1
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Khalil R, Brüne M. Adaptive Decision-Making "Fast" and "Slow": A Model of Creative Thinking. Eur J Neurosci 2025; 61:e70024. [PMID: 40062646 PMCID: PMC11892090 DOI: 10.1111/ejn.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 05/13/2025]
Abstract
The late Daniel Kahneman introduced the concept of fast and slow thinking, representing two distinct cognitive systems involved in decision-making (DM). Fast thinking (System 1) operates intuitively and spontaneously. In contrast, slow thinking (System 2) is characterized by deliberation and analytical reasoning. Following Kahneman's view, called the biases view, we suggest a framework involving the interplay between two systems, the bottom-up and top-down approaches. These two approaches involve various modalities, including learning skills, perception, cognition, attention, and emotion. Accordingly, we incorporate temporal modulation, which varies based on individual differences and accounts for adaptive DM. Our overarching framework elucidates how the brain dynamically allocates resources for adaptive DM and how creative mental processes could drive it. We highlight the immense value of interdisciplinary research collaboration in progressing the empirical research of our proposed framework.
Collapse
Affiliation(s)
- Radwa Khalil
- School of Business, Social, and Decision SciencesConstructor UniversityBremenGermany
| | - Martin Brüne
- LWL University Hospital Bochum, Department of Psychiatry, Psychotherapy and Preventive Medicine, Division of Social Neuropsychiatry and Evolutionary Medicine, Ruhr University BochumBochumNorth Rhine‐WestphaliaGermany
| |
Collapse
|
3
|
Li X, Oladeinde A, Rothrock M, Chung TJ, Ghazi Al Hakeem W. Using core genome and machine learning for serovar prediction in Salmonella enterica subspecies I strains. FEMS Microbiol Lett 2025; 372:fnaf040. [PMID: 40210591 DOI: 10.1093/femsle/fnaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025] Open
Abstract
This study presents a dual investigation of Salmonella enterica subspecies I, focusing on serovar prediction and core genome characteristics. We utilized two large genomic datasets (panX and NCBI Pathogen Detection) to test machine learning methods for predicting Salmonella serovars based on genomic differences. Among the four tested algorithms, the Random Forest model demonstrated higher performance, achieving 90.3% accuracy with the panX dataset and 95.3% with the NCBI dataset, particularly effective when trained on >50% of available data. When combined with hierarchical clustering validation, our approach achieved 100% prediction accuracy on the simulated data. Parallel analysis of panX core genome characteristics revealed that pathogenicity-related genes (including sseA, invA, mgtC, phoP, phoQ, and sitA) exhibited similar phylogenetic topologies distinct from the core genome phylogenetic tree, suggesting shared evolutionary histories. Notably, all identified core antibiotic resistance genes and virulence factors showed evidence of negative selection, indicating their essential role in bacterial survival. This study not only presents a promising machine learning-based alternative for Salmonella serovar classification, particularly valuable when analyzing newly identified serovars alongside known reference strains but also provides insights into the evolutionary dynamics of core virulence-associated genes, contributing to our understanding of Salmonella genomic architecture and pathogenicity.
Collapse
Affiliation(s)
- Xiang Li
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, United States
| | - Adelumola Oladeinde
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, United States
| | - Michael Rothrock
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, United States
| | - Tae Jung Chung
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, United States
- SCINet Program and ARS AI Center of Excellence, Office of National Programs, USDA Agricultural Research Service, Beltsville, MD 20705, United States
| | - Walid Ghazi Al Hakeem
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, United States
- Oak Ridge Institute for Science and Education, US-DOE, Oak Ridge, TN 37831, United States
| |
Collapse
|
4
|
Gutiérrez-García K, Aumiller K, Dodge R, Obadia B, Deng A, Agrawal S, Yuan X, Wolff R, Zhu H, Hsia RC, Garud N, Ludington WB. A conserved bacterial genetic basis for commensal-host specificity. Science 2024; 386:1117-1122. [PMID: 39636981 PMCID: PMC11914777 DOI: 10.1126/science.adp7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024]
Abstract
Animals selectively acquire specific symbiotic gut bacteria from their environments that aid host fitness. To colonize, a symbiont must locate its niche and sustain growth within the gut. Adhesins are bacterial cell surface proteins that facilitate attachment to host tissues and are often virulence factors for opportunistic pathogens. However, the attachments are often transient and nonspecific, and additional mechanisms are required to sustain infection. In this work, we use live imaging of individual symbiotic bacterial cells colonizing the gut of living Drosophila melanogaster to show that Lactiplantibacillus plantarum specifically recognizes the fruit fly foregut as a distinct physical niche. L. plantarum establishes stably within its niche through host-specific adhesins encoded by genes carried on a colonization island. The adhesin binding domains are conserved throughout the Lactobacillales, and the island also encodes a secretion system widely conserved among commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Kevin Aumiller
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ren Dodge
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Benjamin Obadia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ann Deng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sneha Agrawal
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xincheng Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Haolong Zhu
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ru-Ching Hsia
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - William B. Ludington
- Biosphere Sciences and Engineering Division, Carnegie Institution for Science, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Olymon K, Kumari A, Kinoo N, Teronpi V, Yella VR, Kumar A. Comparative genomic analysis reveals distinct virulence and resistance mechanisms in 21 bacterial fish pathogens. Microb Pathog 2024; 197:107099. [PMID: 39491566 DOI: 10.1016/j.micpath.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The rising bacterial infections threaten world aquaculture and wild fish populations, making it imperative to increase the understanding of the mechanisms of pathogenic virulence and resistance. This study applies comparative genomic analysis to 21 bacterial fish pathogens, using whole-genome sequences from public genomic resources and sophisticated bioinformatics tools for screening of virulence factors, mobile genetic elements, antibiotic resistance genes, anti-phage defense mechanisms and secretory systems. We have seen that the different pathogens depict a wide range of variability regarding virulence and resistance potential, which may be attributed to species-specific adaptation. Notably, Streptococcus agalactiae and Mycobacterium salmoniphilum were found to possess high offensive and defensive virulence potential, but at different regulative controls. We also found diverse secretion systems and intricate mechanisms for antibiotic resistance, which have provided very important insights into how pathogens adapt to their environments. By categorizing functional genes and finding anti-phage systems, our analysis has revealed new insights into the complex interactions among bacterial virulence, resistance, and host defense mechanisms. These findings not only shed new light on the bacterial pathogenesis process in aquaculture but also provide the bases for focused, therapeutically-based strategies and genomic surveillance programs able to improve disease management and sustainability in aquaculture environments.
