1
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
3
|
Singh A, Hassen WM, St-Onge R, Dubowski JJ. Galvanic Displacement Reaction Enabled Specific and Sensitive Detection of Bacteria with a Digital Photocorrosion GaAs/AlGaAs Biosensor. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21768-21776. [PMID: 37969924 PMCID: PMC10641864 DOI: 10.1021/acs.jpcc.3c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The conjugation of ionic gold with bacterial antibodies makes it possible to induce a specific interaction between targeted bacteria and the surface of a GaAs/AlGaAs biochip. The process of immobilization is based on a galvanic displacement reaction (GDR) involving electron transfer between GaAs and Au3+ ions that leads to the formation of a Au-Ga alloy anchoring bacteria to the biochip surface. The GDR-based immobilization of Escherichia coli on biochips comprising a stack of GaAs/AlGaAs nanolayers (dGaAs = 12 nm, dAlGaAs = 10 nm) was confirmed by X-ray photoelectron spectroscopy and atomic force microscopy-based infrared experiments. We report the successful application of this approach for highly sensitive detection of E. coli with a digital photocorrosion (DIP) biosensor. The photoluminescence (PL) monitored DIP of GaAs/AlGaAs nanolayers results in the formation of a PL intensity maximum whose temporal appearance depends on the electric charge transfer between bacteria and the biochip. The formation of a robust bacteria-biochip interface achieved with the GDR process allowed us to observe the role of bacteria on the temporal position of a PL intensity maximum related to the etching of two pairs of GaAs/AlGaAs nanolayers extending up to 24 nm below the biochip surface. We demonstrate the attractive detection of E. coli at 250 CFU/mL, and we discuss the potential of this approach for designing a family of biosensors addressing the quasi-continuous monitoring of a water environment for the presence of pathogenic bacteria.
Collapse
Affiliation(s)
- Amanpreet Singh
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - Walid M. Hassen
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - René St-Onge
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| | - Jan J. Dubowski
- Laboratory for Quantum Semiconductors
and Photon-Based BioNanotechnology, Interdisciplinary Institute for
Technological Innovation (3IT), CNRS IRL-3463, Department of Electrical
and Computer Engineering, Université
de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, Québec J1K 0A5, Canada
| |
Collapse
|
4
|
Gil-Gil T, Cuesta T, Hernando-Amado S, Reales-Calderón JA, Corona F, Linares JF, Martínez JL. Virulence and Metabolism Crosstalk: Impaired Activity of the Type Three Secretion System (T3SS) in a Pseudomonas aeruginosa Crc-Defective Mutant. Int J Mol Sci 2023; 24:12304. [PMID: 37569678 PMCID: PMC10419072 DOI: 10.3390/ijms241512304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous nosocomial opportunistic pathogen that harbors many virulence determinants. Part of P. aeruginosa success colonizing a variety of habitats resides in its metabolic robustness and plasticity, which are the basis of its capability of adaptation to different nutrient sources and ecological conditions, including the infected host. Given this situation, it is conceivable that P. aeruginosa virulence might be, at least in part, under metabolic control, in such a way that virulence determinants are produced just when needed. Indeed, it has been shown that the catabolite repression control protein Crc, which together with the RNA chaperon Hfq regulates the P. aeruginosa utilization of carbon sources at the post-transcriptional level, also regulates, directly or indirectly, virulence-related processes in P. aeruginosa. Among them, Crc regulates P. aeruginosa cytotoxicity, likely by modulating the activity of the Type III Secretion System (T3SS), which directly injects toxins into eukaryotic host cells. The present work shows that the lack of Crc produces a Type III Secretion-defective phenotype in P. aeruginosa. The observed impairment is a consequence of a reduced expression of the genes encoding the T3SS, together with an impaired secretion of the proteins involved. Our results support that the impaired T3SS activity of the crc defective mutant is, at least partly, a consequence of a defective protein export, probably due to a reduced proton motive force. This work provides new information about the complex regulation of the expression and the activity of the T3SS in P. aeruginosa. Our results highlight the need of a robust bacterial metabolism, which is defective in the ∆crc mutant, to elicit complex and energetically costly virulence strategies, as that provided by the T3SS.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Trinidad Cuesta
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose Antonio Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Juan F. Linares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Yuan H, Liu F, Long J, Duan G, Yang H. A review on circular RNAs and bacterial infections. Int J Biol Macromol 2023:125391. [PMID: 37321437 DOI: 10.1016/j.ijbiomac.2023.125391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Bacterial infections and related diseases have been a major burden on social public health and economic stability around the world. However, the effective diagnostic methods and therapeutic approaches to treat bacterial infections are still limited. As a group of non-coding RNA, circular RNAs (circRNAs) that were expressed specifically in host cells and played a key regulatory role have the potential to be of diagnostic and therapeutic value. In this review, we systematically summarize the role of circRNAs in common bacterial infections and their potential roles as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Haitao Yuan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Yu L, Abd Ghani MK, Aghemo A, Barh D, Bassetti M, Catena F, Gallo G, Gholamrezanezhad A, Kamal MA, Lal A, Sahu KK, Saxena SK, Elmore U, Rahimi F, Robba C, Song Y, Xia Z, Yu B. SARS-CoV-2 Infection, Inflammation, Immunonutrition, and Pathogenesis of COVID-19. Curr Med Chem 2023; 30:4390-4408. [PMID: 36998130 DOI: 10.2174/0929867330666230330092725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
The COVID-19 pandemic, caused by the coronavirus, SARS-CoV-2, has claimed millions of lives worldwide in the past two years. Fatalities among the elderly with underlying cardiovascular disease, lung disease, and diabetes have particularly been high. A bibliometrics analysis on author's keywords was carried out, and searched for possible links between various coronavirus studies over the past 50 years, and integrated them. We found keywords like immune system, immunity, nutrition, malnutrition, micronutrients, exercise, inflammation, and hyperinflammation were highly related to each other. Based on these findings, we hypothesized that the human immune system is a multilevel super complex system, which employs multiple strategies to contain microorganism infections and restore homeostasis. It was also found that the behavior of the immune system is not able to be described by a single immunological theory. However, one main strategy is "self-destroy and rebuild", which consists of a series of inflammatory responses: 1) active self-destruction of damaged/dysfunctional somatic cells; 2) removal of debris and cells; 3) rebuilding tissues. Thus, invading microorganisms' clearance could be only a passive bystander response to this destroy-rebuild process. Microbial infections could be self-limiting and promoted as an indispensable essential nutrition for the vast number of genes existing in the microorganisms. The transient nutrition surge resulting from the degradation of the self-destroyed cell debris coupled with the existing nutrition state in the patient may play an important role in the pathogenesis of COVID-19. Finally, a few possible coping strategies to mitigate COVID-19, including vaccination, are discussed.
