1
|
Li Y, Li C, Zhou Y, Liu Y, Ni H. A deeper and hotter Martian core-mantle differentiation inferred from FeO partitioning. Sci Bull (Beijing) 2025; 70:429-436. [PMID: 39674771 DOI: 10.1016/j.scib.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 12/16/2024]
Abstract
The core-mantle differentiation process plays a pivotal role in redistributing material on a massive scale, shaping the long-term evolution of rocky planets. Understanding this process is crucial for gaining insights into the accretion and evolution of planets like Mars. However, the details of Mars's core-mantle differentiation remain poorly understood due to limited compositional data for its core and mantle. In this study, we aim to constrain the Martian core-mantle differentiation by examining FeO partitioning between core and mantle materials, incorporating improved Martian compositional data from the InSight mission. Using ab initio thermodynamic techniques, we calculated the FeO partition coefficient between liquid iron and silicate melt. Our results align with previous studies while also clarifying the factors affecting partitioning behavior. Based on these findings and estimates of oxygen concentration in the core, we infer that Mars's core and mantle likely differentiated at temperatures above 2440 K and pressures ranging from 14 to 22 GPa. Although these estimates are higher than previously reported, they are consistent with observed abundances of moderately siderophile elements and Mars's accretion models.
Collapse
Affiliation(s)
- Yunguo Li
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Chunhui Li
- Research Centre for Planetary Science, College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - You Zhou
- Research Centre for Planetary Science, College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Yun Liu
- Research Centre for Planetary Science, College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China; State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huaiwei Ni
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Nicholls H, Lichtenberg T, Bower DJ, Pierrehumbert R. Magma Ocean Evolution at Arbitrary Redox State. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2024; 129:e2024JE008576. [PMID: 39722853 PMCID: PMC11667094 DOI: 10.1029/2024je008576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically hostH 2 O - orH 2 -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption byH 2 induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.
Collapse
Affiliation(s)
- Harrison Nicholls
- AtmosphericOceanic and Planetary PhysicsUniversity of OxfordOxfordUK
| | - Tim Lichtenberg
- Kapteyn Astronomical InstituteUniversity of GroningenGroningenThe Netherlands
| | - Dan J. Bower
- Center for Space and HabitabilityUniversity of BernBernSwitzerland
- Institute of Geochemistry and Petrology, ETH ZurichZürichSwitzerland
| | | |
Collapse
|
3
|
Sakuraba H, Kurokawa H, Genda H, Ohta K. Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion. Sci Rep 2021; 11:20894. [PMID: 34686749 PMCID: PMC8536732 DOI: 10.1038/s41598-021-99240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}log10fO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gtrsim$$\end{document}≳\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{IW}}$$\end{document}IW\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-2$$\end{document}-2, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 is the oxygen fugacity, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{IW}$$\end{document}IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}log10fO2IW, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}fO2IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
Collapse
Affiliation(s)
- Haruka Sakuraba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Ohta
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
4
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
5
|
Wadhwa M, McCoy TJ, Schrader DL. Advances in Cosmochemistry Enabled by Antarctic Meteorites. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2020; 48:233-258. [PMID: 33380754 PMCID: PMC7768904 DOI: 10.1146/annurev-earth-082719-055815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies.
Collapse
Affiliation(s)
- Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA
| | - Timothy J McCoy
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Devin L Schrader
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
6
|
Koike M, Nakada R, Kajitani I, Usui T, Tamenori Y, Sugahara H, Kobayashi A. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat Commun 2020; 11:1988. [PMID: 32332762 PMCID: PMC7181736 DOI: 10.1038/s41467-020-15931-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation. Here we report that 4-billion-year-old (Ga) carbonates in Martian meteorite, Allan Hills 84001, preserve indigenous nitrogen(N)-bearing organics by developing a new technique for high-spatial resolution in situ N-chemical speciation. The organic materials were synthesized locally and/or delivered meteoritically on Mars during Noachian age. The carbonates, alteration minerals from the Martian near-surface aqueous fluid, trapped and kept the organic materials intact over long geological times. This presence of N-bearing compounds requires abiotic or possibly biotic N-fixation and ammonia storage, suggesting that early Mars had a less oxidizing environment than today.
Collapse
Affiliation(s)
- Mizuho Koike
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Ryoichi Nakada
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Iori Kajitani
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Usui
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Yusuke Tamenori
- Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Haruna Sugahara
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
7
|
DUNHAM ET, BALTA JB, WADHWA M, SHARP TG, MCSWEEN HY. Petrology and geochemistry of olivine-phyric shergottites LAR 12095 and LAR 12240: Implications for their petrogenetic history on Mars. METEORITICS & PLANETARY SCIENCE 2019; 54:811-835. [PMID: 31360056 PMCID: PMC6662651 DOI: 10.1111/maps.13262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/07/2018] [Indexed: 06/10/2023]
Abstract
Larkman Nunatak (LAR) 12095 and LAR 12240 are recent olivine-phyric shergottite lnds. We report the results of petrographic and chemical analyses of these two samples to understand their petrogenesis on Mars. Based on our analyses, we suggest that these samples are likely paired and are most similar to other depleted olivine-phyric shergottites, particularly Dar al Gani (DaG) 476 and Sayh al Uhaymir (SaU) 005 (and samples paired with those). The olivine megacryst cores in LAR 12095 and LAR 12240 are not in equilibrium with the groundmass olivines. We infer that these megacrysts are phenocrysts and their major element compositions have been homogenized by diffusion (the cores of the olivine megacrysts have Mg# ~70, whereas megacryst rims and groundmass olivines typically have Mg# ~58-60). The rare earth element (REE) microdistributions in the various phases (olivine, low- and high-Ca pyroxene, maskelynite, and merrillite) in both samples are similar and support the likelihood that these two shergottites are indeed paired. The calculated parent melt (i.e., in equilibrium with the low-Ca pyroxene, which is one of the earliest formed REE-bearing minerals) has an REE pattern parallel to that of melt in equilibrium with merrillite (i.e., one of the last-formed minerals). This suggests that the LAR 12095/12240 paired shergottites represent the product of closed-system fractional crystallization following magma emplacement and crystal accumulation. Utilizing the europium oxybarometer, we estimate that the magmatic oxygen fugacity early in the crystallization sequence was ~IW. Finally, petrographic evidence indicates that LAR 12095/12240 experienced extensive shock prior to being ejected from Mars.