Collapse
Affiliation(s)
- Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Ankita Kumari
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Nafeesah Kinoo
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 520002, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
6
|
Somerville V, Thierer N, Schmidt RS, Roetschi A, Braillard L, Haueter M, Berthoud H, Shani N, von Ah U, Mazel F, Engel P. Genomic and phenotypic imprints of microbial domestication on cheese starter cultures. Nat Commun 2024; 15:8642. [PMID: 39366947 PMCID: PMC11452379 DOI: 10.1038/s41467-024-52687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
Domestication - the artificial selection of wild species to obtain variants with traits of human interest - was integral to the rise of complex societies. The oversupply of food was probably associated with the formalization of food preservation strategies through microbial fermentation. While considerable literature exists on the antiquity of fermented food, only few eukaryotic microbes have been studied so far for signs of domestication, less is known for bacteria. Here, we tested if cheese starter cultures harbour typical hallmarks of domestication by characterising over 100 community samples and over 100 individual strains isolated from historical and modern traditional Swiss cheese starter cultures. We find that cheese starter cultures have low genetic diversity both at the species and strain-level and maintained stable phenotypic traits. Molecular clock dating further suggests that the evolutionary origin of the bacteria approximately coincided with the first archaeological records of cheese making. Finally, we find evidence for ongoing genome decay and pseudogenization via transposon insertion related to a reduction of their niche breadth. Future work documenting the prevalence of these hallmarks across diverse fermented food systems and geographic regions will be key to unveiling the joint history of humanity with fermented food microbes.
Collapse
Affiliation(s)
- Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Agroscope, Liebefeld, Switzerland.
- Université Laval, Quebec, Canada.
- McGill, Montréal, Canada.
| | | | | | | | | | | | | | | | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Zhang Q, Ji XM, Wang X, Wang W, Xu X, Zhang Q, Xing D, Ren N, Lee DJ, Chen C. Differentiation of the Anammox core microbiome: Unraveling the evolutionary impetus of scalable gene flow. WATER RESEARCH 2024; 268:122580. [PMID: 39383807 DOI: 10.1016/j.watres.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Anaerobic ammonium oxidation bacteria (AAOB), distinguished by their unique autotrophic nitrogen metabolism, hold pivotal positions in the global nitrogen cycle and environmental biotechnologies. However, the ecophysiology and evolution of AAOB remain poorly understood, attributed to the absence of monocultures. Hence, a comprehensive elucidation of the AAOB-dominated core microbiome, anammox core, is imperative to further completing the theory of engineered nitrogen removal and ecological roles of anammox. Performing taxonomic and phylogenetic analyses on collected genome repertoires, we show here that Candidatus Brocadia and Candidatus Kuenenia possesses a more compact core than Candidatus Jettenia, which partly explains why the latter has a less common ecological presence. Evidence of gene flow is particularly striking in functions related to biosynthesis and oxygen detoxification, underscoring the evolutionary forces driving lineage and core differentiation. Furthermore, CRISPR spacer traceback of the AAOB metagenome-assembled genomes (MAGs) reveals a series of genetic traces for the concealed phages. By reconceptualizing the functional divergence of AAOB with the historical role of phages, we ultimately propose a coevolutionary framework to understand the evolutionary trajectory of anammox microecology. The discoveries provided in this study offer new insights into understanding the evolution of AAOB and the ecology of anammox.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
8
|
Kurmi A, Sen P, Dash M, Ray SK, Satapathy SS. Differentially used codons among essential genes in bacteria identified by machine learning-based analysis. Mol Genet Genomics 2024; 299:72. [PMID: 39060647 DOI: 10.1007/s00438-024-02163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature. Using machine learning (ML) based approaches, we have analysed Relative Synonymous Codon Usage (RSCU) values between essential and non-essential genes in Escherichia coli and thirty-four other bacterial genomes whose gene essentiality features were available in public databases. We observed significant differences in codon usage patterns between essential and non-essential genes for majority of the bacterial genomes and accordingly, ML based classifiers achieved high area under curve (AUC) scores, with a minimum score of 70.0 across twenty-eight organisms. Further, importance of the codons towards classifying genes found to differ among the codons in each genome. Arg codon CGT and Gly codon GGT were observed to be the most preferred codons among essential genes in Escherichia coli. Interestingly, some of the codons like CGT, ATA, GGT and GGG observed to be contributing consistently towards classifying essential genes across thirty-five bacteria genomes studied. In other hand, codons TGY and CAY encoding amino acids Cys and His respectively were among the least contributing codons towards classification among all these bacteria. This study demonstrates the gene essentiality based differences in synonymous codon usage in bacteria genomes and presents a common codon usage pattern across bacteria.
Collapse
Affiliation(s)
- Annushree Kurmi
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
- Department of Computer Science and Engineering, The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Piyali Sen
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
| | - Madhusmita Dash
- Department of Electronics and Communication Engineering, NIT, Jote, Arunachal Pradesh, 791113, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | | |
Collapse
|
9
|
Deb S, Wild MA, LeClair T, Shah DH. Discovery of novel treponemes associated with pododermatitis in elk ( Cervus canadensis). Appl Environ Microbiol 2024; 90:e0010524. [PMID: 38742897 PMCID: PMC11218636 DOI: 10.1128/aem.00105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Pododermatitis, also known as treponeme-associated hoof disease (TAHD), presents a significant challenge to elk (Cervus canadensis) populations in the northwestern USA, with Treponema spp. consistently implicated in the lesion development. However, identifying species-specific Treponema strains from these lesions is hindered by its culture recalcitrance and limited genomic information. This study utilized shotgun sequencing, in silico genome reconstruction, and comparative genomics as a culture-independent approach to identify metagenome-assembled Treponema genomes (MATGs) from skin scraping samples collected from captive elk experimentally challenged with TAHD. The genomic analysis revealed 10 new MATGs, with 6 representing novel genomospecies associated with pododermatitis in elk and 4 corresponding to previously identified species-Treponema pedis and Treponema phagedenis. Importantly, genomic signatures of novel genomospecies identified in this study were consistently detected in biopsy samples of free-ranging elk diagnosed with TAHD, indicating a potential etiologic association. Comparative metabolic profiling of the MATGs against other Treponema genomes showed a distinct metabolic profile, suggesting potential host adaptation or geographic uniqueness of these newly identified genomospecies. The discovery of novel Treponema genomospecies enhances our understanding of the pathogenesis of pododermatitis and lays the foundation for the development of improved molecular surveillance tools to monitor and manage the disease in free-ranging elk.IMPORTANCETreponema spp. play an important role in the development of pododermatitis in free-ranging elk; however, the species-specific detection of Treponema from pododermatitis lesions is challenging due to culture recalcitrance and limited genomic information. The study utilized shotgun sequencing and in silico genome reconstruction to identify novel Treponema genomospecies from elk with pododermatitis. The discovery of the novel Treponema species opens new avenues to develop molecular diagnostic and epidemiologic tools for the surveillance of pododermatitis in elk. These findings significantly enhance our understanding of the genomic landscape of the Treponemataceae consortium while offering valuable insights into the etiology and pathogenesis of emerging pododermatitis in elk populations.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Margaret A. Wild
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Thomas LeClair
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Devendra H. Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA
| |
Collapse
|
10
|
Yang Y, Wang P, Qaidi SE, Hardwidge PR, Huang J, Zhu G. Loss to gain: pseudogenes in microorganisms, focusing on eubacteria, and their biological significance. Appl Microbiol Biotechnol 2024; 108:328. [PMID: 38717672 PMCID: PMC11078800 DOI: 10.1007/s00253-023-12971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 05/12/2024]
Abstract
Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Pengzhi Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China
| | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jinlin Huang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- College of Bioscience and Biotechnology, Yangzhou University, 12 East Wenhui Road Yangzhou, Jiangsu, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
- Joint Laboratory of International Cooperation On Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Klim J, Zielenkiewicz U, Kaczanowski S. Loss-of-function mutations are main drivers of adaptations during short-term evolution. Sci Rep 2024; 14:7128. [PMID: 38532077 DOI: 10.1038/s41598-024-57694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
We noticed that during short-term experimental evolution and carcinogenesis, mutations causing gene inactivation (i.e., nonsense mutations or frameshifts) are frequent. Our meta-analysis of 65 experiments using modified dN/dS statistics indicated that nonsense mutations are adaptive in different experimental conditions and we empirically confirmed this prediction. Using yeast S. cerevisiae as a model we show that fixed or highly frequent gene loss-of-function mutations are almost exclusively adaptive in the majority of experiments.