Collapse
Affiliation(s)
- Ligen Yu
- Talent Recruitment and Career Support (TRACS) Office, Nanyang Technological University, N2.1 B4-01, 76 Nanyang Drive, 637331, Singapore
| | - Mohd Khanapi Abd Ghani
- Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Durian Tunggal, 76100, Melaka, Malaysia
| | | | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur WB, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa and Policlinico San Martino Hospital - IRCCS, Genoa, Italy
| | - Fausto Catena
- Azienda Ospedaliero - Universitaria di Parma, Parma, Italy
| | | | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | | | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | | | - Shailendra K Saxena
- Center for Advanced Research, King George's Medical University (KGMU), Lucknow-226003, India
| | - Ugo Elmore
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Farid Rahimi
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Ngunnawal and Ngambri Country, Canberra, ACT 2600, Australia
| | - Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, Largo Rosanna Benzi 15, 16100 Genova, Italy
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Boxuan Yu
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
7
|
Mozaffari SA, Salehi A, Mousavi E, Zaman BA, Nassaj AE, Ebrahimzadeh F, Nasiri H, Valedkarimi Z, Adili A, Asemani G, Akbari M. SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathol Res Pract 2022; 239:154131. [PMID: 36191449 PMCID: PMC9477615 DOI: 10.1016/j.prp.2022.154131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The emergence of a novel coronavirus, COVID-19, in December 2019 led to a global pandemic with more than 170 million confirmed infections and more than 6 million deaths (by July 2022). Studies have shown that infection with SARS-CoV-2 in cancer patients has a higher mortality rate than in people without cancer. Here, we have reviewed the evidence showing that gut microbiota plays an important role in health and is linked to colorectal cancer development. Studies have shown that SARS-CoV-2 infection leads to a change in gut microbiota, which modify intestinal inflammation and barrier permeability and affects tumor-suppressor or oncogene genes, proposing SARS-CoV-2 as a potential contributor to CRC pathogenesis.
Collapse
Affiliation(s)
- Shahrooz Amin Mozaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Islamic Republic of Iran
| | - Elnaz Mousavi
- Dental Sciences Research Center, Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
| | - Burhan Abdullah Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Ali Eslambol Nassaj
- Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ghazaleh Asemani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
8
|
Papanikolopoulou A, Maltezou HC, Stoupis A, Pangalis A, Kouroumpetsis C, Chronopoulou G, Kalofissoudis Y, Kostares E, Boufidou F, Karalexi M, Koumaki V, Pantazis N, Tsakris A, Kantzanou M. Ventilator-Associated Pneumonia, Multidrug-Resistant Bacteremia and Infection Control Interventions in an Intensive Care Unit: Analysis of Six-Year Time-Series Data. Antibiotics (Basel) 2022; 11:antibiotics11081128. [PMID: 36009998 PMCID: PMC9405435 DOI: 10.3390/antibiotics11081128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/28/2022] Open
Abstract
Ventilator-associated pneumonia (VAP) occurs more than 48h after mechanical ventilation and is associated with a high mortality rate. The current hospital-based study aims to investigate the association between VAP rate, incidence of bacteremia from multidrug-resistant (MDR) pathogens, and infection control interventions in a single case mix ICU from 2013 to 2018. Methods: The following monthly indices were analyzed: (1) VAP rate; (2) use of hand hygiene disinfectants; (3) isolation rate of patients with MDR bacteria; and (4) incidence of bacteremia/1000 patient-days (total cases, total carbapenem-resistant cases, and carbapenem-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae cases separately). Results: Time trends of infection control interventions showed increased rates in isolation of patients with MDR pathogens (p <0.001) and consumption of hand disinfectant solutions (p =0.001). The last four years of the study an annual decrease of VAP rate by 35.12% (95% CI: −53.52 to −9.41; p =0.01) was recorded, which significantly correlated not only with reduced trauma and cardiothoracic surgery patients (IRR:2.49; 95% CI: 2.09−2.96; p <0.001), but also with increased isolation rate of patients with MDR pathogens (IRR: 0.52; 95% CI: 0.27−0.99; p = 0.048), and hand disinfectants use (IRR: 0.40; 95% CI: 0.18−0.89; p =0.024). Conclusions: Infection control interventions significantly contributed to the decrease of VAP rate. Constant infection control stewardship has a stable time-effect and guides evidence-based decisions.
Collapse
Affiliation(s)
| | - Helena C. Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 15123 Athens, Greece
| | - Athina Stoupis
- Clinical Infectious Diseases Department, Athens Medical Center, 15125 Athens, Greece
| | - Anastasia Pangalis
- Biopathology Department Athens Medical Center, Marousi, 15125 Athens, Greece
| | | | | | - Yannis Kalofissoudis
- Quality Assurance Department, Athens Medical Center, Marousi, 15125 Athens, Greece
| | - Evangelos Kostares
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Karalexi
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Vasiliki Koumaki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-210-7462011
| | - Maria Kantzanou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
9
|
Narayan S, Talwar V, Goel V, Chaudhary K, Sharma A, Redhu P, Soni S, Jain A. Co-relation of SARS-CoV-2 related 30-d mortality with HRCT score and RT-PCR Ct value-based viral load in patients with solid malignancy. World J Clin Oncol 2022; 13:339-351. [PMID: 35662981 PMCID: PMC9153076 DOI: 10.5306/wjco.v13.i5.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) patients with malignancy are published worldwide but are lacking in data from India.
AIM To characterize COVID-19 related mortality outcomes within 30 d of diagnosis with HRCT score and RT-PCR Ct value-based viral load in various solid malignancies.
METHODS Patients included in this study were with an active or previous malignancy and with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the institute database. We collected data on demographic details, baseline clinical conditions, medications, cancer diagnosis, treatment and the COVID-19 disease course. The primary endpoint was the association between the mortality outcome and the potential prognostic variables, specially, HRCT score, RT-PCR Ct value-based viral load, etc. using logistic regression analyses treatment received in 30 d.
RESULTS Out of 131 patients, 123 met inclusion criteria for our analysis. The median age was 57 years (interquartile range = 19-82) while 7 (5.7%) were aged 75 years or older. The most prevalent malignancies were of GUT origin 49 (39.8%), hepatopancreatobiliary (HPB) 40 (32.5%). 109 (88.6%) patients were on active anticancer treatment, 115 (93.5%) had active (measurable) cancer. At analysis on May 20, 2021, 26 (21.1%) patients had died. In logistic regression analysis, independent factors associated with an increased 30-d mortality were in patients with the symptomatic presentation. Chemotherapy in the last 4 wk, number of comorbidities (≥ 2 vs none: 3.43, 1.08-8.56). The univariate analysis showed that the risk of death was significantly associated with the HRCT score: for moderate (8-15) [odds ratio (OR): 3.44; 95% confidence interval (CI): 1.3-9.12; P = 0.0132], severe (> 15) (OR: 7.44; 95%CI: 1.58-35.1; P = 0.0112).
CONCLUSION To the best of our knowledge, this is the first study from India reporting the association of HRCT score and RT-PCR Ct value-based 30-d mortality outcomes in SARS-CoV-2 infected cancer patients.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Vineet Talwar
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Varun Goel
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Krushna Chaudhary
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Anurag Sharma
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Pallavi Redhu
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Satyajeet Soni
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Arpit Jain
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| |
Collapse
|
10
|
Application of synergistic β-lactamase inhibitors and antibiotics in the treatment of wounds infected by superbugs. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Psychological Symptoms in COVID-19 Patients: Insights into Pathophysiology and Risk Factors of Long COVID-19. BIOLOGY 2022; 11:biology11010061. [PMID: 35053059 PMCID: PMC8773222 DOI: 10.3390/biology11010061] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
There is growing evidence of studies associating COVID-19 survivors with increased mental health consequences. Mental health implications related to a COVID-19 infection include both acute and long-term consequences. Here we discuss COVID-19-associated psychiatric sequelae, particularly anxiety, depression, and post-traumatic stress disorder (PTSD), drawing parallels to past coronavirus outbreaks. A literature search was completed across three databases, using keywords to search for relevant articles. The cause may directly correlate to the infection through both direct and indirect mechanisms, but the underlying etiology appears more complex and multifactorial, involving environmental, psychological, and biological factors. Although most risk factors and prevalence rates vary across various studies, being of the female gender and having a history of psychiatric disorders seem consistent. Several studies will be presented, demonstrating COVID-19 survivors presenting higher rates of mental health consequences than the general population. The possible mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the brain, affecting the central nervous system (CNS) and causing these psychiatric sequelae, will be discussed, particularly concerning the SARS-CoV-2 entry via the angiotensin-converting enzyme 2 (ACE-2) receptors and the implications of the immune inflammatory signaling on neuropsychiatric disorders. Some possible therapeutic options will also be considered.