Collapse
Affiliation(s)
- Emilie T. DUNHAM
- Center for Meteorite Studies, Arizona State University, Tempe, Arizona 8528, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 8528, USA
| | - J. Brian BALTA
- Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Earth and Environmental Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Earth and Planetary Sciences, Planetary Geosciences Institute, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| | - Meenakshi WADHWA
- Center for Meteorite Studies, Arizona State University, Tempe, Arizona 8528, USA
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 8528, USA
| | - Thomas G. SHARP
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 8528, USA
| | - Harry Y. MCSWEEN
- Department of Earth and Planetary Sciences, Planetary Geosciences Institute, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
8
|
Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-3881/aab608] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Oxygen Isotope Thermometry of DaG 476 and SaU 008 Martian Meteorites: Implications for Their Origin. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 2017; 552:391-394. [PMID: 29293210 DOI: 10.1038/nature25031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
Collapse
|
11
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
12
|
Tuff J, Wade J, Wood BJ. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 2013; 498:342-5. [PMID: 23783628 DOI: 10.1038/nature12225] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the 'SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.
Collapse
Affiliation(s)
- J Tuff
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | | | | |
Collapse
|
13
|
Doménech-Carbó A, Martini M, de Carvalho LM, Doménech-Carbó MT. Square wave voltammetric determination of the redox state of a reversibly oxidized/reduced depolarizer in solution and in solid state. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Steele A, McCubbin FM, Fries M, Kater L, Boctor NZ, Fogel ML, Conrad PG, Glamoclija M, Spencer M, Morrow AL, Hammond MR, Zare RN, Vicenzi EP, Siljestrom S, Bowden R, Herd CDK, Mysen BO, Shirey SB, Amundsen HEF, Treiman AH, Bullock ES, Jull AJT. A Reduced Organic Carbon Component in Martian Basalts. Science 2012; 337:212-5. [DOI: 10.1126/science.1220715] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
McCoy TJ, Corrigan CM, Herd CDK. Combining meteorites and missions to explore Mars. Proc Natl Acad Sci U S A 2011; 108:19159-64. [PMID: 21969535 PMCID: PMC3228422 DOI: 10.1073/pnas.1013478108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.
Collapse
Affiliation(s)
- Timothy J McCoy
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenues NW, Washington, DC 20560-0119, USA.
| | | | | |
Collapse
|
16
|
Frost DJ, Mann U, Asahara Y, Rubie DC. The redox state of the mantle during and just after core formation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4315-4337. [PMID: 18826924 DOI: 10.1098/rsta.2008.0147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.
Collapse
Affiliation(s)
- D J Frost
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany.
| | | | | | | |
Collapse
|
17
|
Johnson SS, Mischna MA, Grove TL, Zuber MT. Sulfur-induced greenhouse warming on early Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002962] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
The MEPAG Next Decade Science Analysis Group. Science priorities for Mars sample return. ASTROBIOLOGY 2008; 8:489-35. [PMID: 18688946 DOI: 10.1089/ast.2008.0759] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
19
|
Beaty DW, Clifford SM, Borg LE, Catling DC, Craddock RA, Des Marais DJ, Farmer JD, Frey HV, Haberle RM, McKay CP, Newsom HE, Parker TJ, Segura T, Tanaka KL. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. ASTROBIOLOGY 2005; 5:663-89. [PMID: 16379524 DOI: 10.1089/ast.2005.5.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.
Collapse
Affiliation(s)
- David W Beaty
- Mars Program Office, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109-8099, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dyar MD. MIL03346, the most oxidized Martian meteorite: A first look at spectroscopy, petrography, and mineral chemistry. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002426] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
McSween HY, Grove TL, Wyatt MB. Constraints on the composition and petrogenesis of the Martian crust. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002175] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harry Y. McSween
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Timothy L. Grove
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - Michael B. Wyatt
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
22
|
Abstract
Clues to the history of Mars are recorded in the chemistry and structure of the planet's crust and mantle. The mantle is the rocky, interior region of the planet that transports heat generated during accretion and subsequent core formation. The crust formed by melting of the upper mantle, and has been shaped and re-distributed by impact, volcanism, mantle flow and erosion. Observations point to a dynamically active interior in the early phases of martian history, followed by a rapid fall-off in heat transport that significantly influenced the geological, geophysical and geochemical evolution of the planet, including the history of water and climate.
Collapse
Affiliation(s)
- M T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
| |
Collapse
|