Collapse
Affiliation(s)
- Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
12
|
Ding S, Ma Z, Yu L, Lan G, Tang Y, Li Z, He Z, She X. Comparative genomics and host range analysis of four Ralstonia pseudosolanacearum strains isolated from sunflower reveals genomic and phenotypic differences. BMC Genomics 2024; 25:191. [PMID: 38373891 PMCID: PMC10875864 DOI: 10.1186/s12864-024-10087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Bacterial wilt caused by Ralstonia solanacearum species complex (RSSC) is one of the devastating diseases in crop production, seriously reducing the yield of crops. R. pseudosolanacearum, is known for its broad infrasubspecific diversity and comprises 36 sequevars that are currently known. Previous studies found that R. pseudosolanacearum contained four sequevars (13, 14, 17 and 54) isolated from sunflowers sown in the same field. RESULTS Here, we provided the complete genomes and the results of genome comparison of the four sequevars strains (RS639, RS642, RS647, and RS650). Four strains showed different pathogenicities to the same cultivars and different host ranges. Their genome sizes were about 5.84 ~ 5.94 Mb, encoding 5002 ~ 5079 genes and the average G + C content of 66.85% ~ 67%. Among the coding genes, 146 ~ 159 specific gene families (contained 150 ~ 160 genes) were found in the chromosomes and 34 ~ 77 specific gene families (contained 34 ~ 78 genes) in the megaplasmids from four strains. The average nucleotide identify (ANI) values between any two strains ranged from 99.05% ~ 99.71%, and the proportion of the total base length of collinear blocks accounts for the total gene length of corresponding genome was all more than 93.82%. Then, we performed a search for genomic islands, prophage sequences, the gene clusters macromolecular secretion systems, type III secreted effectors and other virulence factors in these strains, which provided detailed comparison results of their presence and distinctive features compared to the reference strain GMI1000. Among them, the number and types of T2SS gene clusters were different in the four strains, among which RS650 included all five types. T4SS gene cluster of RS639 and RS647 were missed. In the T6SS gene cluster, several genes were inserted in the RS639, RS647, and RS650, and gene deletion was also detected in the RS642. A total of 78 kinds of type III secreted effectors were found, which included 52 core and 9 specific effectors in four strains. CONCLUSION This study not only provided the complete genomes of multiple R. pseudosolanacearum strains isolated from a new host, but also revealed the differences in their genomic levels through comparative genomics. Furthermore, these findings expand human knowledge about the range of hosts that Ralstonia can infect, and potentially contribute to exploring rules and factors of the genetic evolution and analyzing its pathogenic mechanism.
Collapse
Affiliation(s)
- Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zijun Ma
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Guobing Lan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhenggang Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
13
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Weinroth MD, Clawson ML, Harhay GP, Eppinger M, Harhay DM, Smith TPL, Bono JL. Escherichia coli O157:H7 tir 255 T > A allele strains differ in chromosomal and plasmid composition. Front Microbiol 2023; 14:1303387. [PMID: 38169669 PMCID: PMC10758439 DOI: 10.3389/fmicb.2023.1303387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains with the T allele in the translocated intimin receptor polymorphism (tir) 255 A > T gene associate with human disease more than strains with an A allele; however, the allele is not thought to be the direct cause of this difference. We sequenced a diverse set of STEC O157:H7 strains (26% A allele, 74% T allele) to identify linked differences that might underlie disease association. The average chromosome and pO157 plasmid size and gene content were significantly greater within the tir 255 A allele strains. Eighteen coding sequences were unique to tir 255 A allele chromosomes, and three were unique to tir 255 T allele chromosomes. There also were non-pO157 plasmids that were unique to each tir 255 allele variant. The overall average number of prophages did not differ between tir 255 allele strains; however, there were different types between the strains. Genomic and mobile element variation linked to the tir 255 polymorphism may account for the increased frequency of the T allele isolates in human disease.
Collapse
Affiliation(s)
- Margaret D. Weinroth
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Michael L. Clawson
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Gregory P. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Dayna M. Harhay
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - Timothy P. L. Smith
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| | - James L. Bono
- Department of Molecular Microbiology and Immunology, USDA ARS Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
15
|
Mathlouthi NEH, Belguith I, Yengui M, Oumarou Hama H, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. The Archaeome's Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures. Microorganisms 2023; 11:2742. [PMID: 38004753 PMCID: PMC10673094 DOI: 10.3390/microorganisms11112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Mariem Yengui
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Ghiles Grine
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
- Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| |
Collapse
|
16
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
17
|
Hernandez DJ, Kiesewetter KN, Almeida BK, Revillini D, Afkhami ME. Multidimensional specialization and generalization are pervasive in soil prokaryotes. Nat Ecol Evol 2023; 7:1408-1418. [PMID: 37550510 DOI: 10.1038/s41559-023-02149-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles.