Collapse
|
12
|
Mundula T, Russo E, Curini L, Giudici F, Piccioni A, Franceschi F, Amedei A. Chronic Systemic Low-Grade Inflammation and Modern Lifestyle: The Dark Role of Gut Microbiota on Related Diseases with a Focus on COVID-19 Pandemic. Curr Med Chem 2022; 29:5370-5396. [PMID: 35524667 DOI: 10.2174/0929867329666220430131018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Inflammation is a physiological, beneficial, and auto-limiting response of the host to alarming stimuli. Conversely, a chronic systemic low-grade inflammation (CSLGI), known as a long-time persisting condition, causes damage to the organs and host tissues, representing a major risk for chronic diseases. Currently, a high global incidence of chronic inflammatory diseases is observed, often linked to the lifestyle-related changes that occurred in the last decade. The main lifestyle-related factors are proinflammatory diet, psychological stress, tobacco smoking, alcohol abuse, physical inactivity, and indoor living and working with its related consequences such as indoor pollution, artificial light exposure, and low vitamin D production. Recent scientific evidence found that gut microbiota (GM) has a main role in shaping the host's health, particularly as CSLGI mediator. Based on the lastest discoveries regarding the remarkable GM activity, in this manuscript we focus on the elements of actual lifestyle that influence the composition and function of the intestinal microbial community in order to elicit the CSLGI and its correlated pathologies. In this scenario, we provide a broad review of the interplay between modern lifestyle, GM, and CSLGI with a special focus on the COVID symptoms and emerging long-COVID syndrome.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, University of Florence
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Asri N, Nazemalhosseini Mojarad E, Mirjalali H, Mohebbi SR, Baghaei K, Rostami-Nejad M, Yadegar A, Rezaei-Tavirani M, Asadzadeh Aghdaei H, Rostami K, Masotti A. Toward finding the difference between untreated celiac disease and COVID-19 infected patients in terms of CD4, CD25 (IL-2 Rα), FOXP3 and IL-6 expressions as genes affecting immune homeostasis. BMC Gastroenterol 2021; 21:462. [PMID: 34895167 PMCID: PMC8665626 DOI: 10.1186/s12876-021-02056-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is defined as an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 and celiac disease (CD) is one of the autoimmune multiorgan diseases, which can be accompanied by an increased risk of viral infections. CD patients, especially untreated subjects, may be at greater risk of infections such as viral illnesses. Interleukin (IL)-6, CD4, CD25, and FOXP3 are known as genes affecting immune homeostasis and relate to the inflammation state. This study aimed to compare the expression levels of aforementioned genes in peripheral blood samples of CD and severe COVID-19 patients. METHODS Sixty newly diagnosed CD patients with median age (mean ± SD) of 35.40 ± 24.12 years; thirty confirmed severe COVID-19 patients with median age (mean ± SD) of 59.67 ± 17.22, and 60 healthy subjects with median age (mean ± SD) of 35.6 ± 13.02 years; were recruited from March to September 2020. Fresh whole blood samples were collected, total RNA was obtained and cDNA synthesis was carried out. RNA expression levels of IL-6, CD4, CD25, and FOXP3 genes were assessed using real-time quantitative RT-PCR according to the 2-∆∆Ct formula. Statistical analysis was performed using SPSS (V.21) and GraphPad, Prism (V.6). RESULTS While increased expression of CD4, CD25, and FOXP3 was observed in CD patients compared to the control group (p = 0.02, p = 0.03, and p < 0.0001 respectively) and COVID-19 patients group (p < 0.0001 for all of them), their expression levels in COVID-19 patients decreased compared to controls (p < 0.0001, p = 0.01, p = 0.007, respectively). Increased IL-6 expression was observed in both groups of patients compared to controls (p < 0.0001 for both of them). CONCLUSIONS Although untreated CD patients may be at greater risk of developing into severe COVID-19 if they are infected by SARS-CoV-2 virus (due to their high expression of IL-6), increased expression of anti-inflammatory markers in these patients may be beneficial for them with the ability of reducing the severity of COVID-19 disease, which needs to be proven in future studies involving celiac patients infected with COVID-19.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Maitre Y, Mahalli R, Micheneau P, Delpierre A, Amador G, Denis F. Evidence and Therapeutic Perspectives in the Relationship between the Oral Microbiome and Alzheimer's Disease: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111157. [PMID: 34769677 PMCID: PMC8583399 DOI: 10.3390/ijerph182111157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
This review aims to clarify the nature of the link between Alzheimer’s disease and the oral microbiome on an epidemiological and pathophysiological level, as well as to highlight new therapeutic perspectives that contribute to the management of this disease. We performed a systematic review, following the Preferred Reporting Items for Systematic Reviews checklist, from January 2000 to July 2021. The terms “plaque,” “saliva,” and “mouth” were associated with the search term “oral diseases” and used in combination with the Boolean operator “AND”/“OR”. We included experimental or clinical studies and excluded conferences, abstracts, reviews, and editorials. A total of 27 articles were selected. Evidence for the impact of the oral microbiome on the pathophysiological and immunoinflammatory mechanisms of Alzheimer’s disease is accumulating. The impact of the oral microbiome on the development of AD opens the door to complementary therapies such as phototherapy and/or the use of prebiotic compounds and probiotic strains for global or targeted modulation of the oral microbiome in order to have a favourable influence on the evolution of this pathology in the future.
Collapse
Affiliation(s)
- Yoann Maitre
- Emergency Department, Montpellier University Hospital, 34090 Montpellier, France;
- EA 2415, Aide à la Décision pour une Médecine Personnalisée, Université de Montpellier, 34093 Montpellier, France
| | - Rachid Mahalli
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Pierre Micheneau
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Alexis Delpierre
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
| | - Gilles Amador
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
| | - Frédéric Denis
- Department of Odontology, Tours University Hospital, 37000 Tours, France; (R.M.); (P.M.); (A.D.)
- Faculty of Dentistry, Nantes University, 44000 Nantes, France;
- EA 75-05 Education, Ethique, Santé, Faculté de Médecine, Université François-Rabelais, 37044 Tours, France
- Correspondence: ; Tel.: +33-6-7715-6968
| |
Collapse
|
15
|
Lin Z, Liu L, Wang W, Jia L, Shen Y, Zhang X, Ge D, Shi W, Sun Y. The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing. Biomater Sci 2021; 9:5951-5964. [PMID: 34318796 DOI: 10.1039/d1bm00622c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanin and its analogue polydopamine (PDA) have attracted considerable attention in biomedical science due to their surface-rich metal binding sites, excellent adhesion and good biocompatibility. Bacterial infections at the wound site and uncontrolled bleeding are associated with a high risk of death, and the prevention of wound infections remains a major challenge. On this basis, the four nanoparticles (NPs) of melanin, PDA, copper ion-loaded melanin (Cu(ii) loaded melanin) and copper ion-loaded PDA (Cu(ii) loaded PDA) were studied in terms of antibacterial and wound healing capabilities. The in vitro experiments showed that Cu(ii) loaded PDA NPs had good blood compatibility and low cytotoxicity, showing the best antibacterial effect in comparison with other samples. Not only could the slow release of copper ions from the nanoparticles kill bacteria, but also the phenolic hydroxyl group and amine groups of PDA NPs played a synergistic role in bacterial death. In wound healing experiments, the Cu(ii) loaded PDA NPs could easily and tightly bind with biological tissue, demonstrating excellent hemostasis, antibacterial and wound healing capabilities. In summary, the excellent properties of Cu(ii) loaded PDA NPs made them a safe and effective drug for preventing wound infection and promoting healing.
