, cytoplasmic ER has been described in a small subset of human breast tumors, suggesting that these findings may be relevant for some breast cancer patients.
Collapse
|
49
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
50
|
Gupta N, Pandya P, Verma S. Computational Predictions for Multi-Target Drug Design. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|