Collapse
Affiliation(s)
| | | | | | - Daniel Revillini
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
18
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Herrera-Leon S, Amor Aramendia A, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Comparative whole-genome sequence analysis of Mycobacterium tuberculosis isolated from pulmonary tuberculosis and tuberculous lymphadenitis patients in Northwest Ethiopia. Front Microbiol 2023; 14:1211267. [PMID: 37455714 PMCID: PMC10348828 DOI: 10.3389/fmicb.2023.1211267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Background Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex (MTBC), is a chronic infectious disease with both pulmonary and extrapulmonary forms. This study set out to investigate and compare the genomic diversity and transmission dynamics of Mycobacterium tuberculosis (Mtb) isolates obtained from tuberculous lymphadenitis (TBLN) and pulmonary TB (PTB) cases in Northwest Ethiopia. Methods A facility-based cross-sectional study was conducted using two groups of samples collected between February 2021 and June 2022 (Group 1) and between June 2020 and June 2022 (Group 2) in Northwest Ethiopia. Deoxyribonucleic acid (DNA) was extracted from 200 heat-inactivated Mtb isolates. Whole-genome sequencing (WGS) was performed from 161 isolates having ≥1 ng DNA/μl using Illumina NovaSeq 6000 technology. Results From the total 161 isolates sequenced, 146 Mtb isolates were successfully genotyped into three lineages (L) and 18 sub-lineages. The Euro-American (EA, L4) lineage was the prevailing (n = 100; 68.5%) followed by Central Asian (CAS, L3, n = 43; 25.3%) and then L7 (n = 3; 2.05%). The L4.2.2.ETH sub-lineage accounted for 19.9%, while Haarlem estimated at 13.7%. The phylogenetic tree revealed distinct Mtb clusters between PTB and TBLN isolates even though there was no difference at lineages and sub-lineages levels. The clustering rate (CR) and recent transmission index (RTI) for PTB were 30 and 15%, respectively. Similarly, the CR and RTI for TBLN were 31.1 and 18 %, respectively. Conclusion and recommendations PTB and TBLN isolates showed no Mtb lineages and sub-lineages difference. However, at the threshold of five allelic distances, Mtb isolates obtained from PTB and TBLN form distinct complexes in the phylogenetic tree, which indicates the presence of Mtb genomic variation among the two clinical forms. The high rate of clustering and RTI among TBLN implied that TBLN was likely the result of recent transmission and/or reactivation from short latency. Hence, the high incidence rate of TBLN in the Amhara region could be the result of Mtb genomic diversity and rapid clinical progression from primary infection and/or short latency. To validate this conclusion, a similar community-based study with a large sample size and better sampling technique is highly desirable. Additionally, analysis of genomic variants other than phylogenetic informative regions could give insightful information. Combined analysis of the host and the pathogen genome (GXG) together with environmental (GxGxE) factors could give comprehensive co-evolutionary information.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|
19
|
Muselmani W, Kashif-Khan N, Bagnéris C, Santangelo R, Williams MA, Savva R. A Multimodal Approach towards Genomic Identification of Protein Inhibitors of Uracil-DNA Glycosylase. Viruses 2023; 15:1348. [PMID: 37376646 DOI: 10.3390/v15061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-mimicking proteins encoded by viruses can modulate processes such as innate cellular immunity. An example is Ung-family uracil-DNA glycosylase inhibition, which prevents Ung-mediated degradation via the stoichiometric protein blockade of the Ung DNA-binding cleft. This is significant where uracil-DNA is a key determinant in the replication and distribution of virus genomes. Unrelated protein folds support a common physicochemical spatial strategy for Ung inhibition, characterised by pronounced sequence plasticity within the diverse fold families. That, and the fact that relatively few template sequences are biochemically verified to encode Ung inhibitor proteins, presents a barrier to the straightforward identification of Ung inhibitors in genomic sequences. In this study, distant homologs of known Ung inhibitors were characterised via structural biology and structure prediction methods. A recombinant cellular survival assay and in vitro biochemical assay were used to screen distant variants and mutants to further explore tolerated sequence plasticity in motifs supporting Ung inhibition. The resulting validated sequence repertoire defines an expanded set of heuristic sequence and biophysical signatures shared by known Ung inhibitor proteins. A computational search of genome database sequences and the results of recombinant tests of selected output sequences obtained are presented here.
Collapse
Affiliation(s)
- Wael Muselmani
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Naail Kashif-Khan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Rosalia Santangelo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Mark A Williams
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Renos Savva
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
20
|
Teng W, Liao B, Chen M, Shu W. Genomic Legacies of Ancient Adaptation Illuminate GC-Content Evolution in Bacteria. Microbiol Spectr 2023; 11:e0214522. [PMID: 36511682 PMCID: PMC9927291 DOI: 10.1128/spectrum.02145-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial evolution is characterized by strong purifying selection as well as rapid adaptive evolution in changing environments. In this context, the genomic GC content (genomic GC) varies greatly but presents some level of phylogenetic stability, making it challenging to explain based on current hypotheses. To illuminate the evolutionary mechanisms of the genomic GC, we analyzed the base composition and functional inventory of 11,083 representative genomes. A phylogenetically constrained bimodal distribution of the genomic GC, which mainly originated from parallel divergences in the early evolution, was demonstrated. Such variation of the genomic GC can be well explained by DNA replication and repair (DRR), in which multiple pathways correlate with the genomic GC. Furthermore, the biased conservation of various stress-related genes, especially the DRR-related ones, implies distinct adaptive processes in the ancestral lineages of high- or low-GC clades which are likely induced by major environmental changes. Our findings support that the mutational biases resulting from these legacies of ancient adaptation have changed the course of adaptive evolution and generated great variation in the genomic GC. This highlights the importance of indirect effects of natural selection, which indicates a new model for bacterial evolution. IMPORTANCE GC content has been shown to be an important factor in microbial ecology and evolution, and the genomic GC of bacteria can be characterized by great intergenomic heterogeneity, high intragenomic homogeneity, and strong phylogenetic inertia, as well as being associated with the environment. Current hypotheses concerning direct selection or mutational biases cannot well explain these features simultaneously. Our findings of the genomic GC showing that ancient adaptations have transformed the DRR system and that the resulting mutational biases further contributed to a bimodal distribution of it offer a more reasonable scenario for the mechanism. This would imply that, when thinking about the evolution of life, diverse processes of adaptation exist, and combined effects of natural selection should be considered.
Collapse
Affiliation(s)
- Wenkai Teng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengyun Chen
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
23
|
De Oliveira AL, Srivastava A, Espada‐Hinojosa S, Bright M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol Ecol Resour 2022; 22:3106-3123. [PMID: 35699368 PMCID: PMC9796809 DOI: 10.1111/1755-0998.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.
Collapse
Affiliation(s)
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | | | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
24
|
Gourlie R, McDonald M, Hafez M, Ortega-Polo R, Low KE, Abbott DW, Strelkov SE, Daayf F, Aboukhaddour R. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB. BMC Biol 2022; 20:239. [PMID: 36280878 PMCID: PMC9594970 DOI: 10.1186/s12915-022-01433-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens. Pyrenophora tritici-repentis (Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements. RESULTS A comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr's adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr's effectors: ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb 'Starship' transposon (dubbed 'Horizon') with a clearly defined target site and target site duplications. 'Horizon' was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer of ToxA) was nested within this newly identified Starship. Additionally, ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative 'Starship' (dubbed 'Icarus') in a ToxB-producing isolate. ToxB and its putative transposon were missing from the ToxB non-coding reference isolate, but the homolog toxb and 'Icarus' were both present in a different non-coding isolate. This suggests that ToxB may have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption of ToxB vertical inheritance. Finally, the genome architecture of Ptr was defined as 'one-compartment' based on calculated gene distances and evolutionary rates. CONCLUSIONS These findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.