Collapse
Affiliation(s)
- Zhenjie Lin
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021; 9:microorganisms9081549. [PMID: 34442627 PMCID: PMC8400438 DOI: 10.3390/microorganisms9081549] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case–control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein–Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.
Collapse
Affiliation(s)
- Tereza Vyhnalova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Department of Maxillofacial Surgery, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-777-550-596
| | - Daniela Gachova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
| | - Petra Borilova Linhartova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
17
|
Howell MC, Green R, McGill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers (Basel) 2021; 13:2676. [PMID: 34071688 PMCID: PMC8198029 DOI: 10.3390/cancers13112676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mark C. Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
18
|
Troisi J, Venutolo G, Pujolassos Tanyà M, Delli Carri M, Landolfi A, Fasano A. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J Gastroenterol 2021; 27:1406-1418. [PMID: 33911464 PMCID: PMC8047540 DOI: 10.3748/wjg.v27.i14.1406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) symptoms have been described in a conspicuous percentage of coronavirus disease 2019 (COVID-19) patients. This clinical evidence is supported by the detection of viral RNA in stool, which also supports the hypothesis of a possible fecal-oral transmission route. The involvement of GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is corroborated by the theoretical assumption that angiotensin converting enzyme 2, which is a SARS-CoV-2 target receptor, is present along the GI tract. Studies have pointed out that gut dysbiosis may occur in COVID-19 patients, with a possible correlation with disease severity and with complications such as multisystem inflammatory syndrome in children. However, the question to be addressed is whether dysbiosis is a consequence or a contributing cause of SARS-CoV-2 infection. In such a scenario, pharmacological therapies aimed at decreasing GI permeability may be beneficial for COVID-19 patients. Considering the possibility of a fecal-oral transmission route, water and environmental sanitation play a crucial role for COVID-19 containment, especially in developing countries.
Collapse
Affiliation(s)
- Jacopo Troisi
- Metabolomics Section, Theoreo srl - Spin-off Company of the University of Salerno, Montecorvino Pugliano 84090, SA, Italy
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano 84084, SA, Italy
- European Biomedical Research Institute of Salerno, Salerno 84125, SA, Italy
| | - Giorgia Venutolo
- European Biomedical Research Institute of Salerno, Salerno 84125, SA, Italy
| | - Meritxell Pujolassos Tanyà
- Metabolomics Section, Theoreo srl - Spin-off Company of the University of Salerno, Montecorvino Pugliano 84090, SA, Italy
| | - Matteo Delli Carri
- Metabolomics Section, Theoreo srl - Spin-off Company of the University of Salerno, Montecorvino Pugliano 84090, SA, Italy
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano 84084, SA, Italy
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi 84081, SA, Italy
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno, Salerno 84125, SA, Italy
- Mucosal Immunology and Biology Research Center and Center for Celiac Research, Harvard Medical School, Massachusetts Gen Hosp Children, Mucosal Immunology and Biology Research Center, Boston, MA 02114, United States
| |
Collapse
|
19
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
20
|
Chen X, Guo R, Wang C, Li K, Jiang X, He H, Hong W. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. J Nanobiotechnology 2021; 19:99. [PMID: 33836750 PMCID: PMC8034112 DOI: 10.1186/s12951-021-00845-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial biofilm is the complicated clinical issues, which usually results in bacterial resistance and reduce the therapeutic efficacy of antibiotics. Although micelles have been drawn attention in treatment of the biofilms, the micelles effectively permeate and retain in biofilms still facing a big challenge. In this study, we fabricated on-demand pH-sensitive surface charge-switchable azithromycin (AZM)-encapsulated micelles (denoted as AZM-SCSMs), aiming to act as therapeutic agent for treating Pseudomonas aeruginosa (P. aeruginosa) biofilms. The AZM-SCSMs was composed of poly(l-lactide)-polyetherimide-hyd-methoxy polyethylene glycol (PLA-PEI-hyd-mPEG). It was noteworthy that the pH-sensitive acylhydrazone bond could be cleaved in acidic biofilm microenvironment, releasing the secondary AZM-loaded cationic micelles based on PLA-PEI (AZM-SCMs) without destroying the micellar integrity, which could tailor drug-bacterium interaction using micelles through electrostatic attraction. The results proved that positively charged AZM-SCMs could facilitate the enhanced penetration and retention inside biofilms, improved binding affinity with bacterial membrane, and added drug internalization, thus characterized as potential anti-biofilm agent. The excellent in vivo therapeutic performance of AZM-SCSMs was confirmed by the targeting delivery to the infected tissue and reduced bacterial burden in the abscess-bearing mice model. This study not only developed a novel method for construction non-depolymerized pH-sensitive SCSMs, but also provided an effective means for the treatment of biofilm-related infections. ![]()
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Rong Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Keke Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Xinyu Jiang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China.
| |
Collapse
|
21
|
Baquero F, Coque TM, Galán JC, Martinez JL. The Origin of Niches and Species in the Bacterial World. Front Microbiol 2021; 12:657986. [PMID: 33815348 PMCID: PMC8010147 DOI: 10.3389/fmicb.2021.657986] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Niches are spaces for the biological units of selection, from cells to complex communities. In a broad sense, "species" are biological units of individuation. Niches do not exist without individual organisms, and every organism has a niche. We use "niche" in the Hutchinsonian sense as an abstraction of a multidimensional environmental space characterized by a variety of conditions, both biotic and abiotic, whose quantitative ranges determine the positive or negative growth rates of the microbial individual, typically a species, but also parts of the communities of species contained in this space. Microbial organisms ("species") constantly diversify, and such diversification (radiation) depends on the possibility of opening up unexploited or insufficiently exploited niches. Niche exploitation frequently implies "niche construction," as the colonized niche evolves with time, giving rise to new potential subniches, thereby influencing the selection of a series of new variants in the progeny. The evolution of niches and organisms is the result of reciprocal interacting processes that form a single unified process. Centrifugal microbial diversification expands the limits of the species' niches while a centripetal or cohesive process occurs simultaneously, mediated by horizontal gene transfers and recombinatorial events, condensing all of the information recovered during the diversifying specialization into "novel organisms" (possible future species), thereby creating a more complex niche, where the selfishness of the new organism(s) establishes a "homeostatic power" limiting the niche's variation. Once the niche's full carrying capacity has been reached, reproductive isolation occurs, as no foreign organisms can outcompete the established population/community, thereby facilitating speciation. In the case of individualization-speciation of the microbiota, its contribution to the animal' gut structure is a type of "niche construction," the result of crosstalk between the niche (host) and microorganism(s). Lastly, there is a parallelism between the hierarchy of niches and that of microbial individuals. The increasing anthropogenic effects on the biosphere (such as globalization) might reduce the diversity of niches and bacterial individuals, with the potential emergence of highly transmissible multispecialists (which are eventually deleterious) resulting from the homogenization of the microbiosphere, a possibility that should be explored and prevented.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Teresa M Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Galán
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | | |
Collapse
|
22
|
Ezechukwu HC, Diya CA, Egoh IJ, Abiodun MJ, Grace JUA, Okoh GR, Adu KT, Adegboye OA. Lung microbiota dysbiosis and the implications of SARS-CoV-2 infection in pregnancy. Ther Adv Infect Dis 2021; 8:20499361211032453. [PMID: 35035953 PMCID: PMC8753069 DOI: 10.1177/20499361211032453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
There are a great number of beneficial commensal microorganisms constitutively colonizing the mucosal lining of the lungs. Alterations in the microbiota profile have been associated with several respiratory diseases such as pneumonia and allergies. Lung microbiota dysbiosis might play an important role in the pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as elicit other opportunistic infections associated with coronavirus disease 2019 (COVID-19). With its increasing prevalence and morbidity, SARS-CoV-2 infection in pregnant mothers is inevitable. Recent evidence shows that angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) act as an entry receptor and viral spike priming protein, respectively, for SARS-CoV-2 infection. These receptor proteins are highly expressed in the maternal-fetal interface, including the placental trophoblast, suggesting the possibility of maternal-fetal transmission. In this review, we discuss the role of lung microbiota dysbiosis in respiratory diseases, with an emphasis on COVID-19 and the possible implications of SARS-CoV-2 infection on pregnancy outcome and neonatal health.