Collapse
Affiliation(s)
- Ryan Gourlie
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Megan McDonald
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Institute of Microbiology and Infection, Edgbaston, Birmingham, UK
| | - Mohamed Hafez
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Rodrigo Ortega-Polo
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Kristin E. Low
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - D. Wade Abbott
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | - Stephen E. Strelkov
- grid.17089.370000 0001 2190 316XFaculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB Canada
| | - Fouad Daayf
- grid.21613.370000 0004 1936 9609Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Reem Aboukhaddour
- grid.55614.330000 0001 1302 4958Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| |
Collapse
|
25
|
Haudiquet M, de Sousa JM, Touchon M, Rocha EPC. Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210234. [PMID: 35989606 PMCID: PMC9393566 DOI: 10.1098/rstb.2021.0234] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell–MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Marie Touchon
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
26
|
Deb S. Pan-genome evolution and its association with divergence of metabolic functions in Bifidobacterium genus. World J Microbiol Biotechnol 2022; 38:231. [PMID: 36205822 DOI: 10.1007/s11274-022-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 10/10/2022]
Abstract
Previous studies were mainly focused on genomic evolution and diversity of type species of Bifidobacterium genus due to their health-promoting effect on host. However, those studies were mainly based on species-level taxonomic resolution, adaptation, and characterization of carbohydrate metabolic features of the bifidobacterial species. Here, a comprehensive analysis of the type strain genome unveils the association of pan-genome evolution with the divergence of metabolic function of the Bifidobacterium genus. This study has also demonstrated that horizontal gene transfer, as well as genome expansion and reduction events, leads to the divergence of metabolic functions in Bifidobacterium genus. Furthermore, the genome-based search of probiotic traits among all the available bifidobacterial type strains gives hints on type species, that could confer health benefits to nutrient-deficient individuals. Altogether, the present study provides insight into the developments of genomic evolution, functional divergence, and potential probiotic type species of the Bifidobacterium genus.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, 799022, Tripura, India. .,All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
27
|
Kharadi RR, Selbmann K, Sundin GW. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in Erwinia amylovora. PLoS Pathog 2022; 18:e1010737. [PMID: 35914003 PMCID: PMC9371280 DOI: 10.1371/journal.ppat.1010737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is an essential bacterial second messenger that regulates biofilm formation and pathogenicity. To study the global regulatory effect of individual components of the c-di-GMP metabolic system, we deleted all 12 diguanylate cyclase (dgc) and phosphodiesterase (pde)-encoding genes in E. amylovora Ea1189 (Ea1189Δ12). Ea1189Δ12 was impaired in surface attachment due to a transcriptional dysregulation of the type IV pilus and the flagellar filament. A transcriptomic analysis of surface-exposed WT Ea1189 and Ea1189Δ12 cells indicated that genes involved in metabolism, appendage generation and global transcriptional/post-transcriptional regulation were differentially regulated in Ea1189Δ12. Biofilm formation was regulated by all 5 Dgcs, whereas type III secretion and disease development were differentially regulated by specific Dgcs. A comparative transcriptomic analysis of Ea1189Δ8 (lacks all five enzymatically active dgc and 3 pde genes) against Ea1189Δ8 expressing specific dgcs, revealed the presence of a dual modality of spatial and global regulatory frameworks in the c-di-GMP signaling network.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Kayla Selbmann
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
28
|
Annotation-free delineation of prokaryotic homology groups. PLoS Comput Biol 2022; 18:e1010216. [PMID: 35675326 PMCID: PMC9212150 DOI: 10.1371/journal.pcbi.1010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are homologous across their length. However, processes such as horizontal gene transfer or gene duplication and loss may disrupt this homology by recombining only parts of genes, causing gene fission or fusion. We show using simulation that it is necessary to delineate homology groups in a set of bacterial genomes without relying on gene annotations to define the boundaries of homologous regions. To solve this problem, we have developed a graph-based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups of sequences (MHGs) where each MHG is a maximal set of maximum-length sequences which are homologous across the entire sequence alignment. We applied our algorithm to a dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater proportions of genomes than markers and, relatedly, are less biased in terms of the functions of the genes they cover. We zoomed in on the correlation between each individual marker and their overlapping MHGs, and show that few phylogenetic splits supported by the markers are supported by the MHGs while many marker-supported splits are contradicted by the MHGs. A comparison of the species tree inferred from marker genes with the species tree inferred from MHGs suggests that the increased bias and lack of genome coverage by markers causes incorrect inferences as to the overall relationship between bacterial taxa. Assuming genes to be the basic evolutionary unit has been commonplace in bacterial genomics. For example, when quantifying the extent of horizontal gene transfer it is common to infer gene trees and reconcile them against a species tree to account for recombination-based processes. We have developed a new method which challenges this assumption by identifying contiguous regions of true homology without regards to gene boundaries and applied it to Enterobacteriaceae, a family of bacteria containing several important human pathogens. Our results show that genes are composed of distinct homologous regions with conflicting phylogenetic histories. We further demonstrate that failing to take account of this conflict, together with the functional biases we show exist among single-copy marker genes, significantly changes the consensus evolutionary tree of Enterobacteriaceae.
Collapse
|
29
|
Goyal A. Horizontal gene transfer drives the evolution of dependencies in bacteria. iScience 2022; 25:104312. [PMID: 35586069 PMCID: PMC9108730 DOI: 10.1016/j.isci.2022.104312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Many naturally occurring bacteria lead a lifestyle of metabolic dependency for crucial resources. We do not understand what factors drive bacteria toward this lifestyle and how. Here, we systematically show the crucial role of horizontal gene transfer (HGT) in dependency evolution in bacteria. Across 835 bacterial species, we map gene gain-loss dynamics on a deep evolutionary tree and assess the impact of HGT and gene loss on metabolic networks. Our analyses suggest that HGT-enabled gene gains can affect which genes are later lost. HGT typically adds new catabolic routes to bacterial metabolic networks, leading to new metabolic interactions between bacteria. We also find that gaining new routes can promote the loss of ancestral routes (”coupled gains and losses”, CGLs). Phylogenetic patterns indicate that both dependencies—mediated by CGLs and those purely by gene loss—are equally likely. Our results highlight HGT as an important driver of metabolic dependency evolution in bacteria. Metabolic dependencies are widespread across bacterial genomes New genes expand bacterial catabolism via the process of horizontal gene transfer During evolution, efficient pathways are gained, whereas redundant pathways are lost Gained pathways often depend on the metabolic byproducts of the surrounding community
Collapse
Affiliation(s)
- Akshit Goyal
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc Natl Acad Sci U S A 2022; 119:e2116722119. [PMID: 35412864 PMCID: PMC9169917 DOI: 10.1073/pnas.2116722119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry. The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.
Collapse
|
31
|
Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Microbiol Spectr 2022; 10:e0196921. [PMID: 35467366 PMCID: PMC9241588 DOI: 10.1128/spectrum.01969-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene inactivation through the accumulation of truncation (or premature stop codon) mutations is a common mode of evolution in bacteria. It is frequently believed to result from reductive evolutionary processes allowing purging of superfluous traits. However, several works have demonstrated that, similar to the occurrences of inactivating nonsynonymous (i.e., amino acid replacement) mutations under positive selection pressures, truncation mutations can also be adaptive where specific traits deleterious in particular environmental conditions need to be inactivated for survival. Here, we performed a comparative analysis of genome-wide accumulation of truncation mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Considering the known convergent evolutionary trajectories in these two serovars, we expected a strong overlap of truncated genes in S. Typhi and S. Paratyphi A, emerging through either reductive or adaptive dynamics. However, we detected a distinct set of core truncated genes encoding different overrepresented functional clusters in each serovar. In 54% and 28% truncated genes in S. Typhi and S. Paratyphi A, respectively, inactivating mutations were acquired by only different subsets of isolates, instead of all isolates analyzed for that serovar. Importantly, 62% truncated genes (P < 0.001) in S. Typhi and S. Paratyphi A were also targeted by convergent amino acid mutations in different serovars, suggesting those genes to be under selection pressures. Our findings indicate significant presence of potentially adaptive truncation mutations in conjunction with the ones emerging due to reductive evolution. Further experimental and large-scale bioinformatic studies are necessary to better explore the impact of such adaptive footprints of truncation mutations in the evolution of bacterial virulence. IMPORTANCE Detecting the adaptive mutations leading to gene inactivation or loss of function is crucial for understanding their contribution in the evolution of bacterial virulence and antibiotic resistance. Such inactivating mutations, apart from being of nonsynonymous (i.e., amino acid replacement) nature, can also be truncation mutations, abruptly trimming the length of encoded proteins. Importantly, the notion of reductive evolutionary dynamics is primarily accepted toward the accumulation of truncation mutations. However, our case study on S. Typhi and S. Paratyphi A, two human-restricted systemically invasive pathogens exerting similar clinical manifestations, indicated that a significant proportion of truncation mutations emerge from positive selection pressures. The candidate genes from our study will enable directed functional assays for deciphering the adaptive role of truncation mutations in S. Typhi and S. Paratyphi A pathogenesis. Also, our genome-level analytical approach will pave the way to understand the contribution of truncation mutations in the adaptive evolution of other bacterial pathogens.
Collapse
|
32
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Cao H, Xu D, Zhang T, Ren Q, Xiang L, Ning C, Zhang Y, Gao R. Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of Microcystis. HARMFUL ALGAE 2022; 113:102186. [PMID: 35287927 DOI: 10.1016/j.hal.2022.102186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Microcystis is a cyanobacteria that is widely distributed across the world. It has attracted great attention because it produces the hepatotoxin microcystin (MC) that can inhibit eukaryotic protein phosphatases and pose a great risk to animal and human health. Due to the high diversity of morphospecies and genomes, it is still difficult to classify Microcystis species. In this study, we investigated the pangenome of 23 Microcystis strains to detect the genetic diversity and evolutionary dynamics. Microcystis revealed an open pangenome containing 22,009 gene families and exhibited different functional constraints. The core-genome phylogenetic analysis accurately differentiated the toxic and nontoxic strains and could be used as a taxonomic standard at the genetic level. We also investigated the functions of HGT events, of which were mostly conferred from cyanobacteria and closely related species. In order to detect the potential toxicity of Microcystis, we searched and characterized MC biosynthetic gene clusters and other secondary metabolite gene clusters. Our work provides insights into the genetic diversity, evolutionary dynamics, and potential toxicity of Microcystis, which could benefit the species classification and development of new methods for drinking water quality control and management of bloom formation in the future.
Collapse
Affiliation(s)
- Hengchun Cao
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Tiantian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Qiufang Ren
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Li Xiang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Chunhui Ning
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai, 264209, Shandong, China.
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China.
| |
Collapse
|
34
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
35
|
Bohr LL, Youngblom MA, Eldholm V, Pepperell CS. Genome reorganization during emergence of host-associated Mycobacterium abscessus. Microb Genom 2021; 7. [PMID: 34874249 PMCID: PMC8767326 DOI: 10.1099/mgen.0.000706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.
Collapse
Affiliation(s)
- Lindsey L Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison A Youngblom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Caitlin S Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Murray GGR, Balmer AJ, Herbert J, Hadjirin NF, Kemp CL, Matuszewska M, Bruchmann S, Hossain ASMM, Gottschalk M, Tucker AW, Miller E, Weinert LA. Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen. PLoS Genet 2021; 17:e1009864. [PMID: 34748531 PMCID: PMC8601623 DOI: 10.1371/journal.pgen.1009864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/18/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.
Collapse
Affiliation(s)
- Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Andrew J. Balmer
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Josephine Herbert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nazreen F. Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Caroline L. Kemp
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, Montréal, Canada
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric Miller
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
38
|
Bengtsson RJ, Dallman TJ, Allen H, De Silva PM, Stenhouse G, Pulford CV, Bennett RJ, Jenkins C, Baker KS. Accessory Genome Dynamics and Structural Variation of Shigella from Persistent Infections. mBio 2021; 12:e00254-21. [PMID: 33906921 PMCID: PMC8092226 DOI: 10.1128/mbio.00254-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Shigellosis is a diarrheal disease caused mainly by Shigella flexneri and Shigella sonnei Infection is thought to be largely self-limiting, with short- to medium-term and serotype-specific immunity provided following clearance. However, cases of men who have sex with men (MSM)-associated shigellosis have been reported where Shigella of the same serotype were serially sampled from individuals between 1 and 1,862 days apart, possibly due to persistent carriage or reinfection with the same serotype. Here, we investigate the accessory genome dynamics of MSM-associated S. flexneri and S. sonnei isolates serially sampled from individual patients at various days apart to shed light on the adaptation of these important pathogens during infection. We find that pairs likely associated with persistent infection/carriage and with a smaller single nucleotide polymorphism (SNP) distance, demonstrated significantly less variation in accessory genome content than pairs likely associated with reinfection, and with a greater SNP distance. We observed antimicrobial resistance acquisition during Shigella carriage, including the gain of an extended-spectrum beta-lactamase gene during carriage. Finally, we explored large chromosomal structural variations and rearrangements in seven (five chronic and two reinfection associated) pairs of S. flexneri 3a isolates from an MSM-associated epidemic sublineage, which revealed variations at several common regions across isolate pairs, mediated by insertion sequence elements and comprising a distinct predicted functional profile. This study provides insight on the variation of accessory genome dynamics and large structural genomic changes in Shigella during persistent infection/carriage. In addition, we have also created a complete reference genome and biobanked isolate of the globally important pathogen, S. flexneri 3a.IMPORTANCEShigella spp. are Gram-negative bacteria that are the etiological agent of shigellosis, the second most common cause of diarrheal illness among children under the age of five in low-income countries. In high-income countries, shigellosis is also a sexually transmissible disease among men who have sex with men. Within the latter setting, we have captured prolonged and/or recurrent infection with shigellae of the same serotype, challenging the belief that Shigella infection is short lived and providing an early opportunity to study the evolution of the pathogen over the course of infection. Using this recently emerged transmission scenario, we comprehensively characterize the genomic changes that occur over the course of individual infection with Shigella and uncover a distinct functional profile of variable genomic regions, findings that have relevance for other Enterobacteriaceae.
Collapse
Affiliation(s)
- Rebecca J Bengtsson
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Timothy J Dallman
- National Infection Service, Public Health England, Colindale, London, United Kingdom
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Hester Allen
- National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - P Malaka De Silva
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - George Stenhouse
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Caisey V Pulford
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Rebecca J Bennett
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| | - Claire Jenkins
- National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Kate S Baker
- Clinical Infection, Microbiology and Immunity, Institute of Infection, Veterinary and Ecological Sciences, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
Murray GGR, Charlesworth J, Miller EL, Casey MJ, Lloyd CT, Gottschalk M, Tucker AW(D, Welch JJ, Weinert LA. Genome Reduction Is Associated with Bacterial Pathogenicity across Different Scales of Temporal and Ecological Divergence. Mol Biol Evol 2021; 38:1570-1579. [PMID: 33313861 PMCID: PMC8042751 DOI: 10.1093/molbev/msaa323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Emerging bacterial pathogens threaten global health and food security, and so it is important to ask whether these transitions to pathogenicity have any common features. We present a systematic study of the claim that pathogenicity is associated with genome reduction and gene loss. We compare broad-scale patterns across all bacteria, with detailed analyses of Streptococcus suis, an emerging zoonotic pathogen of pigs, which has undergone multiple transitions between disease and carriage forms. We find that pathogenicity is consistently associated with reduced genome size across three scales of divergence (between species within genera, and between and within genetic clusters of S. suis). Although genome reduction is also found in mutualist and commensal bacterial endosymbionts, genome reduction in pathogens cannot be solely attributed to the features of their ecology that they share with these species, that is, host restriction or intracellularity. Moreover, other typical correlates of genome reduction in endosymbionts (reduced metabolic capacity, reduced GC content, and the transient expansion of nonfunctional elements) are not consistently observed in pathogens. Together, our results indicate that genome reduction is a consistent correlate of pathogenicity in bacteria.