Collapse
Affiliation(s)
- Henry C. Ezechukwu
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos, Nigeria
| | - Cornelius A. Diya
- Department of Medical Biochemistry, Eko University of Medicine and Health Sciences, Ijanikin, Lagos State, Nigeria
| | | | - Mayowa J. Abiodun
- Department of Cell Biology, University of Lagos, Akoka, Lagos State, Nigeria
| | | | - God’spower R. Okoh
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, Townsville, QLD, Australia
- Cann Group Ltd., Walter and Eliza Hall Institute, VIC, Australia
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
23
|
McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos Trans R Soc Lond B Biol Sci 2020. [PMID: 32772671 DOI: 10.1098/rstb.2019.0592rstb20190592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Michael R McLaren
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
McLaren MR, Callahan BJ. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190592. [PMID: 32772671 PMCID: PMC7435163 DOI: 10.1098/rstb.2019.0592] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
To survive, plants and animals must continually defend against pathogenic microbes that would invade and disrupt their tissues. Yet they do not attempt to extirpate all microbes. Instead, they tolerate and even encourage the growth of commensal microbes, which compete with pathogens for resources and via direct inhibition. We argue that hosts have evolved to cooperate with commensals in order to enhance the pathogen resistance this competition provides. We briefly describe competition between commensals and pathogens within the host, consider how natural selection might favour hosts that tilt this competition in favour of commensals, and describe examples of extant host traits that may serve this purpose. Finally, we consider ways that this cooperative immunity may have facilitated the adaptive evolution of non-pathogen-related host traits. On the basis of these observations, we argue that pathogen resistance vies with other commensal-provided benefits for being the principal evolutionary advantage provided by the microbiome to host lineages across the tree of life. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Michael R. McLaren
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Benjamin J. Callahan
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
25
|
Vlazaki M, Huber J, Restif O. Integrating mathematical models with experimental data to investigate the within-host dynamics of bacterial infections. Pathog Dis 2020; 77:5704399. [PMID: 31942996 PMCID: PMC6986552 DOI: 10.1093/femspd/ftaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics, antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon. Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding of bacterial infections and guide the use of existing or new therapies.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - John Huber
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| |
Collapse
|
26
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
27
|
Lu S, Guo X, Zou M, Zheng Z, Li Y, Li X, Li L, Wang H. Bacteria-Instructed In Situ Aggregation of AuNPs with Enhanced Photoacoustic Signal for Bacterial Infection Bioimaging. Adv Healthc Mater 2020; 9:e1901229. [PMID: 31750997 DOI: 10.1002/adhm.201901229] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/25/2019] [Indexed: 12/19/2022]
Abstract
The emergence of drug-resistant bacteria is becoming the focus of global public health. Early-stage pathogen bioimaging will offer a unique perspective to obtain infection information in patients. A photoacoustic (PA) contrast agent based on functional peptide modified gold nanoparticles (AuNPs@P1) is developed. These nanoparticles can be specifically tailored surface peptides by bacterial overexpressed enzyme inducing in situ aggregation of the gold nanoparticles. In the meantime, the close aggregation based on the hydrogen bonding, π-π stacking, and hydrophobic interaction of the peptide residues on the surface of gold nanoparticles exhibits a typical redshifted and broadened plasmon band. In addition, this active targeting and following in situ stimuli-induced aggregation contribute to increased nanoparticle accumulation in the infected site. Finally, the dynamic aggregation of AuNPs@P1 results in dramatically enhanced photoacoustic signals for bioimaging bacterial infection in vivo with high sensitivity and specificity. It is envisioned that this PA contrast agent may provide a new approach for early detection of bacterial infection in vivo.
Collapse
Affiliation(s)
- Shi‐Zhao Lu
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Xiao‐Yan Guo
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Mei‐Shuai Zou
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Zi‐Qin Zheng
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Yu‐Chuan Li
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Xiao‐Dong Li
- School of Material Science and EngineeringBeijing Institute of Technology No. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Li‐Li Li
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology (NCNST)University of Chinese Academy of Sciences No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
28
|
Qiu H, Pu F, Liu Z, Deng Q, Sun P, Ren J, Qu X. Depriving Bacterial Adhesion-Related Molecule to Inhibit Biofilm Formation Using CeO 2 -Decorated Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902522. [PMID: 31328358 DOI: 10.1002/smll.201902522] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Indexed: 06/10/2023]
Abstract
The formation of bacterial biofilm is one of the causes of antimicrobial resistance, often leading to persistent infections and a high fatality rate. Therefore, there is an urgent need to develop novel and effective strategies to inhibit biofilm formation. Adenosine triphosphate (ATP) plays an important role in bacterial adhesion and biofilm formation through stimulating cell lysis and extracellular DNA (eDNA) release. Herein, a simple and robust strategy for inhibiting biofilm formation is developed using CeO2 -decorated porphyrin-based metal-organic frameworks (MOFs). The function of extracellular ATP (eATP) can be inhibited by CeO2 nanoparticles, leading to the disruption of the initial adhesion of bacteria. Furthermore, planktonic bacteria can be killed by cytotoxic reactive oxygen species (ROS) generated by MOFs. As a consequence, the synergic effect of eATP deprivation and ROS generation presents excellent capacity to prevent biofilm formation, which may provide a new direction for designing flexible and effective biofilm-inhibiting systems.
Collapse
Affiliation(s)
- Hao Qiu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| | - Zhengwei Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - QingQing Deng
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Panpan Sun
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
29
|
Rodríguez Amor D, Dal Bello M. Bottom-Up Approaches to Synthetic Cooperation in Microbial Communities. Life (Basel) 2019; 9:E22. [PMID: 30813538 PMCID: PMC6462982 DOI: 10.3390/life9010022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial cooperation pervades ecological scales, from single-species populations to host-associated microbiomes. Understanding the mechanisms promoting the stability of cooperation against potential threats by cheaters is a major question that only recently has been approached experimentally. Synthetic biology has helped to uncover some of these basic mechanisms, which were to some extent anticipated by theoretical predictions. Moreover, synthetic cooperation is a promising lead towards the engineering of novel functions and enhanced productivity of microbial communities. Here, we review recent progress on engineered cooperation in microbial ecosystems. We focus on bottom-up approaches that help to better understand cooperation at the population level, progressively addressing the challenges of tackling higher degrees of complexity: spatial structure, multispecies communities, and host-associated microbiomes. We envisage cooperation as a key ingredient in engineering complex microbial ecosystems.