Collapse
Affiliation(s)
- Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jane Charlesworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Eric L Miller
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Haverford College, Haverford, PA, USA
| | - Michael J Casey
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Catrin T Lloyd
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, Montréal, QC, Canada
| | | | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Nielsen DA, Fierer N, Geoghegan JL, Gillings MR, Gumerov V, Madin JS, Moore L, Paulsen IT, Reddy TBK, Tetu SG, Westoby M. Aerobic bacteria and archaea tend to have larger and more versatile genomes. OIKOS 2021. [DOI: 10.1111/oik.07912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Noah Fierer
- Dept of Ecology and Evolutionary Biology, Cooperative Inst. for Research in Environmental Sciences, Univ. of Colorado Boulder CO USA
| | - Jemma L. Geoghegan
- Dept of Biological Sciences, Macquarie Univ. Sydney NSW Australia
- Dept of Microbiology and Immunology, Univ. of Otago New Zealand
| | | | - Vadim Gumerov
- Dept of Microbiology, Ohio State Univ. Columbus Ohio USA
| | - Joshua S. Madin
- Hawaii Inst. of Marine Biology, Univ. of Hawaii Kaneohe HI USA
| | - Lisa Moore
- Dept of Molecular Sciences, Macquarie Univ. Sydney NSW Australia
| | | | - T. B. K. Reddy
- Dept of Molecular Sciences, Macquarie Univ. Sydney NSW Australia
| | - Sasha G. Tetu
- Dept of Molecular Sciences, Macquarie Univ. Sydney NSW Australia
| | - Mark Westoby
- Dept of Biological Sciences, Macquarie Univ. Sydney NSW Australia
| |
Collapse
|
41
|
Seers CA, Mahmud ASM, Huq NL, Cross KJ, Reynolds EC. Porphyromonas gingivalis laboratory strains and clinical isolates exhibit different distribution of cell surface and secreted gingipains. J Oral Microbiol 2020; 13:1858001. [PMID: 33391630 PMCID: PMC7733959 DOI: 10.1080/20002297.2020.1858001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The cell-surface cysteine proteinases RgpA, RgpB (Arg-gingipain), and Kgp (Lys-gingipain) are major virulence factors of P. gingivalis, a keystone pathogen in the development of destructive periodontal disease. The gingipains function as proteinases and transpeptidases utilising small peptides such as glycylglycine as acceptor molecules. However, the characteristics of the gingipains from most P. gingivalis strains have not been determined. Methods: We determined the phenotypes of a panel of P. gingivalis laboratory strains and global clinical isolates with respect to growth on blood agar plus whole-cell and vesicle-free culture supernatant (VFSN) Arg- and Lys-specific proteinase activities. Results: The P. gingivalis isolates exhibited different growth characteristics and hydrolysis of haemoglobin in solid media. Whole-cell Arg-gingipain Vmax varied 5.8-fold and the whole cell Lys-gingipain Vmax varied 2.1-fold across the strains. Furthermore, the P. gingivalis strains showed more than 107-fold variance in soluble Arg-gingipain activity in VFSN and more than 371-fold variance in soluble Lys-gingipain activity in VFSN. Glycylglycine and cysteine stimulated Arg- and Lys-specific cleavage activities of all strains. The stimulation by cysteine was in addition to its redox effect consistent with both glycylglycine and cysteine promoting transpeptidation.
Conclusion: The global P. gingivalis clinical isolates exhibit different Arg- and Lys‑gingipain activities with substantial variability in the level of soluble proteinases released into the environment.
Collapse
Affiliation(s)
- Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - A Sayeed M Mahmud
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - N Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Duar RM, Casaburi G, Mitchell RD, Scofield LN, Ortega Ramirez CA, Barile D, Henrick BM, Frese SA. Comparative Genome Analysis of Bifidobacterium longum subsp. infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes among Commercial Probiotics. Nutrients 2020; 12:nu12113247. [PMID: 33114073 PMCID: PMC7690671 DOI: 10.3390/nu12113247] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Dysbiosis is associated with acute and long-term consequences for neonates. Probiotics can be effective in limiting the growth of bacteria associated with dysbiosis and promoting the healthy development of the infant microbiome. Given its adaptation to the infant gut, and promising data from animal and in vitro models, Bifidobacterium longum subsp. infantis is an attractive candidate for use in infant probiotics. However, strain-level differences in the ability of commercialized strains to utilize human milk oligosaccharides (HMOs) may have implications in the performance of strains in the infant gut. In this study, we characterized twelve B. infantis probiotic strains and identified two main variants in one of the HMO utilization gene clusters. Some strains possessed the full repertoire of HMO utilization genes (H5-positive strains), while H5-negative strains lack an ABC-type transporter known to bind core HMO structures. H5-positive strains achieved significantly superior growth on lacto-N-tetraose and lacto-N-neotetraose. In vitro, H5-positive strains had a significant fitness advantage over H5-negative strains, which was also observed in vivo in breastfed infants. This work provides evidence of the functional implications of genetic differences among B. infantis strains and highlights that genotype and HMO utilization phenotype should be considered when selecting a strain for probiotic use in infants.
Collapse
Affiliation(s)
- Rebbeca M. Duar
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Giorgio Casaburi
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Ryan D. Mitchell
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Lindsey N.C. Scofield
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Camila A. Ortega Ramirez
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
| | - Daniela Barile
- Foods for Health Institute, University of California at Davis, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616, USA
| | - Bethany M. Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Steven A. Frese
- Evolve BioSystems, Inc., Davis, CA 95618, USA; (R.M.D.); (G.C.); (R.D.M.); (L.N.C.S.); (C.A.O.R.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
- Correspondence: ; Tel.: +1-530-747-2045
| |
Collapse
|
43
|
Sabin NS, Calliope AS, Simpson SV, Arima H, Ito H, Nishimura T, Yamamoto T. Implications of human activities for (re)emerging infectious diseases, including COVID-19. J Physiol Anthropol 2020; 39:29. [PMID: 32977862 PMCID: PMC7517057 DOI: 10.1186/s40101-020-00239-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since 1980, the world has been threatened by different waves of emerging disease epidemics. In the twenty-first century, these diseases have become an increasing global concern because of their health and economic impacts in both developed and resource-constrained countries. It is difficult to stop the occurrence of new pathogens in the future due to the interconnection among humans, animals, and the environment. However, it is possible to face a new disease or to reduce the risk of its spread by implementing better early warning systems and effective disease control and prevention, e.g., effective global surveillance, development of technology for better diagnostics, effective treatments, and vaccines, the global political will to respond to any threats and multidisciplinary collaboration involving all sectors in charge of good health maintenance. In this review, we generally describe some factors related to human activities and show how they can play a role in the transmission and spread of infectious diseases by using some diseases as examples. Additionally, we describe and discuss major factors that are facilitating the spread of the new pandemic known as COVID-19 worldwide.