Collapse
Affiliation(s)
- Daniel Rodríguez Amor
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Yu X, He D, Zhang X, Zhang H, Song J, Shi D, Fan Y, Luo G, Deng J. Surface-Adaptive and Initiator-Loaded Graphene as a Light-Induced Generator with Free Radicals for Drug-Resistant Bacteria Eradication. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1766-1781. [PMID: 30523688 DOI: 10.1021/acsami.8b12873] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since generating toxic reactive oxygen species is largely dependent on oxygen, bacteria-infected wounds' hypoxia significantly inhibits photodynamic therapy's antibacterial efficiency. Therefore, a novel therapeutic method for eradicating multidrug-resistant bacteria is developed based on the light-activated alkyl free-radical generation (that is oxygen independent). According to the polydopamine-coated carboxyl graphene (PDA@CG), an initiator-loaded and pH-sensitive heat-producible hybrid of bactericides was synthesized. According to fluorescence/thermal imaging, under the low pH of the bacterial infection sites, this platform turned positively charged, which allows their accumulation in local infection site. The plasmonic heating effects of PDA@CG can make the initiator decomposed to generate alkyl radical (R•) under the followed near-infrared light irradiation. As a result, oxidative stress can be elevated, DNA damages in bacteria can be caused, and finally even multidrug-resistance death can be caused under different oxygen tensions. Moreover, our bactericidal could promote wound healing in vivo and negligible toxicity in vivo and in vitro and eliminate abscess. Accordingly, this study proves that combination of oxygen-independent free-radical-based therapy along with a stimulus-responsiveness moiety not only can be used as an effective treatment of multidrug-resistant bacteria infection, but also creates a use of a variety of free radicals for treatment of multidrug-resistant bacteria infection wounds.
Collapse
Affiliation(s)
| | | | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering , Chongqing University , Chongqing 40005 , China
| | | | | | | |
Collapse
|
31
|
Hochberg ME. An ecosystem framework for understanding and treating disease. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:270-286. [PMID: 30487969 PMCID: PMC6252061 DOI: 10.1093/emph/eoy032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Pathogens and cancers are pervasive health risks in the human population. I argue that if we are to better understand disease and its treatment, then we need to take an ecological perspective of disease itself. I generalize and extend an emerging framework that views disease as an ecosystem and many of its components as interacting in a community. I develop the framework for biological etiological agents (BEAs) that multiply within humans—focusing on bacterial pathogens and cancers—but the framework could be extended to include other host and parasite species. I begin by describing why we need an ecosystem framework to understand disease, and the main components and interactions in bacterial and cancer disease ecosystems. Focus is then given to the BEA and how it may proceed through characteristic states, including emergence, growth, spread and regression. The framework is then applied to therapeutic interventions. Central to success is preventing BEA evasion, the best known being antibiotic resistance and chemotherapeutic resistance in cancers. With risks of evasion in mind, I propose six measures that either introduce new components into the disease ecosystem or manipulate existing ones. An ecosystem framework promises to enhance our understanding of disease, BEA and host (co)evolution, and how we can improve therapeutic outcomes.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France.,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| |
Collapse
|
32
|
Xu X, Liu X, Tan L, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK, Chu PK, Wu S. Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater 2018; 77:352-364. [PMID: 30030176 DOI: 10.1016/j.actbio.2018.07.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 01/20/2023]
Abstract
Since skin wounds are subject to bacterial infection and tissue regeneration may be impeded, there is demand for biomaterials that possess rapid bactericidal and tissue repair capability. Herein we report in situ promotion of wound healing by a photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to the temperature change. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus is 96.8% and 95.2%, respectively, at a controlled photo-induced temperature of 45 °C that causes no damage to normal tissues. By combining catalysis with near-infrared (NIR) photothermal therapy, the PDA@Au-HAp NPs provide safe, rapid, and effective antibacterial activity compared to OH or PTT alone. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and thus accelerate wound healing. After the 10-day treatment of skin wounds in vivo, PDA@Au-HAp group exhibits quicker recovery than the control group and both sterilization and healing are completed after the 10-day treatment. STATEMENT OF SIGNIFICANCE This study presents in situ promotion of wound healing by a low-temperature photothermal therapy (PTT) assisted nanocatalytic antibacterial system utilizing a polydopamine (PDA) coating on hydroxyapatite (HAp) incorporated with gold nanoparticles (Au-HAp). The PDA@Au-HAp NPs produce hydroxyl radicals (OH) via catalysis of a small concentration of H2O2 to render bacteria more vulnerable to temperature change. After irradiation by 808 nm laser, the antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) is 96.8% and 95.2%, respectively, at a low photo-induced temperature of 45 °C which causes no damage to normal tissues. In addition, this system stimulates the tissue repairing-related gene expression to facilitate the formation of granulation tissues and collagen synthesis and accelerate wound healing.
Collapse
|
33
|
Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, Straatman K, Crocker PR, Dennison A, Martinez-Pomares L, Andrew PW, Moxon ER, Oggioni MR. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol 2018; 3:600-610. [PMID: 29662129 PMCID: PMC6207342 DOI: 10.1038/s41564-018-0147-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/08/2018] [Indexed: 01/21/2023]
Abstract
Bacterial septicaemia is a major cause of mortality, but its pathogenesis remains poorly understood. In experimental pneumococcal murine intravenous infection, an initial reduction of bacteria in the blood is followed hours later by a fatal septicaemia. These events represent a population bottleneck driven by efficient clearance of pneumococci by splenic macrophages and neutrophils, but as we show in this study, accompanied by occasional intracellular replication of bacteria that are taken up by a subset of CD169+ splenic macrophages. In this model, proliferation of these sequestered bacteria provides a reservoir for dissemination of pneumococci into the bloodstream, as demonstrated by its prevention using an anti-CD169 monoclonal antibody treatment. Intracellular replication of pneumococci within CD169+ splenic macrophages was also observed in an ex vivo porcine spleen, where the microanatomy is comparable with humans. We also showed that macrolides, which effectively penetrate macrophages, prevented septicaemia, whereas beta-lactams, with inefficient intracellular penetration, failed to prevent dissemination to the blood. Our findings define a shift in our understanding of the pneumococcus from an exclusively extracellular pathogen to one with an intracellular phase. These findings open the door to the development of treatments that target this early, previously unrecognized intracellular phase of bacterial sepsis.
Collapse
Affiliation(s)
- Giuseppe Ercoli
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Vitor E Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Wen Y Chung
- Hepato-Pancreato-Biliary Unit, Leicester General Hospital, University of Hospitals of Leicester, NHS Trust, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sarah Thomson
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Kornelis Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ashley Dennison
- Hepato-Pancreato-Biliary Unit, Leicester General Hospital, University of Hospitals of Leicester, NHS Trust, Leicester, UK
| | - Luisa Martinez-Pomares
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
34
|
Specific detection and effective inhibition of a single bacterial species in situ using peptide mineralized Au cluster probes. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9206-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Martínez JL. Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0006-2016. [PMID: 29350130 PMCID: PMC11633556 DOI: 10.1128/microbiolspec.mtbp-0006-2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
Inspection of the genomes of bacterial pathogens indicates that their pathogenic potential relies, at least in part, on the activity of different elements that have been acquired by horizontal gene transfer from other (usually unknown) microorganisms. Similarly, in the case of resistance to antibiotics, besides mutation-driven resistance, the incorporation of novel resistance genes is a widespread evolutionary procedure for the acquisition of this phenotype. Current information in the field supports the idea that most (if not all) genes acquired by horizontal gene transfer by bacterial pathogens and contributing to their virulence potential or to antibiotic resistance originate in environmental, not human-pathogenic, microorganisms. Herein I discuss the potential functions that the genes that are dubbed virulence or antibiotic resistance genes may have in their original hosts in nonclinical, natural ecosystems. In addition, I discuss the potential bottlenecks modulating the transfer of virulence and antibiotic resistance determinants and the consequences in terms of speciation of acquiring one or another of both categories of genes. Finally, I propose that exaptation, a process by which a change of function is achieved by a change of habitat and not by changes in the element with the new functionality, is the basis of the evolution of virulence determinants and of antibiotic resistance genes.