Collapse
Affiliation(s)
- Nundu Sabiti Sabin
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akintije Simba Calliope
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shirley Victoria Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takayuki Nishimura
- Department of Human Science, Faculty of Design, Kyushu University, Fukuoka, Japan
- Department of Public Health, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
44
|
Shen G, Liu N, Zhang J, Xu Y, Baldwin IT, Wu J. Cuscuta australis (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proc Natl Acad Sci U S A 2020; 117:23125-23130. [PMID: 32868415 PMCID: PMC7502711 DOI: 10.1073/pnas.2009445117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many plants use environmental cues, including seasonal changes of day length (photoperiod), to control their flowering time. Under inductive conditions, FLOWERING LOCUS T (FT) protein is synthesized in leaves, and FT protein is a mobile signal, which is able to travel to the shoot apex to induce flowering. Dodders (Cuscuta, Convolvulaceae) are root- and leafless plants that parasitize a large number of autotrophic plant species with varying flowering time. Remarkably, some dodder species, e.g., Cuscuta australis, are able to synchronize their flowering with the flowering of their hosts. Detailed sequence inspection and expression analysis indicated that the FT gene in dodder C. australis very likely does not function in activating flowering. Using soybean host plants cultivated under inductive and noninductive photoperiod conditions and soybean and tobacco host plants, in which FT was overexpressed and knocked out, respectively, we show that FT-induced flowering of the host is likely required for both host and parasite flowering. Biochemical analysis revealed that host-synthesized FT signals are able to move into dodder stems, where they physically interact with a dodder FD transcription factor to activate dodder flowering. This study demonstrates that FTs can function as an important interplant flowering signal in host-dodder interactions. The unique means of flowering regulation of dodder illustrates how regressive evolution, commonly found in parasites, may facilitate the physiological synchronization of parasite and host, here allowing the C. australis parasite to time reproduction exactly with that of their hosts, likely optimizing parasite fitness.
Collapse
Affiliation(s)
- Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China;
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
45
|
Horizontal Gene Transfer Clarifies Taxonomic Confusion and Promotes the Genetic Diversity and Pathogenicity of Plesiomonas shigelloides. mSystems 2020; 5:5/5/e00448-20. [PMID: 32934114 PMCID: PMC7498682 DOI: 10.1128/msystems.00448-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements. Plesiomonas shigelloides is an emerging pathogen that has been shown to be involved in gastrointestinal diseases and extraintestinal infections in humans. However, the taxonomic position, evolutionary dynamics, and pathogenesis of P. shigelloides remain unclear. We reported the draft genome sequences of 12 P. shigelloides strains representing different serogroups. We were able to determine a clear distinction between P. shigelloides and other members of Enterobacterales via core genome phylogeny, Neighbor-Net network, and average genome identity analysis. The pan-genome analysis of P. shigelloides revealed extensive genetic diversity and presented large flexible gene repertoires, while the core genome phylogeny exhibited a low level of clonality. The discordance between the core genome phylogeny and the pan-genome phylogeny indicated that flexible accessory genomes account for an important proportion of the evolution of P. shigelloides, which was subsequently characterized by determinations of hundreds of horizontally transferred genes (horizontal genes), massive gene expansions and contractions, and diverse mobile genetic elements (MGEs). The apparently high levels of horizontal gene transfer (HGT) in P. shigelloides were conferred from bacteria with novel properties from other taxa (mainly Vibrionaceae and Aeromonadaceae), which caused the historical taxonomic confusion and shaped the virulence gene pools. Furthermore, P. shigelloides genomes contain many macromolecular secretion system genes, virulence factor genes, and resistance genes, indicating its potential to cause intestinal and invasive infections. Collectively, our work provides insights into the phylogenetic position, evolutionary dynamic, and pathogenesis of P. shigelloides at the genomic level, which could facilitate the observation and research of this important pathogen. IMPORTANCE The taxonomic position of P. shigelloides has been the subject of debate for a long time, and until now, the evolutionary dynamics and pathogenesis of P. shigelloides were unclear. In this study, pan-genome analysis indicated extensive genetic diversity and the presence of large and variable gene repertoires. Our results revealed that horizontal gene transfer was the focal driving force for the genetic diversity of the P. shigelloides pan-genome and might have contributed to the emergence of novel properties. Vibrionaceae and Aeromonadaceae were found to be the predominant donor taxa for horizontal genes, which might have caused the taxonomic confusion historically. Comparative genomic analysis revealed the potential of P. shigelloides to cause intestinal and invasive diseases. Our results could advance the understanding of the evolution and pathogenesis of P. shigelloides, particularly in elucidating the role of horizontal gene transfer and investigating virulence-related elements.
Collapse
|
46
|
Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol 2020; 22:3394-3412. [PMID: 32495495 DOI: 10.1111/1462-2920.15112] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/26/2020] [Accepted: 05/31/2020] [Indexed: 01/22/2023]
Abstract
Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: 'Candidatus Elulimicrobium humile' ('Ca. Elulimicrobiota', 'Patescibacteria') and 'Candidatus Aquidulcis frankliniae' ('Chloroflexi'). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.
Collapse
Affiliation(s)
- Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Chengwei Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, GA, 30332, USA
| |
Collapse
|
47
|
Arriola LA, Cooper A, Weyrich LS. Palaeomicrobiology: Application of Ancient DNA Sequencing to Better Understand Bacterial Genome Evolution and Adaptation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
48
|
The role of host molecules in communication with the resident and pathogenic microbiota: A review. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Militello G. Motility Control of Symbionts and Organelles by the Eukaryotic Cell: The Handling of the Motile Capacity of Individual Parts Forges a Collective Biological Identity. Front Psychol 2019; 10:2080. [PMID: 31551897 PMCID: PMC6747060 DOI: 10.3389/fpsyg.2019.02080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Motility occupies a decisive role in an organism's ability to autonomously interact with its environment. However, collective biological organizations exhibit individual parts, which have temporally or definitively lost their motor capacities, but still able to autonomously interact with their host. Indeed, although the flagella of bacterial symbionts of eukaryotic cells are usually inhibited or lost, they autonomously modify the environment provided by their host. Furthermore, the eukaryotic organelles of endosymbiotic origin (i.e., mitochondria and plastids) are no longer able to move autonomously; nonetheless, they make a cytoskeletal-driven motion that allows them to communicate with other eukaryotic cells and to perform a considerable number of physiological functions. The purpose of this article is twofold: first, to investigate how changes in the motile capacities of the parts of a nested biological organization affect their interactive autonomy; second, to examine how the modification of the interactive autonomy of the individual parts influences the constitutive autonomy of the collective association as a whole. The article argues that the emergence and maintenance of collective biological identities involves a strict control of the motile abilities of their constituting members. This entails a restriction, but not necessarily a complete loss, of the agential capacities of the individual parts.
Collapse
Affiliation(s)
- Guglielmo Militello
- Department of Logics and Philosophy of Science, IAS-Research Centre, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|
50
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Exploring Genetic Diversity and Signatures of Horizontal Gene Transfer in Nodule Bacteria Associated with Lotus japonicus in Natural Environments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1110-1120. [PMID: 30880586 DOI: 10.1094/mpmi-02-19-0039-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, the University of Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501 Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | | |
Collapse
|