Collapse
Affiliation(s)
- José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
36
|
Duneau D, Ferdy JB, Revah J, Kondolf H, Ortiz GA, Lazzaro BP, Buchon N. Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in D. melanogaster. eLife 2017; 6:28298. [PMID: 29022878 PMCID: PMC5703640 DOI: 10.7554/elife.28298] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
A central problem in infection biology is understanding why two individuals exposed to identical infections have different outcomes. We have developed an experimental model where genetically identical, co-housed Drosophila given identical systemic infections experience different outcomes, with some individuals succumbing to acute infection while others control the pathogen as an asymptomatic persistent infection. We found that differences in bacterial burden at the time of death did not explain the two outcomes of infection. Inter-individual variation in survival stems from variation in within-host bacterial growth, which is determined by the immune response. We developed a model that captures bacterial growth dynamics and identifies key factors that predict the infection outcome: the rate of bacterial proliferation and the time required for the host to establish an effective immunological control. Our results provide a framework for studying the individual host-pathogen parameters governing the progression of infection and lead ultimately to life or death. Sick individuals do not all respond to an infection in the same way. One individual may experience mild symptoms and recover easily, while another may suffer devastating illness or even death. A number of factors are often assumed to account for these differences, including the sex, age and genes of the individuals, and differences in the environments the individuals have been exposed to. However, random variations in how an individual’s immune system interacts with the infection could also play an important role in recovery. Duneau et al. have now studied how genetically identical fruit flies who were raised in the same environment respond to different bacterial infections. This enabled them to develop a mathematical model that describes how a bacterial infection develops in an individual. In an initial phase, the bacteria proliferate freely. If the immune defenses activate in time to control the infection, the number of bacteria in the fly decreases to a constant level and the infection enters a long-term, or chronic, phase. The sooner this happens the more likely it is that the fly will survive. If the immune control happens too late, the infection enters a terminal phase and the fly will die once the number of bacteria increases to a certain level. The model therefore reveals that the precise time at which the immune system takes control of the bacterial population – termed the “Time to Control” – determines the outcome of the infection. Duneau et al. confirmed this by injecting bacteria into identical flies. A small variation in the Time to Control was sometimes the difference between a fly living or dying. Understanding what controls this apparently random variation is key to understanding infection and potentially developing more efficient treatments for a wide range of diseases – not just those caused by bacteria, but also those caused by viruses and parasites, like HIV and malaria.
Collapse
Affiliation(s)
- David Duneau
- Department of Entomology, Cornell University, Ithaca, United States.,Laboratoire Évolution & Diversité Biologique, UMR5174 EDB, CNRS, ENSFEA, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Baptiste Ferdy
- Laboratoire Évolution & Diversité Biologique, UMR5174 EDB, CNRS, ENSFEA, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jonathan Revah
- Department of Entomology, Cornell University, Ithaca, United States.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, United States
| | - Hannah Kondolf
- Department of Entomology, Cornell University, Ithaca, United States
| | - Gerardo A Ortiz
- Department of Entomology, Cornell University, Ithaca, United States
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, United States.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, United States.,Cornell Institute of Host Microbe Interactions and Disease, Cornell University, Ithaca, United States
| |
Collapse
|
37
|
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703461. [PMID: 28782856 DOI: 10.1002/adma.201703461] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/22/2023]
Abstract
To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
38
|
Levin BR, Baquero F, Ankomah PP, McCall IC. Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections. Trends Microbiol 2017; 25:878-892. [PMID: 28843668 DOI: 10.1016/j.tim.2017.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Most antibiotic use in humans is to reduce the magnitude and term of morbidity of acute, community-acquired infections in immune competent patients, rather than to save lives. Thanks to phagocytic leucocytes and other host defenses, the vast majority of these infections are self-limiting. Nevertheless, there has been a negligible amount of consideration of the contribution of phagocytosis and other host defenses in the research for, and the design of, antibiotic treatment regimens, which hyper-emphasizes antibiotics as if they were the sole mechanism responsible for the clearance of infections. Here, we critically review this approach and its limitations. With the aid of a heuristic mathematical model, we postulate that if the rate of phagocytosis is great enough, for acute, normally self-limiting infections, then (i) antibiotics with different pharmacodynamic properties would be similarly effective, (ii) low doses of antibiotics can be as effective as high doses, and (iii) neither phenotypic nor inherited antibiotic resistance generated during therapy are likely to lead to treatment failure.
Collapse
Affiliation(s)
- Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA; Co-first authors.
| | - Fernando Baquero
- Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, CIBERESP, Madrid, Spain; Co-first authors
| | | | | |
Collapse
|
39
|
Shao X, Levin B, Nemenman I. Single variant bottleneck in the early dynamics ofH. influenzaebacteremia in neonatal rats questions the theory of independent action. Phys Biol 2017; 14:045004. [DOI: 10.1088/1478-3975/aa731b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Wang JB, Lu HL, St. Leger RJ. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel. PLoS Pathog 2017; 13:e1006260. [PMID: 28257468 PMCID: PMC5352145 DOI: 10.1371/journal.ppat.1006260] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.
Collapse
Affiliation(s)
- Jonathan B. Wang
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ji H, Dong K, Yan Z, Ding C, Chen Z, Ren J, Qu X. Bacterial Hyaluronidase Self-Triggered Prodrug Release for Chemo-Photothermal Synergistic Treatment of Bacterial Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6200-6206. [PMID: 27690183 DOI: 10.1002/smll.201601729] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Indexed: 05/28/2023]
Abstract
A novel platform for targeted on-demand prodrug ascorbic acid (AA) delivery is fabricated using a bacterial hyaluronidase sensitive graphene-mesoporous silica nanosheet@hyaluronic acid-magnetic nanoparticles as the nanocarrier to treat bacterial infections. The released AA can be converted to detrimental •OH in situ on the surface of bacteria. With the chemo-photothermal synergistic effect, the designed antibacterial system can effectively inactivate bacteria and disperse stubborn biofilm.
Collapse
Affiliation(s)
- Haiwei Ji
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhengqin Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chao Ding
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Graduate School University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
42
|
Gjini E, Brito PH. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment. PLoS Comput Biol 2016; 12:e1004857. [PMID: 27078624 PMCID: PMC4831758 DOI: 10.1371/journal.pcbi.1004857] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| | - Patricia H. Brito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H. Pathological-Condition-Driven Construction of Supramolecular Nanoassemblies for Bacterial Infection Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:254-262. [PMID: 26568542 DOI: 10.1002/adma.201503437] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Indexed: 06/05/2023]
Abstract
A pyropheophorbide-α-based building block (Ppa-PLGVRG-Van) can be used to construct self-aggregated superstructures in vivo for highly specific and sensitive diagnosis of bacterial infection by noninvasive photoacoustic tomography. This in vivo supramolecular chemistry approach opens a new avenue for efficient, rapid, and early-stage disease diagnosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Li-Li Li
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Huai-Lei Ma
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guo-Bin Qi
- Key Lab for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Ave, Wuhan, 430073, China
| | - Di Zhang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Faquan Yu
- Key Lab for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Ave, Wuhan, 430073, China
| | - Zhiyuan Hu
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Yangtze River Delta Academy of Nanotechnology and Industry Development Research, Jiaxing, 314000, China
| | - Hao Wang
- Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
44
|
Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater 2016; 30:397-407. [PMID: 26518106 DOI: 10.1016/j.actbio.2015.10.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
Abstract
Developing highly effective antibacterial agents is important for a wide range of applications. However, the emergence of multiple antibiotic-resistant bacteria poses a public health threat. Many developed agents have limited practical application due to chemical instability, low biocompatibility, and poor long-term antibacterial efficiency. In the following study, we synthesize a synergistic nanocomposite by conjugating quercetin (Qu) and acetylcholine (Ach) to the surface of Se nanoparticles (Qu-Ach@SeNPs). Quercetin has been reported to exhibit a wide range of biological activities related to their antibacterial activity and acetylcholine as a neurotransmitter, which can combine with the receptor on the bacterial cell. Arrows indicate NPs and arrowheads indicate compromised cell walls. The study demonstrated how Qu-Ach@SeNPs exhibit a synergistically enhanced antibacterial performance against the multidrug-resistant superbugs (MDRs) compared to Qu@SeNPs and Ach@SeNPs alone. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant Staphylococcus aureus (MRSA), at a low dose. The mechanistic studies showed that Qu-Ach@SeNPs attach to the bacterial cell wall, causing irreversible damage to the membrane, and thereby achieving a remarkable synergistic antibacterial effect to inhibit MRSA. The findings suggested that the synergistic properties of quercetin and acetylcholine enhance the antibacterial activity of SeNPs. In this way, Qu-Ach@SeNPs comprise a new class of inorganic nano-antibacterial agents that can be used as useful applications in biomedical devices. STATEMENT OF SIGNIFICANCE The Qu-Ach@SeNPs have low cytotoxicity when tested on normal human cells in vitro. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant S. aureus (MRSA), at a low dose. Importantly, Qu-Ach@SeNPs showed no emergence of resistance. These results suggest that Qu-Ach@SeNPs have excellent antibacterial activities. These agents can serve as good antibacterial agents against superbugs. Our data suggest that these antibacterial agents may have widespread application in the field of medicine for combating infectious diseases caused by MDRs, as well as other infectious diseases.
Collapse
|
45
|
Li LL, Wang H. Core–shell supramolecular gelatin nanoparticles for “on demand” antibiotic delivery. J Control Release 2015; 213:e71. [DOI: 10.1016/j.jconrel.2015.05.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H. Core-shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery. ACS NANO 2014; 8:4975-83. [PMID: 24716550 DOI: 10.1021/nn501040h] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The treatment of bacterial infection is one of the most challenging tasks in the biomedical field. Antibiotics were developed over 70 years and are regarded as the most efficient type of drug to treat bacterial infection. However, there is a concern that the overuse of antibiotics can lead to a growing number of multidrug-resistant bacteria. The development of antibiotic delivery systems to improve the biodistribution and bioavailability of antibiotics is a practical strategy for reducing the generation of antibiotic resistance and increasing the lifespan of newly developed antibiotics. Here we present an antibiotic delivery system (Van⊂SGNPs@RBC) based on core-shell supramolecular gelatin nanoparticles (SGNPs) for adaptive and "on-demand" antibiotic delivery. The core composed of cross-linked SGNPs allows for bacterial infection-microenvironment responsive release of antibiotics. The shell coated with uniform red blood cell membranes executes the function of disguise for reducing the clearance by the immune system during the antibiotic delivery, as well as absorbs the bacterial exotoxin to relieve symptoms caused by bacterial infection. This approach demonstrates an innovative and biomimetic antibiotic delivery system for the treatment of bacterial infection with a minimum dose of antibiotics.
Collapse
Affiliation(s)
- Li-Li Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST) , No. 11 Beiyitiao, Zhongguancun, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Crit Rev Microbiol 2014; 42:144-57. [PMID: 24766052 DOI: 10.3109/1040841x.2014.907235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain of "antimicrobial resistance" and "adaptive virulence" has been the dominant view of Pseudomonas aeruginosa (Pa) in cystic fibrosis (CF) in the progressively damaged host airway over the course of this chronic infection. However, the pathogenic effects of CF airway-adapted Pa strains are notably reduced. We propose that CF Pa and other bacterial cohabitants undergo host adaptation which resembles the changes found in bacterial symbionts in animal hosts. Development of clonally selected and intraspecific isogenic Pa strains which display divergent colony morphology, growth rate, auxotrophy, and antibiotic susceptibility in vitro suggests an adaptive sequence of infective exploitation-parasitism-symbiotic evolution driven by host defenses. Most importantly, the emergence of CF pseudomonal auxotrophy is frequently associated with a few specific amino acids. The selective retention or loss of specific amino acid biosynthesis in CF-adapted Pa reflects bacterium-host symbiosis and coevolution during chronic infection, not nutrient availability. This principle also argues against the long-standing concept of dietary availability leading to evolution of essential amino acid requirements in humans. A novel model of pseudomonal adaptation through multicellular bacterial syntrophy is proposed to explain early events in bacterial gene decay and decreased (not increased) virulence due to symbiotic response to host defense.
Collapse
Affiliation(s)
- Xuan Qin
- a Microbiology Laboratory, Seattle Children's Hospital , and.,b Department of Laboratory Medicine , University of Washington , School of Medicine Seattle , Washington , USA
| |
Collapse
|
48
|
Gerlini A, Colomba L, Furi L, Braccini T, Manso AS, Pammolli A, Wang B, Vivi A, Tassini M, van Rooijen N, Pozzi G, Ricci S, Andrew PW, Koedel U, Moxon ER, Oggioni MR. The role of host and microbial factors in the pathogenesis of pneumococcal bacteraemia arising from a single bacterial cell bottleneck. PLoS Pathog 2014; 10:e1004026. [PMID: 24651834 PMCID: PMC3961388 DOI: 10.1371/journal.ppat.1004026] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/10/2014] [Indexed: 01/27/2023] Open
Abstract
The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease.
Collapse
Affiliation(s)
- Alice Gerlini
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Leonarda Colomba
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Leonardo Furi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Tiziana Braccini
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Ana Sousa Manso
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Andrea Pammolli
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Italy
| | - Bo Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | | | | | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Gianni Pozzi
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Susanna Ricci
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
| | - Peter W. Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians University of Munich, München, Germany
| | - E. Richard Moxon
- Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Marco R. Oggioni
- LAMMB, Department of Biotechnology, University of Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
49
|
Abstract
The analysis of the genomes of bacterial pathogens indicates that they have acquired their pathogenic capability by incorporating different genetic elements through horizontal gene transfer. The ancestors of virulent bacteria, as well as the origin of virulence determinants, lay most likely in the environmental microbiota. Studying the role that these determinants may have in non-clinical ecosystems is thus of value for understanding in detail the evolution and the ecology of bacterial pathogens. In this article, I propose that classical virulence determinants might be relevant for basic metabolic processes (for instance iron-uptake systems) or in modulating prey/predator relationships (toxins) in natural, non-infective ecosystems. The different role that horizontal gene transfer and mutation may have in the evolution of bacterial pathogens either for their speciation or in short-sighted evolution processes is also discussed.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Darwin 3, Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
50
|
Affiliation(s)
- Lynn B. Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Daniel R. Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|